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Abstract

Background: Despite the known relatively high disease burden of influenza, data are

lacking regarding a critical epidemiological indicator, the case-fatality ratio. Our

objective was to infer age-group and influenza (sub)type specific values by combining

modelled estimates of symptomatic incidence and influenza-attributable mortality.

Methods: The setting was the Netherlands, 2011/2012 through 2019/2020 seasons.

Sentinel surveillance data from general practitioners and laboratory testing were

synthesised to supply age-group specific estimates of incidence of symptomatic

infection, and ecological additive modelling was used to estimate influenza-

attributable deaths. These were combined in an Bayesian inferential framework to

estimate case-fatality ratios for influenza A(H3N2), A(H1N1)pdm09 and influenza B,

per 5-year age-group.

Results: Case-fatality estimates were highest for influenza A(H3N2) followed by

influenza B and then A(H1N1)pdm09 and were highest for the 85+ years age-group,

at 4.76% (95% credible interval [CrI]: 4.52–5.01%) for A(H3N2), followed by influ-

enza B at 4.08% (95% CrI: 3.77–4.39%) and A(H1N1)pdm09 at 2.51% (95% CrI:

2.09–2.94%). For 55–59 through 85+ years, the case-fatality risk was estimated to

double with every 3.7 years of age.

Conclusions: These estimated case-fatality ratios, per influenza sub(type) and per

age-group, constitute valuable information for public health decision-making, for

assessing the retrospective and prospective value of preventative interventions such

as vaccination and for health economic evaluations.
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1 | INTRODUCTION

Seasonal influenza contributes a substantial portion of the global

infectious disease mortality burden, especially among older adults.1–4

In countries with a temperate climate, influenza is one of the top-

ranked infectious diseases in terms of health burden when measured

as disability-adjusted life years (DALY).5,6 Despite the relatively high

disease burden of influenza, data regarding the case-fatality ratio (cfr)

following symptomatic infection are scarce. In one of the few studies

from which an influenza-attributable cfr can be extracted, 0.19% of a

study population of 141,000 influenza patients who consulted their

general practitioner (GP) died within 30 days, compared with 0.06%

of matched controls.7

During the recent 2009/2010 influenza A(H1N1)pdm09 pan-

demic, initiatives to compile surveillance and seroprevalence data of

sufficient quality to estimate cfrs per age-group were undertaken,8–10

but comparable figures for influenza A(H1N1)pdm09 in post-

pandemic years, A(H3N2) and the B lineages are lacking. The reason is

that determining both numbers of cases and deaths attributable to

influenza is extremely challenging without data sources specifically

designed to compile these figures. Influenza A(H3N2) virus infection

is suspected to lead to a more severe disease course (including mortal-

ity) compared with influenza A(H1N1) virus,11 with influenza B possi-

bly falling in between,12 although there is actually little supporting

evidence for a consistent difference in clinical severity between influ-

enza A and B.13–15

In the Netherlands, estimates of incidence rates of symptomatic

influenza infection are routinely computed using evidence synthesis

methods applied to sentinel surveillance of influenza-like illness (ILI),

virological testing and other data sources,16,17 and annual estimates

of influenza-attributable mortality are produced from registered

cause of death data using established additive regression

approaches.18 Our objective was to combine these two sets of esti-

mates within a statistical modelling framework to infer the cfrs of

seasonal influenza per age-group and (sub)type. These case-fatality

estimates can be used to improve the accuracy of disease burden

calculations.5

2 | METHODS

We defined our analysis period to consist of the nine winter seasons

from 2011/2012 through 2019/2020. Seasons are defined as week

number 40 through week number 20 of the following year. This

period fell between the 2009–2010 influenza A(H1N1)pdm09 pan-

demic and the COVID-19 pandemic beginning in March 2020 in the

Netherlands. During the selected period, the coverage of the various

surveillance systems for respiratory infections can be considered to

be reasonably stable. We conducted analyses for the following set of

19 age-groups (all consisting of 5 years, except for the oldest and the

two youngest groups): <1 year, 1–4 years, 5–9, 10–14, 15–19, …, 80–

84, 85 years and older.

2.1 | Estimation of the incidence of symptomatic
infection per age-group and influenza (sub)type

An evidence synthesis approach, combining GP-based sentinel surveil-

lance for ILI,19 laboratory testing of a weekly subset of GP-consulting

ILI patients for influenza virus, including subtyping of all detected

influenza A viruses and lineage determination of all detected influenza

type B viruses,16 and internet survey-based data on health care seek-

ing behaviour, is routinely deployed16,17 to estimate the incidence rate

of symptomatic influenza infection per age-group (defined as <5, 5–

14, 15–44, 45–64 and 65+ years; age categories defined based on

virological testing data) and per winter season. We multiplied these

incidence rates by the 5-year age-group population sizes20 to obtain

season-specific estimates of the number of symptomatic infections

per narrow age-group (making the simplifying assumption that ILI

rates from sentinel surveillance are applicable to the 5-year age-

groups within each broader age-group) (Figure S4). Furthermore, the

laboratory testing of the subset of ILI patients provides quantitative

information on the season-specific circulating subtypes/lineages,

namely, the proportion of samples per influenza virus A subtype

(H3N2, H1N1) and B lineage (Victoria, Yamagata). This allows the age-

and season-specific estimates of symptomatic incidence to be further

broken down into three categories: influenza A(H3N2), influenza

A(H1N1)pdm09 and influenza B (we pool both B lineages due to their

relatively small individual contributions over our analysis period).

2.2 | Influenza mortality attribution

We adopted an ecological modelling approach frequently used by pre-

vious research for attribution of influenza-attributable deaths,18,21–23

the fundamental assumption of which is that seasonal variability in

mortality can be (partly) explained by temporal variation in the report-

ing incidence of viral or bacterial respiratory disease-causing

pathogens.

2.2.1 | Data sources

Attribution of influenza-attributable deaths requires data on the

weekly number of deaths from a respiratory cause. Statistics

Netherlands registers all deaths in the Netherlands; publicly available

weekly all-cause mortality data, stratified into the ‘broad’ age-groups
<65, 65–79 and 80+ years were obtained for our analysis period.24

Additionally, for the years 2011–2013, we made use of a dataset ana-

lysed in our previous study,25 in which respiratory deaths (defined as

deaths with an underlying respiratory cause of death [ICD-10:

J00-J99]) were separately coded and were stratified by narrower age-

groups (<55 years, 55–59 … 85+ years). This shorter time series

informed the estimation of respiratory deaths from weekly all-cause

deaths. Because of uncertainty regarding the contribution of SARS-

CoV-2 infection versus influenza virus or other pathogens to
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respiratory mortality from approximately ISO week 12 of 2020

(COVID-19 deaths began to rise in Week 11 of 202026), we truncated

all-cause mortality data for the 2019/2020 season at Week 11 (for

consistency, we truncated all data sources involved in the estimation

of symptomatic infection incidence for the 2019/2020 season also at

Week 11). To reconstruct the number of respiratory deaths per

5-year age-group within each broad age-group for the remaining years

(period from 2014 through week 11 of 2020), we derived both sets of

distributions (e.g., the proportions 80–84 and 85+ years within the

available 80+ years data; the proportion of all-cause deaths with an

underlying respiratory cause) from this earlier dataset. We calculated

these distributions per ISO week number (thus aggregating over year,

because the proportion of respiratory deaths among all-cause

mortality could exhibit seasonality, which could also influence the

distribution of deaths occurring among the component sub-groups of

a broad age-group), using the last 4 years of available data, that is,

2010–2013.

Since 1989, a centralised database (the Weekly Surveillance Sys-

tem of the Dutch Working Group on Clinical Virology) compiles rou-

tine weekly counts of positive laboratory test results for a range of

respiratory pathogens from between 17 and 21 virological laborato-

ries in the Netherlands; data are mainly from hospitalised patients.27

With the use of these data, we extracted weekly counts of laboratory

diagnoses for the following viral and bacterial agents: influenza virus

type A, influenza virus type B, respiratory syncytial virus, rhinovirus,

parainfluenza virus and Mycoplasma pneumoniae (set consistent with

that used in van Asten et al.18), for the seasons 2011/2012 through

2019/2020.

2.2.2 | Additive regression modelling to infer
influenza-attributable deaths

With the use of additive regression modelling, we estimated the

weekly number of deaths attributable to influenza after adjusting for

the co-circulation of other pathogens and other factors via linear

regression techniques. We fitted separate Poisson regression models

with an identity link function to allow an additive interpretation of

model coefficients, to the weekly respiratory mortality data for each

age-group (<55 through 85+ years). As laboratory virological surveil-

lance data were not available stratified by age, each age-group specific

additive regression model adjusted for the total reported positive

samples per pathogen (i.e., all laboratory weekly surveillance data

were used to develop each the regression model for each age-group).

This modelling method is more fully described in previous

publications.18,25

2.2.3 | Covariates and model selection

Besides the above-named candidate respiratory pathogens (influenza

A virus—coded using separate variables for each season, to capture

seasonal variation in severity, influenza B virus, respiratory syncytial

virus, rhinovirus, M. pneumoniae and parainfluenza virus), we

explored extreme temperature, defined using daily temperature

data recorded at the De Bilt (centrally located in the Netherlands)

weather station and available online,28 and then coding low extreme

temperature using the function max(0, 5–T), and high extreme as

max(0, T–17), where T is the mean weekly temperature, in degrees

Celsius.18,29 Temperatures as thus treated as ‘extreme’ if below 5�C

or above 17�C.

Next, we conducted a structured model selection procedure sepa-

rately for each age-group, which involved first entering linear and qua-

dratic trend terms, then testing the impact of 0- to 4-week lags

between weekly surveillance reports of influenza A and B viruses and

the other co-circulating pathogens and mortality, selecting the lagged

pathogen term that led to the largest AIC reduction, then adding

terms for low and high extreme temperature terms, and finally adding

trigonometric terms to account for the assumed sinusoidal-shaped

background mortality (for further details see van Asten et al. and

McDonald et al.18,25).

To estimate the number of influenza-attributable deaths among

5-year age-groups below 55–59 years, we used a different approach

that was not sensitive to the low counts in these age-groups. For this,

we adopted the method implemented in DALY computation soft-

ware30 developed for the Burden of Communicable Diseases in

Europe (BCoDE) project,5 which ‘redistributes’ the total influenza-

attributable deaths according to a country-aggregated data source,

namely, the observed age-distribution of influenza-coded deaths

based on ICD-10 codes, averaged over four countries

(Estonia—Estonian Insurance Database, Germany—Federal Statistical

Office, Italy—Italian National Bureau of Statistics and Netherlands—

Statistics Netherlands) and over the 4-year period 2005–2008 (2006–

2007 only for Italy). We applied the age-group specific proportions

from this aggregate data source (among <55 years only) to the total

number of estimated deaths in the <55 years age-group for each sea-

son, to estimate the number of influenza-attributable deaths per

5-year age-group per season. This aggregate data source indicates a

decreasing proportion with decreasing age-group until 5–9 years (see

Figure S3); the proportion for 1–4 years is higher than for 5–9 years

and higher still for <1 year; this pattern is consistent with clinical data

on rates of in-hospital mortality among children hospitalised with con-

firmed influenza virus infection.31

2.3 | Inference of cfrs for influenza A(H3N2),
A(H1N1)pdm09 and influenza B

(Sub)type-aggregated cfrs are calculated by simply dividing the total

estimated number of influenza-attributable deaths per age-group by

the total estimated number of symptomatic infection cases

(i.e., persons with ILI) per age-group. Given that our data (estimated

influenza-attributable deaths, derived using additive regression) are

not stratified by influenza (sub)type, the task is to find (sub)type-

dependent cfrs that when multiplied by the (sub)type-specific symp-

tomatic incidence and summed over (sub)type provide a good fit to
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the observed total number of influenza deaths per season. This is an

inferential task, for which a solution can be found using Markov chain

Monte-Carlo (MCMC) sampling methods, provided there is sufficient

variation in the distribution of circulating type and subtype (within

influenza A) over seasons. For example, the presence of multiple sea-

sons with a relatively high proportion of circulating influenza A(H3N2)

and multiple seasons with a relatively high proportion of influenza B

lineages will help identify these two cfrs.

Because of the relatively low influenza-attributable mortality

for age-groups younger than 55 years (see Table 1), we used the

inference approach to estimate cfrs for the seven age-groups from

55–59 through 85+ years and a simple extrapolation approach for

the younger age-groups (see below). We implemented the below

set of equations in JAGS32 and took 8000 samples from the poste-

rior distributions for age-specific cfrs after discarding 15,000 itera-

tions as ‘burn-in’. Note that as computation is carried out within a

Bayesian framework, taking the 2.5% and 97.5% quantiles of the

posterior distribution yields 95% credible intervals (CrIs). While the

95% intervals for (sub)type-aggregated cfrs were estimated by

propagating the uncertainty in influenza-attributable mortality and

symptomatic incidence in JAGS, uncertainty in the parameters inci-

dence, mortality and (sub)type-positive proportions could not be

supplied as prior distributions in the inferential model. This is

because the ‘best-fitting solution’ (i.e., converged-upon posterior

distribution) may also adjust, sometimes drastically, of the posterior

distributions for three parameters, which results in the inference of

unrealistic cfrs.

We model the observed data, Za,i, as the summation of the

(unknown) (sub)type-specific influenza deaths (i.e., YH3N2,a,i + YH1N1,a,

i + YB,a,i) using the sum sampler in JAGS (Figure S5 provides a directed

acyclic graph of the statistical model). We use the index i to refer to

the season of the analysis period, the index a to refer to the 5-year

age-group and the index s to refer to the (sub)type. Ys,a,i is therefore

the number of respiratory deaths in season i and age-group a among

persons infected with influenza (sub)type s.

Za,i ¼
X
s

Ys,a,i: ð1Þ

The unknown number of (sub)type-specific influenza deaths is

assumed to follow a Poisson distribution:

Ys,a,i �Poisson λs,a,ið Þ: ð2Þ

The Poisson rate parameter, λs,a,i , is a function of the (sub)type-

and age-dependent cfr (cfr) and the constants: the proportion of each

(sub)type circulating per season (πs,i) and the estimated symptomatic

incidence over the season (SI):

T AB L E 1 Estimated incident cases of symptomatic influenza (shown to four significant digits), reconstructed deaths with a respiratory
condition as the underlying cause of death and influenza-attributable respiratory deaths in the Netherlands, aggregating over nine seasons
2011/2012 through 2019/2020, with resulting case-fatality ratios. CI = confidence interval.

Age-group

Symptomatic influenza

incidence (95% CI)

Total reconstructed

respiratory deaths

Influenza-attributable

deaths (95% CI)

Case-fatality ratio

(95% CI)

(All ages) 4,676,000 (4,551,000–4,804,000) 121,729 5585 (5563–5608) 0.120% (0.116–0.123%)

85+ years 70,680 (62,780–79,680) 53,042 2999 (2982–3016) 4.28% (3.77–4.78%)

80–84 79,540 (70,310–89,430) 26,034 1105 (1095–1115) 1.40% (1.24–1.57%)

75–79 111,900 (99,490–125,600) 16,760 546 (540–552) 0.49% (0.44–0.50%)

70–74 152,300 (134,600–171,600) 10,545 418 (412–423) 0.27% (0.24–0.31%)

65–69 203,000 (179,300–228,900) 6770 220 (216–224) 0.11% (0.10–0.123%)

60–64 256,400 (237,500–275,700) 3847 100 (97–103) 0.039% (0.036–0.042%)

55–59 282,100 (261,600–303,800) 2261 81 (78–83) 0.029% (0.026–0.031%)

50–54 306,500 (284,100–330,500) 484 23 (22–24) 0.007% (0.007–0.008%)

45–49 310,200 (287,300–334,300) 494 23 (23–24) 0.008% (0.007–0.008%)

40–44 277,200 (255,100–301,200) 364 17 (17–18) 0.006% (0.006–0.007%)

35–39 249,700 (229,100–271,200) 237 11 (11–12) 0.005% (0.004–0.005%)

30–34 251,300 (230,900–273,600) 106 5 (5–5) 0.002% (0.002–0.002%)

25–29 262,700 (241,100–285,600) 98 5 (4–5) 0.002% (0.002–0.002%)

20–24 261,200 (240,400–284,300) 106 5 (5–5) 0.002% (0.002–0.002%)

15–19 250,000 (229,700–272,100) 76 4 (4–4) 0.001% (0.001–0.002%)

10–14 417,500 (368,900–469,400) 86 4 (4–4) 0.001% (0.001–0.001%)

5–9 392,300 (346,400–443,200) 76 4 (4–4) 0.001% (0.001–0.001%)

1–4 431,200 (365,100–507,400) 161 8 (7–8) 0.002% (0.001–0.002%)

<1 104,300 (88,500–122,200) 182 9 (8–9) 0.008% (0.007–0.010%)
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λs,a,i ¼ cfrs,a �πs,i �SIa,i: ð3Þ

The cfr is defined in turn to be a multiplicative function of a (sub)

type-specific cfr and age; we therefore define log (cfr) to be an addi-

tive function of a (sub)type-specific constant term (βs) and the age-

effect coefficient (μ) multiplied by the reference age (in years; we

define the reference age [age.ref] as the lower bound of the age-

group minus 50). This enforces an identical exponential relationship

between cfr and (absolute) age for each (sub)type; this relationship is

illustrated in a plot of the type-aggregated data (Figure S1, ages 55–

59 and older):

cfrs,a ¼ eβsþμ�age:refa ð4Þ

Given the Bayesian framework, prior distributions are required

for stochastic parameters. Therefore, we assign vague normal priors

to βs and μ, where the precision (1/sd2)= 0.001

βs �Normal 0,sd2
� �

:

μ�Normal 0,sd2
� �

:

Finally, extrapolation of (sub)type-specific cfrs downwards to the

age-groups 50–54 years and younger was conducted by multiplying

the cfr estimated for 55–59 years by the separate age-effects for 50–

54 through 10–14 years and for 5–9 years through <1 year, which

were separately estimated via log-linear regression analysis of the

type-aggregated data (Figure S1).

Additive regression modelling was conducted in the R statistical

programming environment, version 4.1.333 and inference of cfrs using

MCMC sampling within JAGS,32 accessed via the runjags package.34

JAGS code for estimation of cfrs is provided in the Supporting Infor-

mation (Code S1 for [sub]type-specific and Code S2 for aggregated

over [sub]type).

3 | RESULTS

A total of 1,241,193 all-cause deaths were registered by Statistics

Netherlands over our 9-season analysis period. We reconstructed

121,729 (9.8% of the total) deaths due to an underlying respiratory

cause; total respiratory deaths ranged from 2470 for <55 years to

53,042 for 85+ years (Table 1). The total number of additive-regres-

sion-modelled influenza-attributable deaths ranged from 52 (in the

2013/2014 season) to 1260 in the 2017/2018 season (when influ-

enza B/Yamagata was dominant) and varied widely by age-group, with

the highest and lowest estimates obtained for the 85+ years

(n = 2999; 95% CI: 2982–3016) and 55–59 years (n = 81; 95% CI:

78–83) age-groups, respectively (Table 1), which was consistently

observed across seasons (Figure 1).

The re-distribution of the total respiratory deaths and total mod-

elled influenza-attributable deaths for the <55 years among the

12 younger age-groups is provided in Table 1. Over all seasons, an

estimated 117 (95% CI: 115–118) influenza-attributable deaths

were estimated for persons younger than 55 years; for the age-groups

<1 year through 30–34 years, this estimate was extremely low,

at between 4 and 9 deaths over the nine seasons. Table 1 also

shows the estimated cfrs per age-group, aggregating over (sub)type

and season; this ranged from 4.28% (95% CI: 3.77–4.78%) for

85+ years to a low of 0.001% (95% CI: 0.001–0.001%) for persons

aged 5–14 years.

The Bayesian inference method applied to the age-groups 55–59

through 85+ years yielded the highest age-aggregated cfrs for influ-

enza A(H3N2) (0.582%; 95% CrI: 0.563–0.601 in Section 4), followed

by influenza B (0.486%; 95% CrI: 0.457–0.514) and influenza

A(H1N1)pdm09 (0.283%; 95% CrI: 0.240–0.326). The highest cfr was

estimated for 85+ years for all (sub)types (posterior median estimates

of 4.76%, 4.08% and 2.51%, for A(H3N2), B and A(H1N1)pdm09,

respectively) (Table 2 and Figure 2). The cfr was 2–3 orders of magni-

tude times smaller for the 55–59 years age-group (0.018%, 0.016%

and 0.010%, for A(H3N2), B and A(H1N1)pdm09, respectively).

Extrapolated cfrs for the age-groups 50–54 years and below are

shown in Figure 2.

The predicted number of influenza deaths per (sub)type and sea-

son (i.e., the quantity estimated using Equation 2) is shown in

Figure 3. Seasons with relatively high influenza A(H3N2) circulation,

such as 2011/2012 and 2016/2017 (see Figure S4), also have rela-

tively high mortality attributable to this subtype; in contrast, seasons

with relatively high influenza A(H1N1)pdm09 circulation

(e.g., 2015/2016 and 2018/2019, at 60% and 51%, respectively) have

relatively low estimated influenza A(H1N1)pdm09 mortality (and low

mortality in general).

Model validity can be ascertained by comparing the total pre-

dicted influenza deaths (computed using the inferred cfrs) with the

regression-modelled influenza-attributable deaths, per season and

age-group (Figure S2). Predicted mortality was a reasonable match to

attributable mortality in all seasons, except for two seasons in which

attributable deaths were under-predicted. These were 2011/2012,

visible for the 85+ years age-group, and 2012/2013, for the 55–59

through 70–74 and 85+ years age-groups.

For the age-range 55–59 through 85+ years, the age-effect was

estimated at 1.204 (95% CrI: 1.199–1.208) (or 20% per year of age).

Therefore, the number of years of age for the case-fatality risk to dou-

ble is calculated as log(2)/log (age-effect) or 3.7 years.

4 | DISCUSSION

By combining routinely calculated season- and age-specific incidence

rates of symptomatic influenza infection with estimates of influenza-

attributable respiratory deaths, we inferred age-group dependent cfrs

for influenza A(H3N2), influenza A(H1N1)pdm09 and influenza B line-

ages over the period 2011/2012 through 2019/2020 in the

Netherlands. cfr estimates for the 85+ years age-group were the

highest, at 4.76% (95% CrI: 4.52–5.01%) for influenza A(H3N2),
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followed by influenza B at 4.08% (95% CrI: 3.77–4.39%) and influenza

A(H1N1)pdm09 at 2.51% (95% CrI: 2.09–2.94%).

Unlike for COVID-19, for which much scientific effort has been

aimed at determining the infection-fatality ratio, or the risk of

death following infection,35,36 cfrs for seasonal influenza have

received far less attention—mainly due to unavailability of adequate

data. In a UK study involving 141,293 persons who had an influenza-

associated GP consultation in the period 1991–1996, 0.19% of

cases died within 30 days compared with 0.06% of matched

controls,7 suggesting an overall influenza-attributable cfr of 0.13%.

Even though this study was based on data from 25–30 years ago

and was restricted to persons who consulted their GP, the cfr

estimated using our ecological design (aggregating over [sub]type and

age-group) based on data from nine recent seasons was comparable,

at 0.12%.

During the influenza A(H1N1)pdm09 pandemic, for which ade-

quate surveillance data exist, the all-ages cfr from UK datasets was

estimated by Donaldson et al.8 at 0.026% (95% CI: 0.011–0.066%);

F I GU R E 1 Additive regression-modelled influenza-attributable deaths in the Netherlands per age-group (<55 years, 55–59 through
85+ years), for the seasons 2011/2012 through 2019/2020; 95% confidence intervals are indicated in grey.

T AB L E 2 Age-group specific case-fatality estimates for age-groups 55–59 through 85+ years, separately estimated for influenza A(H3N2),
influenza A(H1N1)pdm09 and influenza B, based on Netherlands data from the nine seasons 2011/2012 through 2019/2020. Total (aggregating
over [sub]type) case-fatality ratios from Table 1 are also shown. CI = confidence interval.

Age-group

Estimated (sub)type-specific case-fatality ratio (%) (median, 95% CrI)

Total (95% CI) A(H3N2) A(H1N1)pdm09 Influenza B

85+ years 4.28% (3.77–4.78%) 4.76 (4.53–5.01) 2.51 (2.09–2.94) 4.08 (3.77–4.39)

80–84 1.40% (1.24–1.57%) 1.89 (1.80 1.98) 1.00 (0.83–1.16) 1.61 (1.49–1.73)

75–79 0.49% (0.44–0.55%) 0.75 (0.71–0.79) 0.39 (0.33–0.46) 0.64 (0.59–0.69)

70–74 0.27% (0.24–0.31%) 0.30 (0.28–0.32) 0.16 (0.13–0.18) 0.25 (0.23–0.28)

65–69 0.11% (0.10–0.12%) 0.12 (0.11–0.13) 0.062 (0.051–0.073) 0.10 (0.09–0.11)

60–64 0.039% (0.036–0.042%) 0.046 (0.042–0.051) 0.025 (0.020–0.029) 0.040 (0.036–0.045)

55–59 0.029% (0.026–0.031%) 0.018 (0.016–0.021) 0.010 (0.008–0.012) 0.016 (0.014–0.018)
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per age-group estimates ranged from a low of 0.011% (0.003–

0.036%) for 5–14 years to 0.98% (0.30–3.2%) for 65+ years. Based

on US data from April through June 2009, Presanis et al.9 estimated

the all-ages cfr for influenza A(H1N1)pdm09 to be slightly higher, at

0.048% (95% CrI: 0.026–0.096%); per age-group estimated ranged

from 0.010% (0.003–0.031%) for 5–17 years to 0.159% (0.066–

0.333%) for the 18–64 years age-group. Our influenza A(H1N1)

pdm09 cfr estimate for post-pandemic seasons for persons aged 65-

+ years (0.54%, 95% CrI: 0.46–0.62%) is considerably lower than

reported by Donaldson et al.; possible explanations include a diminish-

ing of virulence or a build-up of natural immunity subsequent to

2009–2010 and the availability of effective vaccines against a fatal

outcome.

Among persons aged 55 through 85 years, we estimated an

increased influenza-attributable case-fatality of 20% per year of age,

which corresponds to a doubling of risk approximately every 4 years

of age. For comparison, the population-level mortality rate due to

COVID-19 during the first 16 weeks of the 2020 epidemic in England

and Wales doubled with every 6 years of age.37

There were the small numbers of B/Victoria and B/Yagamata lin-

eages detected through virological testing in most seasons of our

analysis period; therefore, we aggregated the two influenza B lineages

together, as the method cannot infer a cfr for a relatively rare sub-

type/lineage. Although the severe 2017/2018 influenza B/Yagamata-

dominant season led to considerable influenza-attributable mortality,

the inclusion of this season does not bias the cfr for influenza B,

F I GU R E 2 Inferred influenza case-
fatality ratios in the Netherlands per
5-year age-group, based on data from
seasons 2011/2012 through 2019/2020:
(upper panel) age-groups 55–59 through
85+ years, (lower panel) age-groups
<1 year through 50–54 years. Note
difference in y-axis scales.
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because the method takes advantage of variation in the (sub)type dis-

tribution across seasons and is not sensitive to absolute proportions.

Nevertheless, because the inferred cfrs for influenza B are based on

the aggregated data, a potential difference in severity between the

two lineages cannot be recovered. As B/Yagamata has not been

detected since April 2020 and appears to be extinct,38 the generalisa-

bility of our influenza B case-fatality estimates to future seasons with

appreciable circulation of B/Victoria is unknown.

We highlight the following limitations of our analysis. The inferred

cfrs are sensitive to season-specific vaccine effectiveness (VE)—

seasonal variation in VE due to strain variability and vaccine (mis)

match26—which, although the model provided real-world case-fatality

estimates for our analysis period, these may not generalise to future

situations with improved vaccines. As such, some portion of the

between-(sub)type difference we observed may be attributable to

these factors. The age effect on cfrs was constrained to be identical

for the three (sub)types, when in reality, ratios could reflect an inter-

action between (sub)type and age-group. This is because mortality risk

is influenced by both vaccine match and VE (for age-groups with high

vaccine uptake) and by pre-existing immunity, for instance if a particu-

lar (sub)type circulated widely within the same age-group or within

age-groups that have high contact rates with this age-group, in the

prior season(s). Related to this point, we estimated cfrs for age-groups

below 55–59 years using an extrapolation approach based on piece-

wise age-effects and (sub)type-specific cfrs derived from analysis of

the 55–59 through 85+ years age-groups. This was necessitated by

the low number of influenza-attributable deaths per season estimated

for younger persons, which could not be fitted in the current

framework.

Although influenza-attributable deaths were reasonably well-

predicted for seven of the nine seasons, we observed discrepancies

for several age-groups for 2011/2012 and 2012/2013; we note that

in 2011/2012, the total estimated symptomatic incident cases were

very low (Figure S4) compared with the total influenza-attributable

deaths (Figure 1), which underlies the lower model-predicted values.

Such discrepancies are due to factors associated with variation in inci-

dence and/or influenza-attributable mortality not present in the

model. To reconstruct respiratory deaths, we assumed that the sea-

sonal pattern in the proportion of total deaths with a respiratory cause

was stable across seasons; this may have led to slight under- or over-

estimation of the modelled weekly numbers of influenza-attributable

deaths. Finally, and importantly, the 95% CrIs for cfrs reflect only

uncertainty in the model and are consequently too narrow; as

described in the Section 2, inherent uncertainty in symptomatic inci-

dence and influenza-attributable mortality could not be incorporated.

Our results depend crucially on unbiased and accurate measure-

ment of the number of symptomatic infections, the distribution of cir-

culating subtypes/lineages and the number of influenza-attributed

deaths per season. For instance, if mortality had been underestimated,

or symptomatic incidence over-estimated, then actual cfrs would be

higher than we have inferred. Due to the rise in COVID-19 mortality

and COVID-19-related disruption in health-care seeking behaviour,

we truncated the estimation of both influenza-attributable mortality

and symptomatic influenza incidence for season 2019/2020 at Week

11. This truncation may have led to underestimation of both influenza

incidence and influenza mortality in this season. However, the imple-

mentation of drastic public health measures early on—in Week 12 of

2020—to reduce contact rates39 are suspected to have led to much

F I GU R E 3 Fitted influenza-attributable deaths, per season and (sub)type (aggregated over age-groups 55–59 years and older). Numbers over

each bar indicate the predicted percentage of deaths per (sub)type within each season.

8 of 11 MCDONALD ET AL.



lower attack rates for other respiratory infections, including influenza

(no influenza positives were detected after Week 11 in virological

testing of swabbed sentinel GP network patients40), which suggests

that underestimation was minimal.

The data sources underlying our symptomatic incidence estimates

are from the general, non-institutionalised population, but mortality

data are from the entire population, which could lead to over-

estimation of the cfrs for institutional residents with a higher underly-

ing mortality rate. However, given that only about 10% of persons

aged 65+ years live in nursing or elderly homes,41 the impact on influ-

enza incidence and consequently on case-fatality estimates is

expected to be small for all but the oldest age-groups.

In summary, we estimated age-specific cfrs for A(H3N2),

A(H1N1)pdm09 and influenza B in a Bayesian inferential modelling

framework. These cfrs can be used to estimate influenza-

attributable mortality in comparable settings for which data on

(or estimates of) the incidence of cases and the season-dependent

proportions of circulating influenza (sub)types are available. Esti-

mates thus reflect the situation in a country with accessible health-

care and free-of-charge influenza vaccination for risk groups; in the

Netherlands, person aged 60 years and older and persons at

increased risk of complications or mortality (e.g., chronic heart disor-

ders, diabetes, immunodeficiency and nursing home residents) are

eligible42; over the period 2011–2019, vaccination uptake varied

between 50% and 66%, with higher uptake consistently observed

for the age-group 65+ years compared with 60–64 years.42 If the

epidemiological situation changes, for instance due to the introduc-

tion of new vaccines with improved effectiveness, or to changes in

vaccination coverage, cfrs can be easily re-estimated. Estimates of

the influenza-attributable cfr per age-group and sub(type) are vital

for public health decision-making—in which the allocation of finite

resources may be based on annual health burden—for assessing the

retrospective and prospective value of preventative interventions,

for the modelling of control strategies including vaccination and for

health economic evaluations.
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