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Graphical Abstract

∙ This study is a project for the newly established global consortium, the
International Hundred K+ Cohorts Consortium.

∙ Polygenic risk scores have significant potential to informclinical risk, however,
research efforts inminor populations arewarranted to avoid health disparities.

∙ We present an international collaborative effort on the development of a trans-
ethnic PRS for BMI.
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Abstract
Background: While polygenic risk scores hold significant promise in estimat-
ing an individual’s risk of developing a complex trait such as obesity, their
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application in the clinic has, to date, been limited by a lack of data from non-
European populations. As a collaboration model of the International Hundred
K+ Cohorts Consortium (IHCC), we endeavored to develop a globally appli-
cable trans-ethnic PRS for body mass index (BMI) through this relatively new
international effort.
Methods: The polygenic risk score (PRS) model was developed, trained and
tested at the Center for Applied Genomics (CAG) of The Children’s Hospi-
tal of Philadelphia (CHOP) based on a BMI meta-analysis from the GIANT
consortium. The validated PRS models were subsequently disseminated to the
participating sites. Scores were generated by each site locally on their cohorts
and summary statistics returned to CAG for final analysis.
Results:We show that in the absence of awell powered trans-ethnic GWAS from
which to derive marker SNPs and effect estimates for PRS, trans-ethnic scores
can be generated from European ancestry GWAS using Bayesian approaches
such as LDpred, by adjusting the summary statistics using trans-ethnic linkage
disequilibrium reference panels. The ported trans-ethnic scores outperform pop-
ulation specific-PRS across all non-European ancestry populations investigated
including East Asians and three-way admixed Brazilian cohort.
Conclusions:Herewe show that for a truly polygenic trait such as BMI adjusting
the summary statistics of a well powered European ancestry study using trans-
ethnic LD reference results in a score that is predictive across a range of ancestries
including East Asians and three-way admixed Brazilians.

KEYWORDS
body mass index, obesity, polygenic risk score, population admixture, trans-ethnic

1 INTRODUCTION

Obesity is a global health issue,1 with an adult prevalence
of about 13% across theworld (https://www.who.int/news-
room/fact-sheets/detail/obesity-and-overweight). As a dif-
ficult condition to treat, obesity prevention is important

which has led us to develop a trans-ethnic polygenic risk
score (PRS) for body mass index (BMI) through the Inter-
national HundredK+ Cohorts Consortium (IHCC).2 PRS
aggregates the effects of many genetic variants across the
human genome into a single score, which may effectively
improve the prediction of a complex disease/trait and assist

mailto:hakonarson@chop.edu
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
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the differential diagnosis.3 BMI-associated variants have
been under natural selection, and explain 30−40% vari-
ance for BMI.4 Previous study has shown that PRS is an
important determinant of BMI across life.5 In addition to
obesity prevention, PRS for BMI may have clinical appli-
cations, for example, the prediction of cardiometabolic
health.6 Currently, like other health outcomes, there is
a serious lacking of genomic information for BMI in
minor populations. The development of PRS for BMI in
minorities warrants for research efforts to avoid health
disparities.
Our obesity PRS was based on the published GWAS

meta-analysis of BMI that included 339 224 individuals
of European ancestry. The study identified 97 genome-
wide significant BMI-associated loci that account for
approximately 2.7% of BMI variation alone. Genome-wide
estimates suggest that common variation accounts for
over 20% of variation in BMI. Various approaches for
PRS calculation have been developed to date.7–9 The stan-
dard approaches for calculating risk scores involve linkage
disequilibrium (LD)-based marker pruning followed by p-
value thresholding of GWAS-based association statistics.
While effective, these approaches lose information and can
reduce predictive accuracy particularly where the test pop-
ulation differs in genetic ancestry from the GWAS sample.
Bayesian approaches such LDpred,7 a method that infers
the posterior mean effect size of each marker by using a
prior on effect sizes and LD information from an external
reference panel may therefore improve prediction accu-
racy in multi-ethnic studies of diverse populations.7 As
most large scale GWAS have been conducted using only
individuals of European ancestry there is a need to develop
approaches that can port PRS using European ancestry
derived effect estimates. More importantly, the different
prevalences of BMI and obesity across human popula-
tions are closely related to environmental factors and
cultural diversity.10,11 Therefore, it is essential to validate a
multi-ethnic PRS in different regional populations, espe-
cially admixed populations. Leveraging an international
effort supported by the IHCC that has brought together
large scale cohorts with genotyping data from around the
world, we explored the development of an LDpred-based,
trans-ethnic (TE) obesity PRS through a collaboration of 6
international research centers (Figure 1).

2 METHODS

2.1 Model training at the Children’s
Hospital of Philadelphia (CHOP)

The PRS model development and training was carried out
at the Center for Applied Genomics (CAG) according to

the pipeline shown in Figure 1. SNP weights (i.e. poste-
rior mean effect sizes) were calculated usingMarkov chain
Monte Carlo (MCMC) Gibbs sampling as implemented
in LDpred.7 The summary statistics of genetic association
with BMI were based on the meta-analysis of genome-
wide association studies by the GIANT consortium.12 We
restricted the variants to SNPs included in the HapMap3
data. Five sets of SNP weights were generated based on
the respective LD patterns from the following populations,
African American (AA), Hispanic American (HAMR),
East Asian (ASN), Northern European (EUR) and all of
the above populations (i.e. trans-ethnic). For each group
we selected 2500 CAG participants who clustered with
the 1000 genome project reference data13 to generate the
LD files. The trans-ethnic group included all populations
tested. Each group of SNP weights includes 8 different
sets corresponding, respectively, to the mixture probabil-
ity values (i.e. fractions of causal markers with non-zero
effects used in the Gibbs sampler) of [infinitesimal prior
(LDpred-inf), 1, 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001].

2.2 Initial validation of PRS models
in-house

The initial assessment of the PRS models was based on
the genomic data in-house at CAG, CHOP. The pediatric
biobank built at CAG has archived samples from 500 000
children from USA, Europe, South America, Canada,
Saudi Arabia and Australia.14 The definition of normal
BMI for children is age and sex specific.15 Instead of devel-
oping a TE PRS for adult BMI, this study aimed for a binary
TE PRS model for extreme BMI, that is, the top 1% and 5%
BMI. These percentiles are in line with the clinical defini-
tion of childhood obesity, that is, childhood overweight as
BMI ≥95th percentile,16 and severe obesity as BMI ≥99th
percentile.17 For the initial validation of the trans-ethnic
PRS model, 57 613 randomly selected individuals (51%
males and 49% females) including individuals of European
ancestry, African Americans, Hispanics/Latinos, and East
/ South Asians in order of frequency, with genotypes and
BMI data from the CAG biobank were used for the valida-
tion. The principal component analysis (PCA) plot of the
population structure is shown in Figure 1. All the individ-
uals have been genotyped with an Illumina Genotyping
BeadChip with at least 550 000 SNPs genotyped. Genome-
wide imputation was done using the TOPMed Imputation
Server (https://imputation.biodatacatalyst.nhlbi.nih.gov)
with the TOPMed (Version R2 on GRCh38) Reference
Panel. Population ancestries of the research subjects
were confirmed by principal component analysis (PCA)
with genomic DNA markers, compared with the ref-
erence populations in the 1000 Genomes project.13

https://imputation.biodatacatalyst.nhlbi.nih.gov


4 of 10 QU et al.

F IGURE 1 Development of a trans-ethnic polygenic risk score for body mass index.

Harmonization of SNP alleles in the PRS model was
confirmed by comparing with the reference alleles of the
TOPMed imputation.

2.3 Validation of PRSmodels in regional
populations

Having validated the trans-ethnic PRS models, we shared
the protocol of the PRS models, as well as the SNPs and
weights with the IHCC collaborators for assessment in
7 different cohorts of regional populations. The popula-
tion sites included a three-way admixed Brazilian cohort
from ELSA-Brasil,18,19 the Norwegian Mother, Father and
Child Cohort Study (MoBa, conducted by the Norwegian
Institute of Public Health), two US based studies The
Nurses’ Health Study (NHS) and Nurses’ Health Study
II (NHSII), the UK based INTERVAL BioResource and
two Chinese population samples from the Shanghai Men’s
Health Study (SMHS) and Shanghai Women’s Health
Study (SWHS)20,21(Figure 1).
Each site generated the PRS on their cohort follow-

ing the same protocol and using the same tools and
the software packages. To compare the performance of
trans-ethnic PRS vs. that of population-specific PRS in
different regional populations, we requested each collab-
oration group run two calculations if possible, that is, one
PRS calculation for the specific population that is closest to

their dataset, and one PRS for the trans-ethnic score. To do
the dichotomous receiver operating characteristic (ROC)
curve analysis, the top 5% and 1% of the BMI distribution
within each study were defined as cases.

2.4 Participating IHCC cohorts

The Nurses’ Health Study I recruited 121 700 married
registered nurses in 1976. Blood samples were collected
from 33 000 participants in 1989−90, and cheek cells from
another 33 000 in 2001−4. Genome-wide association data
are available on over 17 000 participants as part of studies
of multiple complex diseases and traits, including breast
cancer, type 2 diabetes, venous thromboembolism, and
depression. All women included in these analyses are
of European ancestry (cluster with European reference
samples and do not self-report as other than European
ancestry).
TheNurses’ Health Study II recruited 116 430married

registered nurses between the ages of 25 and 42 in 1989.
Blood samples were collected from 29 000 participants in
1996−99, and cheek cells from another 30 000 in 2006.
Genome-wide association data are available on over 12 000
participants as part of studies of multiple complex diseases
and traits, including breast cancer, type 2 diabetes, venous
thromboembolism, and depression. All women included
in these analyses are of European ancestry (cluster with
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European reference samples and do not self-report as other
than European ancestry).
Bodymass index was self-reported at time of blood draw

or cheek cell collection.Diabetes caseswere defined as self-
reported diabetes confirmed by a validated supplementary
questionnaire.
The Shanghai Women’s Health Study (SWHS) is a

large population-based prospective cohort study initiated
in 1996.20 Approximately 75 000Chinesewomenwho lived
in Shanghai were recruited into the study. In addition to
survey data, blood and urine samples were collected from
most study participants at the baseline recruitment.
The Shanghai Men’s Health Study (SMHS) is a

population-based cohort study of 61 480 Chinese men
between ages 40 and 74 who lived in eight urban commu-
nities in Shanghai at enrollment (2002–2006).22 Detailed
information on dietary and other lifestyle factors was
collected at baseline and updated in follow-up surveys.
Biological samples (blood, and or urine) were collected
from 89% of cohort members.
The Norwegian Mother, Father and Child Cohort

Study (MoBA) was established and is conducted by the
Norwegian Institute of Public Health (NIPH). MoBa is an
ambitious family-oriented cohort study that aims to find
causes of diseases and explain trajectories and variability
of health-related traits over a life-course span. Between
1999 and 2008, pregnant women were invited to take part
in the study around the time of the ultrasound examina-
tion in week 17−20 of gestation. The fathers of the children
were also invited to participate. Biological material has
been collected frommothers, fathers and children and has
been stored in a biobank. Self-reported data are collected
from regular questionnaires about general health, diet
and environmental exposure. The cohort includes approx-
imately 109 000 children, 91 000 women and 71 700 men.
50 290 Northern European adult males and females were
analysed in this study, with mean BMI = 24.96(SD = 3.9).
The Brazilian Longitudinal Study of Adult Health

(ELSA-Brasil) enrolled 15 105 civil servants aged 35 to 74
years-old living in six cities,18 addressing the incidence of
non-communicable diseases. From the 15 105 participants,
9333 DNA samples were analyzed for genetic ancestry
using a software tool for maximum likelihood estimation
of individual ancestries from multilocus SNP genotype
datasets.19
The INTERVAL BioResource recruited 45 263 whole

blood donors (22 466 men and 22 797 women) between
11 June 2012 and 15 June 2014.23 Donors were aged 18
years or older from 25NHSBlood and Transplant (NSHBT)
blood donation centres distributed across England, UK.
Donors provided blood samples at baseline to enable DNA
extraction and self-reported their height and weight for
estimation of BMI. Genotyping was conducted using the

TABLE 1 BMI PRS test by the NHS and NHSII cohorts.*

Top 1% BMI EUR-NHS1 TE-NHS1
NHS 0.730 0.727
NHSII 0.736 0.735
Top 5% BMI
NHS 0.703 0.701
NHSII 0.721 0.718

*NHS: the Nurses’ Health Study. Fraction of causal variants = 0.03.

Affymetrix Axiom UK Biobank array with imputation
using a combined 1000 Genomes Phase 3/UK10K refer-
ence panel. A total of 38 319 European ancestry adult
participants were included in the final analyses

3 RESULTS

3.1 Initial validation of PRS models
in-house

The performance of the trans-ethnic PRS model tested in-
house is shown in Figure 2. As shown by our analysis,
AUC > 0.720 to predict top 1% BMI was achieved in all the
PRS models with mixture probability≥0.03. The highest
AUC is seen at the mixture probabilities of 0.03–0.1.

3.2 Evaluation of the PRS in the four
European ancestry cohorts

The variance explained by the PRS in European was 0.095
by the EUR PRS, and 0.092 by the TE PRS. Across all four
European ancestry cohorts both European-specific PRS
models and the trans-ethnic PRS models had the largest
AUCs with a mixture probability of 0.03. Across the three
cohorts where both the European-specific PRS model and
the trans-ethnic PRS model were run (INTERVAL, NHS
andNHSII), the performance of the scoreswas comparable
(Table 1).
Only the European-specific PRS models were tested

in the Norwegian MoBa study. The PRS model showed
AUC≥0.686 to predict top 5% BMI, and AUC≥0.735 to pre-
dict top 1% BMI, in the models with mixture probability
≥0.03 (Table 2).

3.3 Validation of the trans-ethnic PRS
models in regional populations

By the Chinese population in the SMHS and SWHS
cohorts, the PRS models were tested in 866 men in the
SMHS cohort and 3120 women in the SWHS cohort and
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F IGURE 2 AUC values following the initial validation of PRS models in-house. 57 613 randomly selected individuals with genotypes and
BMI data from the the Center for Applied Genomics biobank at the Children’s Hospital of Philadelphia were used for the validation.

TABLE 2 BMI EUR PRS test by the Norwegian Mother and
Child Cohort Study (MoBA).

MoBa Top 5% BMI Top 1% BMI
Inf* 0.686 0.735
1 0.689 0.738
0.3 0.694 0.745
0.1 0.699 0.751
0.03 0.704 0.756
0.01 0.658 0.7
0.003 0.594 0.626
0.001 0.552 0.565

*Infinitesimal prior.

the combination of both. Across all three analyses the
trans-ethnic (TE) score outperformed the ancestry specific
East-Asian referencewith a TEAUCof 0.76 comparedwith
0.479 for the ASN reference in men, TE AUC of 0.737 vs
ASN AUC of 0.719 in women, and a TE AUC of 0.717 vs
ASN AUC of 0.706 in the combined dataset at the most
informative fraction (Table 3).
The Brazilian population in the ELSA-Brasil cohort is

three-way admixed. We therefore compared the trans-
ethnic score in this population to each of the three
founders: American, African and European. The trans-
ethnic score outperformed all three founder population

ancestry-specific scores at the most informative fraction of
0.03 at both 95th and 99th percentiles (Table 4).

4 DISCUSSION

Clinically, the trans-ethnic PRS may assist the prediction
of dynamic BMI for primary prevention of overweight. A
prediction model with AUC = 0.845 developed by Welten
et al.24 took into account of the predictors includingmater-
nal BMI, paternal BMI, as well as birthweight, sex, and a
number of socioeconomic and environmental factors. The
PRS can effectively address the impreciseness of inheri-
tance information represented by maternal and paternal
BMI as there is 50% chance of inheritance for each parental
allele. In order for polygenic risk scores to achieve their
clinical potential, and avoid exacerbating health disparities
due to the lack of genomic information in minorities, they
have to be universally applicable regardless of a patient’s
genetic ancestry. Ideally, trans-ethnic PRS would be gener-
ated from true trans-ethnic GWAS; however, well powered
trans-ethnic studies remain the exception for the majority
of traits and phenotypes. In this studywe evaluated the per-
formance of a BMI PRS that is based on European ancestry
GWAS effect sizes combinedwith trans-ethnic LD patterns
using a Bayesian approach as implemented in LDpred.7 In
a federatedmodel, we developed the PRS score at CAG and
disseminated the standard operating procedure along with
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TABLE 3 BMI PRS test by the Shanghai Men and Women’s Health Study.

Cohorts SMHS (N = 866) SWHS (N = 3120) SWMHS (N = 3986)
Fractions of
causal variants

Racial groups
of weights P* AUC P # P* AUC P # P* AUC P #

INF ASN 0.07 0.667 1.12E-10 6.61E-06 0.725 5.21E-33 1.91E-06 0.706 4.66E-42
TE 0.044861 0.684 3.03E-11 4.88E-06 0.732 1.80E-32 1.15E-06 0.717 5.41E-42

1 ASN 0.05 0.682 1.99E-11 1.71E-05 0.714 3.92E-33 7.66E-06 0.694 7.74E-43
TE 0.040165 0.684 1.91E-11 5.09E-06 0.728 1.32E-33 1.78E-06 0.709 2.43E-43

0.3 ASN 0.03 0.707 3.40E-12 1.10E-05 0.719 2.85E-34 4.90E-06 0.699 1.13E-44
TE 0.030129 0.692 4.93E-12 2.54E-06 0.737 1.65E-35 1.16E-06 0.713 8.18E-46

0.1 ASN 0.02 0.721 2.10E-13 8.01E-06 0.722 1.83E-35 3.55E-06 0.702 6.26E-47
TE 0.017299 0.716 2.96E-13 2.15E-06 0.735 8.27E-37 1.21E-06 0.711 3.32E-48

0.03 ASN 0.03 0.719 8.04E-15 3.62E-05 0.703 2.24E-35 1.94E-05 0.684 5.40E-48
TE 0.015892 0.733 1.10E-14 1.34E-05 0.714 3.65E-37 8.83E-06 0.694 9.08E-50

0.01 ASN 0.22 0.65 0.04 0.98 0.515 0.08 0.82 0.497 0.01
TE 0.11957 0.647 0.96 0.57 0.533 0.15 0.88 0.516 0.19

0.003 ASN 0.21 0.622 0.41 0.91 0.517 0.36 0.35 0.471 0.64
TE 0.73 0.527 0.28 0.66 0.541 0.15 0.35 0.561 0.08

0.001 ASN 0.87 0.479 0.91 0.27 0.568 0.2 0.29 0.569 0.22
TE 0.017789 0.76 0.13 0.66 0.534 0.23 0.42 0.551 0.08

*Logistic regression analyses were performed after coding top 1% distribution of BMI as cases and the remainings as controls.
#Linear regression analyses were performed using BMI as continuous variable.

the SNPs and weights files and the population specific LD
matrices to participant sites within the IHCC. This model
allowed us to quickly test the hypothesis in various world
populations without the need for data transfer and hence
time-consuming data sharing agreements. By providing
detailed protocols and all required files to run the scores,
wemade efforts to minimize the work load on each collab-
oration group while enabling direct comparisons between
groups. LDpred has been demonstrated of comparable per-
formance in BMI PRS to pruning and thresholding (P+ T)
approaches, for example, PRSice-2.25 In particular, LDpred
applies the LD information from a population-specific ref-
erence panel. For the purpose of testing a TE PRS score,
LDpred allows the comparison of TE score with the score
by a population-specific reference panel.
In the TE PRS model, the gene enrichment anal-

ysis using the WEB-based Gene Set Analysis Toolkit
(WebGestalt) [7] based on the Molecular Signatures
Database (MSigDB) hallmark gene set collection26 showed
that the SNPs with absolute(β) ≥2.0E-04 are enriched
in the gene sets HALLMARK_UV_RESPONSE_DN and
HALLMARK_ESTROGEN_RESPONSE_EARLY (False
discovery rate < 0.05, Data, Supporting Information). It is
worth to mention that, in contrast to the LDpred7 used in
this study, a new version of the method LDpred2 has been
released.27 LDpred2 made a significant effort to address
the potential bias of Gibbs sampling in the human leuko-
cyte antigen (HLA) region at chromosome 6 with extended

LD.27 In contrast, theHLA region has been removed in the
LDpred modeling. TheHLA region is highly polymorphic,
with highly diverse frequencies across different popula-
tions, as well as extended and strong LD due to significant
evolutionary selection pressure in human populations.28,29
Including theHLA region will cause significant difference
of PRS across different ethnicities, as we have observed in
the trans-ethnic scoring of an autoimmune disease, type
1 diabetes (T1D), with HLA as a major risk factor.30 In
addition, there has been noGWAS study to date suggesting
the role of theHLA region in BMI or obesity. Nevertheless,
it is interesting to leverage the IHCC resources to examine
the performance of LDpred2 in the trans-ethnic scoring
of BMI.
The performance of the trans-ethnic PRS in different

cohorts is comparable to the published PRS models for
the prediction of obesity in populations with European
ancestries, for example, AUC = 0.708 in the European-
ancestry participants of the UK Biobank,31 AUC = 0.619
to 0.704 in the Quebec Family Study.32 In our study,
LDpred outperformed LDpred-inf with the fractions of
causalmarkers (1, 0.3, 0.1, 0.03), but notwith the other frac-
tions (0.01, 0.003, and 0.001) lower than the above. As the
results show, our trans-ethnic PRS models outperformed
the ancestry specific models in the non-European popula-
tions tested including Chinese and Brazilian. Importantly
the UK and US data from the INTERVAL and NHS
cohorts demonstrate that there is no appreciable loss in
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TABLE 4 BMI PRS test by the Brazilian population in the ELSA-Brasil cohort.

Fractions of
causal variants Top BMI AFR AMR EUR TE
Inf* 1% 0.569 0.575 0.548 0.589

5% 0.575 0.553 0.538 0.564
1 1% 0.604 0.582 0.558 0.595

5% 0.575 0.554 0.542 0.569
0.1 1% 0.635 0.63 0.579 0.616

5% 0.581 0.559 0.544 0.57
0.3 1% 0.612 0.587 0.563 0.602

5% 0.575 0.554 0.543 0.566
0.03 1% 0.558 0.636 0.606 0.645

5% 0.517 0.571 0.553 0.579
0.01 1% 0.472 0.56 0.634 0.538

5% 0.546 0.526 0.573 0.511
0.003 1% 0.524 0.615 0.525 0.535

5% 0.522 0.547 0.497 0.521
0.001 1% 0.475 0.585 0.538 0.448

5% 0.519 0.521 0.508 0.492

*Infinitesimal prior.
Abbreviations: AFR: African; AMR: American Indian; ELSA-Brasil: The Brazilian Longitudinal Study of Adult Health; EUR: European; TE: trans-ethnic.

predictive power in European ancestry individuals when
using a trans-ethnic score. As such, and in the absence
of trans-ethnic effect sizes from diverse GWAS, we pro-
pose that using trans-ethnic reference data to adjust the
summary statistics for the effects of LD patterns improves
the performance of PRS in populations that have not
been included in the generation of the summary stats.
On the other hand, in the absence of reference pan-
els for different populations, the genome-wide LD scores
and matrices from the Pan-UK Biobank resource, or
calculated by genome sequencing data of the Genome
Aggregation Database (gnomAD), may provide sufficient
resolution.
As the first effort by the IHCC to leverage the exist-

ing datasets that reside within this large scale consortium
for a trans-ethnic PRS on BMI, we envision an opportu-
nity to scale this to other cohorts within the consortium
and expand the number of traits that can be analyzed. As
such, the IHCC presents a rich resource of data for col-
laborative research with trans-ethnic focus, where there
is much unmet need at the present time and an area of
research that has been largely ignored. In this study, the
performance of the trans-ethnic PRS model is relatively
poorer in the Brazilian cohort. The prevalence of obesity is
high in the Brazilian population.33 In addition to genetic
heterogeneity of the admixed population, the underper-
formed PRS may be also due to uncounted environmental
and socioeconomic factors in this population.34 The cur-
rent study is a proof-of-principle cross-network pilot for

the IHCC consortium in demonstrating feasibility across
a condensed timeline, and needs benchmarking. The strat-
egy presented in the current studywas to develop and share
a technical protocol easily applicable to different sites. In
the meantime, a number of large-scale GWAS studies have
been published in other populations, for example, East
Asian populations.35–37 An updated meta-analysis with
the GWASs in other populations may improve the cur-
rent PRS model. However, to redo the meta-analysis will
need access to individual data to redo the genotype impu-
tation. To address data sharing barriers across different
international research centers warrants for more extensive
research efforts.
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