Skip to main content
. 2023 Mar 6;9:e1167. doi: 10.7717/peerj-cs.1167

Table 7. Pseudo-code for explaining the work flow of model.

Algorithm YO-CNN
Input: Rice Pest images with annotation files.
Output: Trained Rice Pest Detection (YO-CNN) Model
Processing Steps:
1. If a set is training data set, then follow steps 2 to 4.
2. pre-processing to resize the image (640 × 640)
3. normalize pixel values [0, 1]
4. standardize pixel values to (640 × 640)
5. augment the data with different augmentation techniques
6. Apply Upsampling technique to reshape the shapes of input parameters
7. Model training with MODEL = YOLO v5
8. Set epoch = 0 to 100.
9. Set learning rate as Lr= 0.01 use steps 13 to 14
10. Set g0 as optimizer parameter group
11. for a model selection use steps 7 to 10
12. If OPTIMIZER == Adam: optimizer = Adam (g0, Lr=hyp[‘Lr0’], betas= (hyp[‘momentum’], 0.937)) else optimizer = SGD (g0, Lr=hyp[‘Lr0’], betas= (hyp[‘momentum’], nesterov=True))
13. In a batch of no of images: 456
14. update model parameter
15. end of for loop of step 14
16. Training of the model parameters started
17. End of training step 16
18. for testing no of images in batch: update model parameter
19. end of for loop of step 18