Input: Rice Pest images with annotation files. |
Output: Trained Rice Pest Detection (YO-CNN) Model |
Processing Steps:
|
1. If a set is training data set, then follow steps 2 to 4. |
2. pre-processing to resize the image (640 × 640) |
3. normalize pixel values [0, 1] |
4. standardize pixel values to (640 × 640) |
5. augment the data with different augmentation techniques |
6. Apply Upsampling technique to reshape the shapes of input parameters |
7. Model training with MODEL = YOLO v5 |
8. Set epoch = 0 to 100. |
9. Set learning rate as Lr= 0.01 use steps 13 to 14 |
10. Set g0 as optimizer parameter group |
11. for a model selection use steps 7 to 10 |
12. If OPTIMIZER == Adam: optimizer = Adam (g0, Lr=hyp[‘Lr0’], betas= (hyp[‘momentum’], 0.937)) else optimizer = SGD (g0, Lr=hyp[‘Lr0’], betas= (hyp[‘momentum’], nesterov=True)) |
13. In a batch of no of images: 456 |
14. update model parameter |
15. end of for loop of step 14 |
16. Training of the model parameters started |
17. End of training step 16 |
18. for testing no of images in batch: update model parameter |
19. end of for loop of step 18 |