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ABSTRACT

Objective: To examine the real-world safety problems involving machine learning (ML)-enabled medical devices.

Materials and Methods: We analyzed 266 safety events involving approved ML medical devices reported to the

US FDA’s MAUDE program between 2015 and October 2021. Events were reviewed against an existing frame-

work for safety problems with Health IT to identify whether a reported problem was due to the ML device

(device problem) or its use, and key contributors to the problem. Consequences of events were also classified.

Results: Events described hazards with potential to harm (66%), actual harm (16%), consequences for health-

care delivery (9%), near misses that would have led to harm if not for intervention (4%), no harm or consequen-

ces (3%), and complaints (2%). While most events involved device problems (93%), use problems (7%) were 4

times more likely to harm (relative risk 4.2; 95% CI 2.5–7). Problems with data input to ML devices were the top

contributor to events (82%).

Discussion: Much of what is known about ML safety comes from case studies and the theoretical limitations of

ML. We contribute a systematic analysis of ML safety problems captured as part of the FDA’s routine post-

market surveillance. Most problems involved devices and concerned the acquisition of data for processing by

algorithms. However, problems with the use of devices were more likely to harm.

Conclusions: Safety problems with ML devices involve more than algorithms, highlighting the need for a

whole-of-system approach to safe implementation with a special focus on how users interact with devices.

Key words: decision support systems, clinical, machine learning, safety, artificial intelligence, medical devices, decision-making,

computer-assisted, clinical decision-making

INTRODUCTION

The goal of artificial intelligence (AI) in healthcare is to automate

tasks to assist humans,1 with the aim of improving decision-making,

leading to better care delivery and patient outcomes (eg, Ref. [2]).

Contemporary AI systems use machine learning (ML) to automate

specific sub-tasks; these include detecting or quantifying disease (eg,

detecting cancers in screening mammography or cardiac arrhyth-

mias from EKG) and recommending management.3 ML systems

used for the diagnosis, management, or prevention of disease are

classed as medical devices and regulated in most nations.4 There-

fore, medical devices represent ML systems usable in clinical

practice and by consumers. Their indications for use establish clini-

cian responsibility for key decisions such as diagnosis and manage-

ment that are informed by ML devices, even if ML provided

information is wrong.3

As ML devices are implemented into clinical practice, it is crucial

to ensure they are safe and deliver expected benefits. Safety research

to date has focused on the potential risks of ML and the safety chal-

lenges posed by the black box nature of ML algorithms which are

not human verifiable. Limitations of ML include susceptibility to

biases in training data, and distributional shift over time between

training data and the population to which algorithms are applied.5,6
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These safety problems are theoretically derived from the known pit-

falls and limitations of ML and case reports about individual events

(eg, Refs [7,8]). With few ML devices approved prior to 20183,9 and

limited real-world evidence, such theoretical knowledge is an excel-

lent starting point for ensuring safety of these emerging technolo-

gies. Additionally, human factors evaluations concerning the

potential for bias, skill degradation, human–AI handover, and situa-

tional awareness are also needed.10

While it is essential to ensure ML algorithms are developed in a

safe and robust manner,11,12 there is an increasing need to focus on

safety problems arising from the way ML systems are implemented

and how they are used in the real world. For example, an ML system

for predicting the onset of sepsis from electronic health record data

was found to perform substantially worse in real-world use (AUC,

0.63) than claimed by the manufacturer (AUC, 0.73–0.83).7 Addi-

tionally, sepsis alerts more than doubled in the weeks following the

first COVID-19 hospitalizations. Presence of the virus made it diffi-

cult for the algorithm to differentiate bacterial sepsis from COVID,

thereby limiting the usefulness of alerts.8

The aim of this study is to bring greater context and understand-

ing of the real-world safety problems with ML devices through a ret-

rospective analysis of reports about adverse events which are a

crucial source of early information on low-frequency safety prob-

lems.13,14 No previous study has systematically collated the real-

world safety problems associated with ML systems in healthcare.

Medical device adverse event reporting
The Food and Drug Administration has regulatory responsibility for

medical devices in the United States and captures adverse event

reports as part of post-market surveillance. Reported events are pub-

licly available via the FDA’s Manufacturer and Use Facility Device

Experience (or MAUDE). Federal regulations specify mandatory

reporting obligations for device manufacturers, importers, and user

facilities (the facility using the device, such as hospitals, nursing

homes, or outpatient diagnostic facilities), within 30 days of becom-

ing aware of the event.15 Reportable events occur when Class II or

III devices, those devices classified as moderate and high risk, respec-

tively, are suspected of contributing to death or injury, or have mal-

functioned in ways which could potentially contribute to death or

injury.15 MAUDE also includes voluntary reports from consumers,

caregivers, healthcare professionals, and other concerned individuals

submitted via the MedWatch program.16 Reports from MAUDE

have been previously analyzed to examine safety problems with

health IT.17

In this study, we extend our prior work that examined how ML

devices assist clinicians3 to understand the safety problems with ML

in real-world settings. Our goal is to extend what is known about

the risks to patients arising from problems with the ML systems

themselves, to the way they are implemented and how they are used

in the real world by clinicians and consumers.

MATERIALS AND METHODS

We analyzed reports about events involving ML devices that were

submitted to MAUDE. ML devices were defined as:

1. Class II and III medical devices that were approved by the FDA

for use in the United States via the Premarket approval (PMA),

Premarket notification (PMN/510k), or De Novo pathways,18–20

and

2. Utilized ML methods.

We included reports that were submitted to MAUDE between

January 01, 2015 and October 22, 2021 as prior reviews indicate

most ML devices were approved since 2015.3,9

Searching MAUDE for events involving ML medical

devices
The methodology for identifying events involving ML devices was

challenging. First, the FDA neither reports whether devices utilize

ML nor is it possible to search the free text of the FDA approval

documents.9 Second, while published lists of ML devices exist, most

do not report any method for confirming ML utilization by the devi-

ces identified and therefore cannot be considered gold standard. To

overcome these limitations, we searched MAUDE for reports about

adverse events involving the ML medical devices that have been

identified by previous studies. The results from the MAUDE search

were screened to ensure they involved devices utilizing ML and then

analyzed.

Methods to compile the list of ML devices from previous studies,

search MAUDE and confirm ML utilization are detailed in the fol-

lowing sections.

Strategy to compile ML device search list

We searched Google Scholar by combining the search terms, “AI,”

“ML,” and “FDA” and then used a snowballing approach to iden-

tify journal articles and other sources that cataloged AI or ML devi-

ces approved by the FDA and were published before August 2021.

The search identified 7 journal articles3,9,21–25 and the American

College of Radiology’s online database26 cumulatively reporting

875 ML devices. From this, a search list of 508 unique ML devices

was extracted (see Supplementary Appendix SA).

MAUDE search

Using the search list of 508 devices, a systematic search of MAUDE

was conducted for the period January 01, 2015 to October 22,

2021. Three search strategies were used to account for variation in

event reporting. Two were conducted using the OpenFDA API,27

searching firstly by approval number, and then by manufacturer and

device name where the incident date was after the device approval

date, as few event reports were linked to approval numbers. Antici-

pating greater variation in voluntary reporting from consumers, a

third strategy involved a hand search of the MAUDE website by

manufacturer and device name28 for devices intended for use by con-

sumers. For example, some consumer reports identified the involved

device by the manufacturer rather than device name. The OpenFDA

API search automatically retrieved the first thousand results for indi-

vidual searches. However, the searches for 5 devices using the manu-

facturer and device name strategy returned more than 1000 results:

4 devices between 1057 and 3443, and a fifth returning 11 848

results. Review of these 5 devices resulted in their exclusion as none

could be confirmed as utilizing ML (as described in the next sec-

tion), rendering further retrieval unnecessary.

Confirming ML utilization

A significant limitation of the sources used to create the ML device

search list was the absence of methods for confirming ML utilization

(Table 1, Supplementary Appendix SA). To overcome this limita-

tion, we screened all the devices involved in the adverse events for

ML utilization. Such screening was essential to ensure analyzed

events were indeed indicative of safety events resulting from the

real-world use of ML devices.
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Accordingly, for each device involved in the event, we reviewed

the device’s FDA approval documents and manufacturer marketing

materials3,9 for descriptions that the device uses AI, machine or deep

learning, or specific ML methods such as neural networks or natural

language processing. If neither source described use of ML methods,

events involving that device were excluded. For confirming ML use,

we accepted manufacturer claims about their products as reliable

given that the FDA has general controls which expressly prohibit mis-

branding, false or misleading advertising.29 AI adjacent devices where

the device itself did not contain ML but rather provided data output

as an input to another ML-enabled device were also excluded. One

example is a continuous glucose monitor where obtained blood glu-

cose readings could be processed by a separate Class I analysis device

utilizing ML. As Class I devices are low risk, they do not require FDA

approval and are not subject to post-market surveillance.30

Data extraction and event classification
We extracted the following FDA-coded variables available in

MAUDE using OpenFDA queries: the reportable event type (injury,

death, malfunction, or other), date received, and reporter (manufac-

turer, user facility, importer/distributor, or voluntary). FDA generic

device names were used to identify and group devices for analysis.

We extracted the narrative text from reports to classify the conse-

quences of events and contributing problems as detailed in the fol-

lowing sections.

Consequences of events

The consequences of events were classified using a standard

approach,17 into:

a. Harm (eg, overdose of radiation or irradiating outside the treat-

ment target when delivering radiotherapy);

b. Near miss events with potential to harm if not for intervention

to prevent it (eg, user recognizes a problem and acts to prevent

it);

c. Hazards with potential to cause harm (eg, problems that could

harm in different circumstances);

d. Consequences for healthcare delivery without specific patient

harm (eg, needing to reschedule tests);

e. No consequences for healthcare delivery (eg, describes problems

with a device, but without consequences or healthcare delivery

or harm to patients); and

f. Complaints which generally describe the users experience but do

not indicate harm, hazard, or systemic problems qualifying for

the other categories.

Events were classified according to the most serious outcome if

multiple outcomes were described. For example, if an event

described a near miss and consequences for healthcare delivery, it

was classified as a near miss event. Descriptions of harm were sum-

marized from the reports.

Contributing problems

Contributing problems described in the reports were classified using

an existing framework for classifying safety problems with Health

IT,31 which has demonstrated validity between jurisdictions, includ-

ing Australia,31 England,32 and the United States.17 Events were first

divided into those primarily involving technical problems (device

problems) or human factors (use problems). They were then

assigned to a single category, focusing on the reporter identified root

cause or the most significant precipitating factor leading to the

event. We supplemented the framework32 with 3 new categories to

characterize contributing problems that were significant for the

analysis of ML device safety and distinct to the existing categories.

These were contraindicated use, errors in task execution when using

devices and algorithm errors arising from the processing and conver-

sion of input data into outputs. These modifications are described in

Supplementary Appendix SB.

Finally, we mapped contributing problems to a model of interac-

tion between user and ML device (Figure 2). We conceptualized the

relationship as user and device contributing a unique role to the

healthcare task the user seeks to accomplish, with the interaction

characterized as inputs and outputs.

Analysis

Two investigators (DL and YW) independently classified consequen-

ces and contributing problems described in reports, and then jointly

arrived at consensus decisions for each event. Uncertain classifica-

tions and disagreements were resolved by consensus involving a

third investigator (FM). A clinician (AS) was consulted when

required. Descriptive analyses of events were undertaken by conse-

quences and problem type. Subgroup analysis of the events involving

patient harm was conducted using the Fisher’s exact test at a signifi-

cance level of P ¼ .05.

RESULTS

Events reported in MAUDE
The search identified 266 events involving 25 unique devices

(Figure 1). The ML devices identified primarily used image-based

data (81%, see Table 1), while the remaining 19% used signal-based

data (eg, patient vital signs). Nearly all events fell into 1 of the 3

types subject to mandatory reporting: malfunctions (n¼238), inju-

ries (n¼25), and deaths (n¼1). Two events were coded as other

event types, although one of these described a death (see Insulin

Dosing Software in Box 1). Manufacturers (n¼241) were by far the

most common reporters, with user facilities (n¼11) rounding out

events from mandatory reporters. Fourteen events were voluntarily

reported.

Table 1. Generic medical device types associated with 266 events

involving 25 unique devices

Generic device

n unique

devices

n

events

% of

events

Imaging data

Mammography 1 184 69

Radiotherapy planning 3 13 5

Ultrasound 5 8 3

Computed tomography (CT) 3 6 2

Computer-assisted surgical device 2 2 1

Coronary vascular physiologic

simulation software

1 2 1

Computer-assisted detection (CADe) 1 1 <1

Signal data

Clinical patient monitors 2 28 11

Electrocardiogram (EKG) 4 16 6

Drug dose calculator 2 5 2

Fertility/contraception software 1 1 <1
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Box 1. Deaths involving ML devices

Diagnostic ultrasound

Acute mitral valve insufficiency was not detected on cardiac ultrasound Doppler in a patient who subsequently died. Imag-

ing pre-sets (calibration settings of the device) were made by the user instead of using those provided by the manufacturer.

Consequently, signals indicating mitral valve insufficiency were not observed, leading to delayed treatment. The quantifiable

effect of the delay on outcome is unknown.

Insulin dosing software

An anonymous voluntary report expressed concerns over the aggressiveness with which an insulin dosing system treated hyper-

glycemia, with rates of change in blood sugar levels double that of other hospitals. Such rapid changes were described as causing

patients to develop metabolic and EKG changes, leading to patients requiring intubation and “several unfortunate outcomes includ-

ing one patient death.” The report did not detail specific events and these events could not be confirmed by the manufacturer.

Figure 1. Selection of MAUDE events describing safety problems with ML medical devices.
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Figure 2. Use problems (Use; User input) and device problems (Device input; ML medical device; Device output) described in events involving ML medical

devices.

Table 2. Harm described in 43 events

Harm Generic device n Examples

Additional exposure to X-rays Mammography (n¼ 19),

CT (n¼ 4)

23 Scans aborting mid-procedure, cutoff images, or images with artifacts,

breast compression plate releasing during image-guided biopsy proce-

dures, required scans to be repeated. In one event X-ray exposure did

not stop and had to be manually interrupted.

Radiation treatment delivered to

incorrect location

Radiotherapy planning 3 (1) Two users inadvertently altered the planning target volume and radi-

ation was delivered outside the intended treatment target. (2) One

patient’s position was not correctly calibrated resulting in a 1 cm dis-

crepancy with the radiotherapy plan.

Struck by moving machinery Mammography 3 Patients were struck by uncommanded movement of scanner c-arms.

Death Ultrasound (n¼ 1), insu-

lin dosing (n¼ 1)

2 See Box 1

Mispositioned surgical screws Computer-assisted surgi-

cal device

2 Pedicle screws were mispositioned during computer guided surgery. (1)

One was attributed to use error possibly due to the trajectory of the

pak needle being altered while advancing through soft tissue, causing

the navigation system to show a different to actual trajectory. (2) Inac-

curate positioning caused the left side of the patients L4 pedicle to be

breached, the device was reported to be working within specifications.

Radiation treatment overdose Radiotherapy planning 2 (1) Caused by the electron calibration curve being incorrectly defined as

absolute density resulting in 7 patients receiving higher than intended

radiation doses. (2) Manual override caused the patient to be modeled

as water leading to a 10% radiation overdose to be delivered.

Movement of machinery during

biopsy procedure

Mammography 2 (1) The device lost the target, and the clinician manually moved the nee-

dle, resulting in the patient fainting, a 1 cm cut that required suturing

and the biopsy not being obtained. (2) The c-arm unexpectedly began

to rotate resulting in discomfort, bruising and failure to place the

biopsy marker.

Hypoglycemia Insulin dosing 1 User administered insulin but not the carbohydrate recommended by the

device resulting in hypoglycemia.

Device results caused user to

delay seeking emergency medi-

cal care

EKG 1 See Box 4

Mispositioned biopsy tags Mammography 1 Incorrectly entered data resulted in biopsy markers being placed in an

incorrect location which then had to be surgically removed.

Panic attacked/anxiety from false-

positive result

EKG 1 Patient experienced panic attack and anxiety from a false-positive inter-

pretation of atrial fibrillation from a consumer EKG device.

Unplanned pregnancy Fertility/contraceptive

software

1 Consumer became pregnant while using a contraceptive app, the preg-

nancy was aborted.

Electric shock Mammography 1 Patient felt electric shock during mammogram but did not require medi-

cal treatment.

Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 7 1231



Consequences of events
Of the 266 events we analyzed, most (66%, n¼175) described

hazards which in different circumstances could lead to harm. These

included the risk of contact with machinery due to uncommanded

movement of scanner c-arms (the C-shaped arm that houses the

X-ray generator/emitter on one side and the detector on the other.

The arm is movable allowing flexibility in achieving desired position-

ing for imaging) and shattered radiation shields. Others related to

inaccurate measurements or results that could lead to misdiagnosis or

patient misunderstanding of device results that could then influence

decision-making. Harm was the second most observed consequence

described in 16% of events (n¼43), summarized in Table 2.

Twenty-four events (9%) were device failures without harm or

consequences for healthcare delivery, while 8 events (3%) described

consequences for care delivery, such as having to reschedule scans

due to nonfunctional equipment. There were 11 near miss events

(4%) where users intercepted potentially harmful problems, including

recognizing and preventing calculated overdose of insulin or radiation

from being administered. Five events (2%) were classified as complaints,

4 of which described discomfort or skin irritation from EKG electrodes,

and 1 expressed that a contraindication preventing their use of a device

should have been more prominently declared in the product labeling.

Safety problems contributing to events
Our classification of the problems with ML devices and their use is

summarized in Figure 2.

While use problems only contributed to 7% (n¼18) of all

events, a disproportionally high percentage (56%; Table 3) were

associated with patient harm, compared to device problems (13%;

Fisher’s exact test, P< .001), with the relative risk of use problems

leading to harm being 4.2 (95% CI 2.5–7).

In the following sections, we give a brief overview of the catego-

ries of use and device problems (Figure 2).

ML medical device

Eleven percent of events (n¼28) involved problems located within the

medical device. Most of these were associated with algorithm errors

where incorrect or inaccurate results of data processing were the pri-

mary contributor (n¼25). These involved a wide variety of problems

including devices with inaccurate fractional flow reserve derived from

CT (FFRCT) values (see Box 2); problems with image enhancement;

incorrect positioning for pedicle screws; inaccurate measurements of

bladder urine volume, and problems with radiotherapy treatment

plans; being unable to classify cardiac rhythms or incorrect measuring

of heart rate from EKG; inaccurate measures of cardiac index or car-

diac output calculated by patient monitors; calculations of higher than

expected insulin doses, and incorrect prediction of ovulation by a con-

traceptive app. Other problems related to software functionality

including contours in radiotherapy plans not saving, a software bug

causing total daily insulin to be misreported and insulin dosing soft-

ware pursuing blood glucose reductions >200 mg/di/hr, which were

deemed to be too aggressive by the reporter (Box 1).

Device input

Eighty-two percent of events (n¼218) involved problems with data

acquisition by the device and can be subdivided by whether the

problem manifests in the failure to capture data (no data) or errone-

ous data. No data capture accounted for the majority (n¼203), of

which most involved various mechanical problems and failures such

as uncommanded or unexpected movement of c-arms or compres-

sion plates, detachment of or broken device components, electrical

arcing, overheating, burning, or shocks. Other device failures

included failure to power on, scans terminating mid procedure,

devices freezing during operation, error messages, or other failures

preventing use. Most of these events related to one model of a mam-

mography device (n¼184).

Another group of safety events occurred when data was acquired

but contained errors or contamination (n¼15). These included the

presence of artifacts in images, portions of images being cutoff, or

known lesions or administered contrast barely visible in scans. Reports

about such events commonly described corrective actions to resolve

problems rather than identifying a specific cause, such as device cali-

bration returning the device to expected operation, or checking device

components, settings, general maintenance, replacement of worn com-

ponents, lubrication of machinery, and system reboot resulting in the

device functioning as expected. Three devices involved patient moni-

tors affecting SpO2 readings, one indicated the SpO2 board assembled

was to be replaced without identifying the specific problem or if that

was the cause. The other 2 reported devices under investigation for

suspected higher than expected SpO2 readings.

User input to device

Four percent of events (n¼11) involved errors in task execution or

use of devices. These comprised use of incorrect settings (see Diag-

nostic ultrasound in Box 1), problems with user calibrations or

patient positioning during procedures (Box 3). Several reports

involved radiotherapy planning devices. One described skin burns

attributed to the physician mistakenly adding a “bubble” outside

the tumor, another with no patient impact was attributed to the target

area being moved before the treatment plan was approved (Box 3).

Table 3. Harm by use or device problems

Problem type Patient harm Total

Yes No

n % n % n %

Use problems 10 56 8 44 18 7

Device problems 33 13 215 87 248 93

Box 2. Example of an event demonstrating an algorithm error in the measurement of fractional flow reserve derived from

CT (FFRCT)

A device provided false-negative fractional flow reserve derived from CT (FFRCT) result, indicating no clinically significant

deterioration (0.83 and 0.92, respectively), for a patient following an acute myocardial infarction involving left anterior

descending (LAD) and diagonal arteries. A second analysis returned FFRCT values of <0.50 and 0.74. The patient underwent

additional testing and an emergency percutaneous coronary intervention including invasive coronary angiography. The

report did not describe whether the false-negative impacted patient care.
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Another described an incorrectly calculated radiotherapy dose attrib-

uted to the use of a non validated couch, resulting in differences in

densities between the actual couch and that modeled by the device.

Use of ML medical devices

Three percent of events (n¼7) were attributed to the contraindicated

use of devices. Six involved a device intended for use by consumers to

acquire Lead-I and Lead-II electrocardiograms, detecting normal

sinus rhythm, and several arrhythmias. Five of these events involved

consumers who received an interpretation of a normal sinus rhythm

while suffering a heart attack (myocardial infarction). The manufac-

turer attributed these events to use errors, referring to the device’s

indications for use and the fact that it did not detect infarctions. One

consumer delayed seeking care (see Box 4), 2 others did not, while the

remaining 2 were described as may have delayed and unknown. The

sixth event was a voluntary consumer complaint about product label-

ing after purchasing a device only to discover it was contraindicated

due to their pacemaker. In the final event, the indicated carbohydrate

treatment plan for insulin dosing software was not followed resulting

in the patient experiencing a hypoglycemic event.

Device output

One event (<1%) described a problem with device output where the

device would freeze while viewing images and stop responding to

user input (software not available).

DISCUSSION

Main findings
The strength of this study lies in the contribution of the first systemic

analysis of safety events arising from real-world use. To date, what

is known about the safety problems with ML medical devices

has been theoretically derived5,6 and based on case reports about

specific events (eg, Refs [7,8]). All of these focus primarily on

algorithmic problems, where, for a specific input, machine learned

algorithms provide an output that is wrong.

Consistent with case studies and the theoretical risks reported in

the prior literature (eg, Refs [5–8]), we observed problems involving

algorithmic errors. However, by examining all problems associated

with ML devices, we found that safety problems are much more than

algorithms. We identified problems in all stages of ML device use

(Figure 2), most of which involved the data processed by ML devices;

however, problems with the way ML devices were used and for what

purpose were proportionally higher in the events involving harm.

Most events involved problems with data acquisition. These

included 15 events where poor-quality data were acquired, including

known lesions not visible or the presence of artifacts in scans, which

could in turn impact the validity of any algorithmic outputs based

on it. Likewise, erroneous input from users contributed to incorrect

results. These problems commonly concerned errors in data input,

selected settings, or calibrations, or use that differed from that

expected by the device.

The contraindicated use of devices by consumers demonstrates

the potential for increased risk of harm when ML devices are con-

sulted for making healthcare decisions but the results are misunder-

stood. Five events involving a consumer facing EKG capable of

detecting arrhythmias, described a failure to detect myocardial

infarction, a condition the device was neither indicated nor capable

of detecting. Yet, consumer comments suggested they had consid-

ered device results when deciding whether to seek emergency medi-

cal care (see Box 4).

While contraindicated use mostly affected consumers, clinicians

were not immune. Clinician use of an insulin dosing device resulted

Box 3. Examples where user input to ML devices contributed to events

Patient mispositioned for radiotherapy treatment

A patient was over-irradiated due to incorrect calibration of the position of the patient’s jaw resulting in 1 cm discrepancy

with the radiotherapy plan. Patient consequences were not reported.

Radiotherapy target moved prior to approval

An initial radiotherapy treatment was administered to an incorrect location. It appeared the user, working from home during

the COVID-19 pandemic, was working on a laptop with a small screen. They moved the target area by accidentally clicking

on an unintended software function. Subsequent review and approval of the radiotherapy plan failed to detect the incorrect

target location. No adverse consequences for the patient were reported.

Box 4. Example of contraindicated use of an ML medical device contributing to events

A patient suffering a myocardial infarction reported delaying medical care after receiving an automatic interpretation of

“normal sinus rhythm” from an over-the-counter consumer EKG device. The device detects arrhythmias but is not indicated

or capable of detecting heart attack. The consumer commented “I was having a[n] actual heart attack. 100% blockage of the

LAD [left anterior descending artery] and it said nothing was wrong. I delayed going [to seek emergency care] because of

this and probably suffered more damage.”

Another consumer consulted the device but sought emergency care despite the results: “I used this device 2 minutes

prior to calling ambulance and device said everything was fine with my heart. Suffered major heart attack that morning.”

Common to these examples is a mistaken expectation that the device should detect heart attack. The manufacturer noted

that the device labeling specifies it is not intended to detect heart attack, adding in one report that it is possible for an EKG

taken during “heart attack to still be normal sinus rhythm.” Event reports show how consumers equated a device result of

normal sinus rhythm as “nothing was wrong,” “show[ed] up as normal,” “normal EKG,” and “device said everything was

fine with my heart.”
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in hypoglycemia when the recommended dose was administered

without the recommended carbohydrates. The importance of adher-

ing to the indications for use was highlighted in a recent FDA letter

to healthcare providers about the Intended Use of Imaging Software

for Intracranial Large Vessel Occlusion (LVO).33 The letter outlines

the FDA’s concern regarding evidence “providers may not be aware

of the intended use of these devices,” and that contraindicated use

risks “misdiagnosis resulting in patient injury or death.”33 While

our MAUDE search list included known ML devices for detecting

LVO, we did not observe any related events.

For consumers, ML devices are a double-edged sword, providing

access to capabilities they do not possess, such as detecting cardiac

arrhythmias from EKG. However, consumers simultaneously lack

the expertise to fully understand what the results communicate, for

example, that normal sinus rhythm does not exclude infarction, and

device limitations, such as Lead-I EKGs being incapable of detecting

infarctions. So, while device labeling indicates the device does not

detect heart attack, consumers may not fully appreciate the differ-

ence between arrhythmias and infarctions. Likewise, it is easy to see

how these nuances may not be at the forefront of someone’s mind

while experiencing concerning cardiac symptoms and faced with the

decisions of whether they should be sufficiently worried to call an

ambulance. Use of ML devices by nonexperts, including consumers,

carries greater risks, particularly the risks associated with improper

use or for improper purposes. However, the FDA’s letter33 indicates

clinicians with domain expertise are also not immune to contraindi-

cated use.

Implications
There are 3 broad implications for safe implementation and use of

ML devices which are equally applicable for users, manufacturers,

researchers, regulators, and policy makers.

A whole-of-system perspective

Firstly, there is the importance of focusing on the entire system of

use. Our analysis reveals problems in all stages of ML device use

(Figure 2), including the quality of data processed by devices, how

devices are used and what they are used for. Algorithms also con-

tributed to events, indicating that research into the pitfalls of ML is

indeed well-placed.5,6 However, as ML is increasingly implemented

into real-world practice, the focus needs to shift from algorithms to

the overall system, and how data capture hardware, software, and

users can affect data quality.

Use problems demonstrate the need for a whole-of-system per-

spective. Manufacturers show awareness of whole-of-system factors,

such as the risk of consumers relying on arrhythmia detection results

in deciding whether to seek emergency treatment. However, their

responses to events in attributing the cause to use error appears to

dismiss the contribution of the device, “the device likely had no mal-

function, did not cause or contribute to the [event], and the incident

was a result of user error,” “internal testing show there is no issue

with the [device] function. . . inaccurate scans may be attributed to

training or improper scanning of the patient,” and “event was not

caused by a malfunction of the [device]. . . The system and software

functioned as designed. This was a use error related event.”

Encouragingly, 2 reports from a radiotherapy planning device

manufacturer, described proactive measures, “the device functions

as designed, but usability improvements will be considered to pre-

vent similar use errors in the future.” However, the absence of such

remarks in MAUDE reports does not preclude similar actions by

other manufacturers. A whole-of-system approach requires an

expansion of the boundary from use of devices as specified in the

instructions to building in resilience for real-world use, such as

greater tolerances or safety measures to prevent user mistakes as

well as poor quality or unexpected data.

Importance of the human-ML medical device interaction

Secondly, there is the importance of the human–device interaction

and how those interactions inform decisions and actions. Despite

only comprising 7% of events, use problems were 4 times more

likely to result in harm compared to device problems. This finding is

consistent with previous research on safety events involving health

IT where human factors issues were proportionally higher in the

events involving patient harm.32

The relationship between user and device is established in the

approved indications for use. In our previous analysis of clinician-

facing ML devices most devices providing diagnostic or treatment

recommendations were assistive,3 requiring users to confirm or

approve ML recommendations and be responsible for outcomes.

These devices are characterized by indicated caveats, such as, “The

clinician retains the ultimate responsibility for making the pertinent

diagnosis based on their standard practices” and “Should not be

used in lieu of full patient evaluation or solely relied on to make or

confirm a diagnosis” (eg, Ref. [3]). Other devices functioned more

autonomously providing clinicians with either information they may

incorporate into their decision-making or make triage decisions to

expedite reading of time sensitive cases. However, these devices do

not replace clinician review and screening, rather they aim to

increase accessibility where patients with positive findings are

referred to consultant physicians for assessment and management.3

Safe implementation of ML medical devices into IT infrastructure

Thirdly, there is the need for safe implementation that considers

how ML devices integrate into IT infrastructure. ML devices, espe-

cially those as a software device, are reliant on data and integration

with IT infrastructure and other systems. For example, one event

described problems importing CT scans from the radiological infor-

mation system into a radiotherapy planning system.

ML adjacent medical devices

Finally, we noted the presence of many ML adjacent devices in the

MAUDE search results. These devices do not contain ML, but

instead acquire or manage data that can be processed by separate

ML applications, which are not necessarily classed as medical devi-

ces. For example, CT scanners and PACS (picture archiving and

communication system) are ML adjacent as they provide data which

can be processed by ML devices detecting LVO. The most common

example in the MAUDE search results were blood glucose meters.

However, their regulatory approvals show no evidence of ML uti-

lization, instead, glucose readings obtained could be uploaded to

separate ML applications for analysis. Having already highlighted

the importance of data to safety, these ML adjacent devices form

part of the context, workflows, and infrastructure needed to ensure

safe implementation and use.

Limitations
The safety events we analyzed are limited to the events reported to

MAUDE, most of which come from mandatory reporters and likely

favor events meeting regulatory thresholds for reporting. Reports

are also likely to favor more common devices. Likewise, there may
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be a selection bias whereby reporters favor highly salient events,

while others may be under reported.34 Accordingly, FDA reports

may not be representative of all safety problems that can occur with

ML devices.

Moreover, event reports identify problems from the user perspec-

tive but are not able to identify precisely where in the chain of algo-

rithms problems arose. Reports were authored by those with an

interest in the device and reflect the expertise of the reporter and are

written from their perspective. Most reports were submitted by

device manufacturers, while others were authored by users. Further-

more, reports only provide a “snapshot” of the events, we were lim-

ited to analyzing them as reported and it was not possible to

independently verify their accuracy or determine the root cause of

events. Nevertheless, post-market surveillance and reporting pro-

vides the most comprehensive dataset of adverse events and is one

that is relied on by regulatory agencies, such as the FDA for identify-

ing new aspects of known safety problems, and new, unforeseen

problems for the first time.

Lack of gold standard reporting on ML utilization by medical

devices

Another limitation for research sampling ML devices is the absence

of definitive reporting by the FDA on whether devices utilize ML.3,9

The FDA’s own published list of ML medical devices is not based on

information captured by the pre-market review process, but rather

was compiled from public facing FDA data and external sources

(Supplementary Appendix SA), most of which were included in our

search list.35 We overcame this limitation by screening devices for

ML utilization, which resulted in the exclusion of a sizable number

of devices identified in the literature as ML-enabled. This provides

confidence that the events analyzed are indeed indicative of

ML-enabled devices.

Despite efforts to catalog medical devices using ML,9,23,24,26 an

accounting for exactly what ML does within these devices is notably

absent. Medical devices are more than a singular algorithm, instead,

they are end-to-end products comprising the multiple hardware and

software components needed by devices to perform tasks. Devices

comprise multiple algorithms, each performing a specific function

and utilizing appropriate methods, only a small portion of which are

ML. The problem is compounded by the lack of specificity in manu-

facturer and regulator reporting. The FFRCT manufacturer offers

more details than most, describing, “advanced deep learning (AI)

methodology to precisely extract coronary anatomy.” That ML out-

put is used by “physics-based computational models [to] assess pres-

sure and flow changes in coronary arteries.” Output of the physics

computation model are used to calculate FFRCT. Here the function

of ML is limited to the extraction of coronary anatomy.

CONCLUSION

The promise of ML for healthcare is held back by the challenges of

implementation. Unresolved concerns around safety and limited

implementation in real-world practice have meant research has been

largely based on theory and case studies focusing on ML algorithms.

Our analysis of safety events reported to the FDA provides the first

systematic examination of the problems and consequences associ-

ated with the use of ML medical devices for diagnosis, treatment,

and prevention of disease in the real world.

ML and algorithm failures indeed contributed to safety events,

however, the safety problems observed involve much more than

algorithmic errors. While issues with data acquisition was the most

frequently observed problem, problems with the way in which devi-

ces were used and for what purpose were more likely to result in

patient harm. Ensuring safety of ML devices requires a shift of focus

from ML algorithms to the whole-of-system, the human–ML device

interaction, and safe implementation into workflows and with IT

infrastructure.
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