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ABSTRACT

Objective: To design and validate a novel deep generative model for seismocardiogram (SCG) dataset augmen-

tation. SCG is a noninvasively acquired cardiomechanical signal used in a wide range of cardivascular monitor-

ing tasks; however, these approaches are limited due to the scarcity of SCG data.

Methods: A deep generative model based on transformer neural networks is proposed to enable SCG dataset

augmentation with control over features such as aortic opening (AO), aortic closing (AC), and participant-

specific morphology. We compared the generated SCG beats to real human beats using various distribution

distance metrics, notably Sliced-Wasserstein Distance (SWD). The benefits of dataset augmentation using the

proposed model for other machine learning tasks were also explored.

Results: Experimental results showed smaller distribution distances for all metrics between the synthetically

generated set of SCG and a test set of human SCG, compared to distances from an animal dataset (1.14�
SWD), Gaussian noise (2.5� SWD), or other comparison sets of data. The input and output features also

showed minimal error (95% limits of agreement for pre-ejection period [PEP] and left ventricular ejection time

[LVET] timings are 0.03 6 3.81 ms and �0.28 6 6.08 ms, respectively). Experimental results for data augmenta-

tion for a PEP estimation task showed 3.3% accuracy improvement on an average for every 10% augmentation

(ratio of synthetic data to real data).

Conclusion: The model is thus able to generate physiologically diverse, realistic SCG signals with precise con-

trol over AO and AC features. This will uniquely enable dataset augmentation for SCG processing and machine

learning to overcome data scarcity.
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INTRODUCTION

The seismocardiogram (SCG) is a cardiovascular mechanical signal

that records chest wall acceleration associated with the heart’s con-

traction and ejection of blood.1 The SCG waveform captures timing

features correlated to cardiac events such as aortic valve opening

(AO), and aortic valve closing (AC). These features can be used to

derive cardiac time intervals such as pre-ejection period (PEP), and

left ventricular ejection time (LVET).2 SCG recordings have been

successfully used for various cardiovascular health monitoring tasks,
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such as heart failure monitoring, detecting the effects of noninvasive

neuromodulation and stressors for stress applications, and estimat-

ing a variety of hemodynamic variables such as blood pressure and

stroke volume.3–8

However, to effectively apply modern machine learning techni-

ques to SCG data, dataset sizes should be relatively large. Dataset

diversity is a key factor as well for model generalization.9 Yet, col-

lecting such large, diverse datasets from human or animal subjects is

often challenging. Aside from approaches such as transfer learning

that use alternative sets of data,10 one common approach to address-

ing the challenge of limited data, and insufficiently diverse data, is

through synthetic data augmentation via generative modeling.11,12

Recent studies on generative models that can generate clinically

relevant signal modalities for dataset augmentation have focused on

ECG or PPG signals.13–16 Prior work on generative models for SCG

signals have focused on correlation of dynamic processes using

learned latent factors, sensor placement-induced changes, and balis-

tocardiogram (BCG) to SCG conversion.17,18 To the best of our

knowledge, however, generative modeling for synthetic SCG signal

generation has not been explored in the literature since SCG signals

usually have morphologically complex datasets, which are usually

smaller than ECG and PPG datasets. In this study, we introduce an

SCG generator model based on transformers neural networks that

generates synthetic SCG beats from clinically relevant SCG

features.19

From a clinical utility standpoint, the 3 waveforms provide dif-

ferent information that can be fused and harvested towards improv-

ing decision support. Specifically, the ECG captures the

electrophysiological health of the heart, and can be used to detect

arrhythmias, hypertrophy, rate disturbances, and other electrical

conduction abnormalities of the heart.20 The PPG captures vascular

health by quantifying the blood volume pulsatility at a peripheral

site and is generally used to determine oxygen saturation, assessing/

diagnosing peripheral artery disease and providing a distal timing

reference for pulse transit time and/or pulse wave velocity.21 The

SCG is a mechanical signal that captures the pumping action of the

ventricles primarily, thus providing an indication of hemodynamic

function of the heart together with the timings of valve activities.1

One key difference in the SCG is a greater degree of interparticipant

variability in signal morphology, which renders this signal a proto-

typical example for the training and evaluation of the algorithm pre-

sented in this work.1

Nevertheless, the framework proposed in this work is easily

expandable to other cardiovascular signals including ECG and PPG,

as well as other cardio mechanical signals such as the ballistocardio-

gram (BCG) and phonocardiogram.

The contributions of this work include: (1) designing a

transformer-based generative model that can be used to generate

synthetic SCG beats similar to real human SCG beats; (2) demon-

strating that our synthetic SCG generator model can generate SCG

beats with AO and AC timings that are strongly correlated with the

desired AO and AC parameters input to the model; and (3) showing

that the generated synthetic SCG signals can be used for data aug-

mentation during model training to improve performance.

MATERIALS AND METHODS

Datasets
In this work, we used 4 human participant datasets for training and

validation, and 1 animal dataset for validation purposes only. The

human participant datasets contain recordings from a total number

of 82 participants (32 females, and 50 males). All of these human

participant datasets were fully deidentified and were collected previ-

ously under protocols approved by the Georgia Institute of Technol-

ogy Institutional Review Board (IRB). The animal dataset contains

recordings from 6 pigs which is used for evaluation purposes. This

dataset was collected under a protocol approved by the Institutional

Animal Care and Use Committees (IACUC) of the Georgia Institute

of Technology, Translational Testing and Training Labs Inc. and the

Department of the Navy Bureau of Medicine and Surgery. The data-

sets demographics are summarized in Table 1 with a detailed

description for each dataset in the Supplementary Materials (Supple-

mentary Section S1).

Preprocessing
Noise reduction and segmentation

The z-axis SCG signals from the rest and baseline periods of the pro-

tocols were extracted as these segments contain minimal motion

noise. Then the signals are filtered using a Kaiser window band-pass

filter with cutoff frequencies of 1–40 Hz.17,22 The z-axis accelera-

tion also known as the dorso-ventrical component of the SCG signal

has been focused on as the main SCG component in literature.1

Using the R-peaks of the ECG signals collected concurrently with

the SCG signals, the filtered signals were heartbeat-separated. A sig-

nal quality indexing (SQI) method for SCG beats was used to iden-

tify and exclude the beats contaminated with noise above a certain

threshold.26 Finally, the beats are min-max normalized and centered

around 0.5 to ensure model generalization.

AO and AC extraction

The proposed model in this paper receives SCG features as input

and generates a realistic SCG beat that has the corresponding fea-

tures. For each beat in the dataset, AO and AC amplitudes and loca-

tions were extracted from the beats using the simplified consistent

peak tracking algorithm employed in prior work.6 Using the AO

and AC amplitudes and locations extracted from the target real SCG

beats, a simplistic SCG signal was created consisting of 2 Gaussian

waveforms with means located at AO and AC locations, and ampli-

tudes relative to AO and AC amplitudes of the target SCG beat. In

this work, we refer to this simplistic signal as a “skeleton” signal.

We propose that the model can translate the information embedded

in this representation of features to a realistic SCG beat. A sample of

the skeleton signal is shown in Figure 2A. For more details about the

preprocessing steps, refer to the Supplementary Section S2.

Model architecture
The transformer neural network model architecture relies on the

attention mechanism to learn input-output temporal dependencies,

rather than recurrence. Transformers have demonstrated superior

performance to recurrent neural networks (RNNs) in certain

sequence-to-sequence translation tasks while overcoming the vanish-

ing and exploding gradient problems.19,27,28 The translation task

here, in particular, is translating “skeleton” signals to realistic

human-like SCG beats with those features. To leverage this power

of transformers for SCG beat generation, we adapted the previously

validated text-to-speech (TTS) transformer model with some modifi-

cations.28 Since speech, like SCG signals, is a continuous oscillatory

waveform which is segmented into its component parts for analysis,

we propose that adapting the TTS transformer architecture is a nat-

ural choice for creating a generative model for SCG signals.
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In order to relate SCG signals to the NLP paradigm, we first con-

verted SCG beats into a sequence of embedding vectors. Prior work

for the text-to-speech task used mel spectrogram as the fixed embed-

ding method for speech signals followed by an additional trainable

embedding layer.28 To apply the same notion for SCG signals, we

proposed 3 types of fixed embeddings for SCG signals: spectrogram,

maximal overlap discrete wavelet transform (MODWT), and a pre-

trained encoder (Figure 2B). The prenetworks before the encoder

and decoder blocks operate as the trainable part of the embedding

layer after the fixed embeddings to allow for the projection of the

fixed embeddings to a more flexible subspace as suggested by Li et

al28 (Figure 2C and E). Supplementary Table S1 shows a summary

of the model architecture and each block is explained in the Supple-

mentary Materials (Supplementary Section S3).

Another important clinical feature of SCG signals is morphol-

ogy. The morphology of an SCG beat is affected by several factors

such as sensor placement, respiration, and interparticipant variation;

however interparticipant variability specifically has a major impact

on morphology variation.1,29 To consider interparticipant morphol-

ogy variation in the model presented in this work, we appended a

random ID token to the input tokens (similar to the [CLS] token in

vision transformers), proposing that this token is responsible for the

SCG morphology variation and decouples the participant-specific

morphology information from other SCG features.30 This synthetic

ID is kept constant for all beats belonging to each participant during

training to keep intraparticipant similarities while varying the syn-

thetic ID for different participants to account for interparticipant

variabilities.

Training setup

We used a single Nvidia GeForce GTX 1080 GPU to train our

model on the SCG beats dataset (64 894 training samples) extracted

from a total of 82 healthy participants. L1-norm was chosen as the

loss function to minimize the error between the generated SCG

waveform and the ground truth SCG waveform from the human

participant signals Equation (1).

LðhÞ ¼ 1

Nmb

X

i

jfhðxiÞ � yij1 (1)

where Nmb is the number of mini-batch samples, h is the parameters

of the network, fh is the network model with parameters h, xi is the

input skeleton, and yi is the output ground truth SCG beat. The fhðxi

Þ and yi are 1D SCG signals with R
m dimension, where m is the

length of the signal.

Adam optimizer was used with the addition of a learning rate

warm-up algorithm introduced by Ashish et al19 in which the learn-

ing rate is increased linearly for a number of steps and then deceases

proportional to the inverse square root of the number of steps.

For the training of this model, 12 participants were held out for

the test set, 6 for validation and the rest used for training. The model

was then trained on the training split and hyperparameters were

tuned using the validation set (Supplementary Section S4). After tun-

ing the hyperparameters, we merged the training and validation

splits and retrained the model on this merged dataset for 65 epochs

and tested using the held out test set.

Evaluation
Generative model evaluation

To evaluate the model introduced in this work, distribution distance

metrics were used to quantify the closeness of the generated syn-

thetic SCG beats to real human SCG beats. For this, we created 6

datasets: a training dataset, which is the same dataset that the model

was trained with; a test dataset, which is our held out test set; a pig

dataset which contains SCG beats recorded from 6 pigs; a skeleton

dataset containing skeleton input signals (Figure 2A) that were fed

as input to the model; a noise dataset containing Gaussian noise;

and a synthetic SCG beat dataset that contains synthetic beat sam-

ples generated by the proposed model.

The 3 distance metrics chosen were Maximum Mean Discrep-

ancy (MMD), Sliced-Wasserstein Distance (SWD), and Kullback-

Leibler divergence (KLD) which were used in prior work as metrics

for evaluating generative models for signal synthesis.14,31,32 Using

each metric, distances were calculated between each pair of these 6

datasets. These metrics are explained in Supplementary Materials

(Supplementary Section S5).

Dataset augmentation evaluation

In order to study the benefit of using the proposed work to augment

training datasets with synthetic data, we added different amounts of

synthetic data generated by the model introduced in this work, to a

dataset of human SCG signals. And compared the performance of

models trained for an SCG related task on a held out set of human

SCG signals. We reproduced a prior work that used SCG signals for

PEP estimation and augmented the dataset using synthetic data gen-

erated by the model.33 The synthetic beats for augmentation are gen-

erated with random morphologies and clinical features controlled

using the model inputs.

RESULTS

A high level block diagram of the synthetic SCG generator designed

in this work is illustrated in Figure 1. The model receives 2 groups

of inputs, a synthetic participant identification (ID) illustrated in

Figure 1A that is responsible for keeping the SCG morphology

unique to the participant, and clinically relevant features that oper-

ate as figurative knobs that control the AO and AC features of the

generated SCG beat (Figure 1B). This separation of inputs decouples

participant-specific morphology information from other features of

the SCG beat. Figure 1C represents the generative model which

receives Figure 1A and B as inputs and outputs a realistic synthetic

Table 1. Datasets demographic information

Dataset Participants count Age (years) Weight (kg) Height (cm) Duration (min)

(1) Shandhi et al18,22 26 (10f, 16m) 25.9 6 3.5 70.4 6 14.0 171.9 6 10.9 14.5

(2) Hersek et al18 10 (5f, 5m) 21.9 6 0.6 65.4 6 9.9 172.3 6 9.8 16

(3) Ashouri et al23 10 (5f, 5m) 24.7 6 2.3 70 6 10.5 170 6 11.6 20

(4) Gurel et al4 16 (6f, 10m) 26.7 6 3.2 N/A N/A 24

(5) Chan et al24 20 (6f, 14m) 26.52 6 2.5 71.9 6 14 173.7 6 9.4 30

(6) Zia et al25 6 (pigs) N/A 87.2 6 35.7 N/A 10
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SCG beat shown in Figure 1D. Figure 1E lists the potential applica-

tions of the model. Although the primary application of this model

is data augmentation,11,12 other applications include the develop-

ment of denoising algorithms by adding noise to clean synthetic

SCG beats,34 treating the synthetic beats as ground truth (similar to

speech denoising35,36).

The designed transformer-based architecture is shown in Figure 2

resulted from modifying the TTS model in prior work to adapt to

the task of generating SCG beats. The main modifications include

the pre-net and post-net blocks as well as the embedding block to

optimize the performance for SCG generation from clinical features.

The architecture is discussed in details in the Supplementary

Material.

To validate the designed architecture based on the main hypothe-

ses that the synthetic SCG beats generated are realistic and human-

like, have controllable features, and can be used for dataset augmen-

tation to enhance model performance, we performed a series of

evaluations.

Realistic outputs
Distribution distance metrics explained in “Evaluation” were used

to quantify the similarity of the synthetically generated beats to real

SCG beats. For this purpose, the 6 datasets explained in

“Evaluation” were used and distances were calculated between each

pair of these datasets using the 3 distance metrics. Figure 3B and C

illustrates the results of these calculations. Figure 3B visualizes the

SWD distances between each pair of datasets. And Figure 3C shows

the distances between the synthetic SCG dataset (source) to the

remaining 5 datasets (targets) using all 3 distance metrics. These

results show smaller distribution distances between generated SCG

beats and human SCG signals compared to animal SCG (1.14�
SWD), skeleton signals, and Gaussian noise (2.5� SWD) for all dis-

tance metrics.

A t-Distributed Stochastic Neighbor Embedding (t-SNE) plot of

the 6 datasets is also presented in Figure 3A to visualize how syn-

thetic beats cluster with beats from other datasets. We can observe

that the synthetically generated beats cluster closer with the real

human beats compared to other datasets.

Controllable output features
To validate that the generative model presented here can generate

synthetic SCG beats with controlled clinical features, we fed in a ser-

ies of 16 input sequences (different random ID tokens representing

16 fake participants; Figure 1A) each with linearly varying PEP and

LVET parameters and random amplitudes. These values were

chosen from clinically meaningful ranges extracted from the training

dataset (64 human participants from 5 datasets). AO locations from

the R-peak (PEP) are in the range of 65.74 6 25.58 ms, and AC loca-

tions from the R-peak (PEPþLVET) are in the range of

333.93 6 46.80 ms.

After feeding the generated outputs to our preprocessing pipeline

(see “Preprocessing”), we extracted SCG features from these gener-

ated beats. Figure 4B and C shows Bland-Altman plots for PEP and

LVET errors between the generator-output and the input skeleton

signals. Notably, this figure shows 95% limits of agreement of

0.03 6 3.81 ms for PEP error and �0.28 6 6.08 ms for LVET error

between the input output features.

Qualitatively, Figure 4A shows a sequence of generated SCG

beats from a fake participant plotted on top of each other with AO

and AC annotations. Note that the random ID token is kept con-

stant for all beats belonging to 1 fake participant but it is varied

between participants.

Dataset augmentation
We propose that by augmenting human SCG datasets with synthetic

data that is very similar to human SCG signals, we can improve the

performance of data-driven algorithms. For this, we reproduced

prior work on PEP estimation in which several regression models

were trained on a dataset of SCG signals to estimate the PEP value

on a beat-by-beat basis.33 Figure 5 shows the RMSE for PEP esti-

mates with different ratios of synthetic SCG data to previously

acquired human SCG data. Notably, the figure shows that when

augmenting the dataset using the synthetic generator model, every

10% augmentation (ratio of synthetic data to real data) results in a

3.3% accuracy improvement on an average.

Embeddings comparison
The embeddings play an important role in the training of the trans-

former model and operate as a bridge between the input 1D signal

Synthetic

 subject ID

• PEP

• LVET

• AO amplitude

• AC amplitude

Dataset

augmentation

Testing denoising 

algorithms

Quality indexing 

template

Feature discovery

SCG GeneratorSCG Generator
Synthetic

SCG generator

01100001
01100010
01100011

A

B

C D

E

Figure 1. Overview of the synthetic seismocardiogram (SCG) generator model. (A) A participant identification (ID) is fed as input which controls the morphology

of the generated beat. (B) The model receives SCG features as inputs, and outputs an SCG beat with those features. (C, D) This model can be used to generate

sequences with controlled features. (E) This enables tasks such as dataset augmentation and template generation. It also sets the stage for simulating noisy SCG

and testing denoising algorithms. PEP: pre-ejection period; LVET: left ventricular ejection time; AO: aortic opening; AC: aortic closing.
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and the input that the transformer model receives. We proposed 3

different fixed embedding methodologies (MODWT, spectrogram,

and a pretrained encoder) and compared their performances for the

task of generating SCG beats. For evaluation, we calculated the dis-

tances between the synthetically generated SCG beat dataset and the

human SCG signal datasets (train, and test) using the 3 distance met-

rics (SWD, MMD, and KLD) and repeated this for each embedding.

Figure 6 shows that the model with MODWT embedding outper-

forms models with spectrogram and pretrained encoder

embeddings.

Demystifying the transformer model
Interpretable machine learning is defined as the extraction of infor-

mation about relationships learned by the black-box model.37 To

demystify the network architecture presented in this work, the atten-

tion weights of the transformer block are extracted and visualized

by heatmaps in Supplementary Figure S3 and are discussed in the

Supplementary Materials (Supplementary Section S7).

DISCUSSION

Prior work has shown that generative models have been successful

in generating clinically relevant signal modalities for dataset aug-

mentation. For instance, Zhu et al13 designed a bidirectional long

short term memory convolutional neural network (LSTM-CNN)

model to generate synthetic ECG data for dataset augmentation.

Delaney et al14 instead used generative adversarial networks (GAN)

to generate ECG signals. Hazra et al15 and Kiyasseh et al16 designed

GAN models for photoplethysmogram (PPG) data augmentation.

To the best of our knowledge, however, generative modeling for

synthetic SCG signal generation has not been explored in the litera-

ture. Two recent studies explore related topics. Zia et al17 demon-

strated the correlation of dynamic processes and sensor placement

with learned latent factors. Hersek et al18 introduced a U-Net model

that generates ballistocardiogram (BCG) signals from SCG signals.

Although both approaches involve some form of deep generative

modeling for SCG, neither explored synthetic SCG generation from

SCG features to enable data augmentation. This work is the first to

show that the designed transformer-based architecture can be

trained for synthetic SCG generation.

Evaluation results
By evaluating the model using distribution distance metrics, we dem-

onstrate its ability to generate SCG beats that obey distributional

characteristics more similar to real human SCG. The SWD results

(Figure 3B) agree that the generated beats are closer to real SCG

beats rather than random noise and also agree that the synthetic

dataset is slightly closer to real human dataset compared to animal

(pig) SCG dataset. In Figure 3C, the results from all 3 metrics agree

that the synthetic dataset is closer to real SCG signals (human and

pig) and is farther from non-SCG signals (skeleton, and noise) which

implies that the model is generating realistic SCG beats. Further,

focusing on the datasets that contain real SCG signals (train, test,

and pig), we observe that the synthetic beats are closer to human

SCG signals and farther from pig SCG signals. This entails that the

proposed generative model is capable of generating SCG beats from

a distribution closer to human SCG distribution rather than non-

SCG or animal SCG distributions. From the t-SNE representation

(Figure 3A), it can be seen that the synthetically generated SCG

beats and real human SCG beats cluster together thus making them

more difficult to separate. However, the animal, skeleton, and noise

samples clusters can be more easily separated from the synthetically

generated SCG beats.

Figure 4 shows strong correlations between features of the gener-

ated SCG beats and the desired features fed into the model. We can

observe that the 95% limits of agreement for PEP and LVET are

0.03 6 3.81 ms and �0.28 6 6.08 ms, respectively. The increase in

LVET error compared to PEP may be due to increased susceptibility

of AC peaks to motion artifacts. In addition, comparing the ampli-

tudes of the generator-output and the input skeleton signals, we

achieved an R2 of 0.71 for AO amplitudes and 0.43 for AC
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Figure 2. Architecture of the model, which is adapted from the text-to-speech

transformer architecture for SCG feature-to-beat generation. (A) A simplistic signal

consisting of 2 Gaussian waveforms at AO and AC locations with AO and AC

amplitudes (referred to as “skeleton”) is fed into the encoder. (B–D) The fixed

embedding block and the encoder pre-net first convert input tokens to embedding

vectors which are then fed into the transformer block. (E–G) The decoder gener-

ates an SCG beat with the same features. (H, I) At the output of the decoder a

reconstruction block will convert the generated tokens with embeddings to an

SCG beat. Nx: repeat block N times; FFN: feed forward network.
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amplitudes. The R2 value for AC is lower due to the fact that AC

has a lower SNR than AO and is notoriously difficult to annotate.38

Importantly, beat morphology could be randomized through a

random ID token (Supplementary Figure S1), making the model

desirable for dataset augmentation by introducing diversity in the

morphology of the SCG signals, while remaining in control over

physiological variation. Further, we showed that the intraparticipant

variability is less than interparticipant variability (Supplementary

Section S6).

The results of the dataset augmentation experiment (Figure 5)

implies that augmenting the training dataset with the synthetic data

generated by the model introduced in this work can enhance the per-

formance of the models on a held out test set. In addition, we

observed that increasing the amount of synthetic data to the real

data also improved the performance. Further, we showed that sim-

ply adding data without varying PEP and LVET does not affect the

model performances, demonstrating that the dataset diversity
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enabled by our generator model is what drives the improved per-

formance (Supplementary Figure S2).

A key contribution to the performance was the choice of embed-

ding for SCG signals to make them transformer-readable. Using

MODWT as an embedding for SCG signals enabled the model to

learn the distribution of human SCG beats better (Figure 6).

Limitations and future work
This study has some limitations: (1) The performance of the model

is limited for SCG AO and AC amplitudes (especially AC) as ampli-

tudes are dependent on factors such as chest medium and sensor

placement. Future work can explore model modifications and learn

these dependencies to achieve better amplitude accuracy; (2) In this

work, we focused on SCG beats from healthy population for the

training of the model, thus the model is able to generate realistic

beats analogous to healthy human SCG beats. Future work can

explore synthetic generation of SCG signals for “fake” participants

with different health conditions such as heart failure (HF), or post-

traumatic stress disorder (PTSD) as these conditions have shown to

produce heterogeneity in the SCG signal.6,7 However, this requires a

large datasets of SCG signals collected from patients with such

conditions.

In terms of applications, other than data augmentation, the

model presented in this work can be used for testing denoising appli-

cations, quality indexing, and feature discovery. For testing denois-

ing algorithms, a sequence of clean SCG beats with controlled

features affected by real-time conditions can be generated to be fed

into SCG simulators,34 enabling noisy SCG signal collection to

explore denoising methods. Some SCG quality indexing algorithms

require a set of SCG beat templates with clean features.26 Using the

model presented in this work, we can generate clean SCG beat tem-

plates with diverse morphology and controllable features resulting

in a richer template set, therefore enabling a more accurate quality

indexing.

The framework proposed here in general can be expanded to

other applications as well where data can be hard to collect. Specifi-

cally, this framework can be directly applied to any continuous,

quasi-periodic signal. And further, the framework and the trans-

former architecture can be adapted to other medical domains such

as remote patient monitoring.

CONCLUSION

We designed and validated a novel deep generative model based on

transformer neural networks that was trained on a large combined

dataset of real human SCG signals. This model generates synthetic

SCG signals analogous to human SCG with controlled clinical fea-

tures. The use of synthetic SCG generator models such as the one

elucidated herein can help increase the size of datasets by appending

SCG signals with physiological and morphological diversity relevant

to the task. This could not only be used for data augmentation and

machine learning tasks, but could also be used for a variety of clini-

cal tasks that require physiological diversity manifested in SCG sig-

nals (eg, medical training).
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