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A B S T R A C T

Machine learning is a powerful tool that is increasingly being used in many research areas, including neuroscience. The recent development
of new algorithms and network architectures, especially in the field of deep learning, has made machine learning models more reliable and
accurate and useful for the biomedical research sector. By minimizing the effort necessary to extract valuable features from datasets, they can
be used to find trends in data automatically and make predictions about future data, thereby improving the reproducibility and efficiency of
research. One application is the automatic evaluation of micrograph images, which is of great value in neuroscience research. While the
development of novel models has enabled numerous new research applications, the barrier to use these new algorithms has also decreased
by the integration of deep learning models into known applications such as microscopy image viewers. For researchers unfamiliar with
machine learning algorithms, the steep learning curve can hinder the successful implementation of these methods into their workflows. This
review explores the use of machine learning in neuroscience, including its potential applications and limitations, and provides some guidance
on how to select a fitting framework to use in real-life research projects.
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C H A L L E N G E S I N M I C R O G R A P H A N A L Y S I S

Digital microscopy is an important tool for basic and clinical
research. While the technical instruments available to obtain
ever more accurate images of tissue slices have steadily
improved over the last years, accurate analysis of the images is
key to validate hypotheses. Two of the main challenges of
manual microscopy image analysis are that it is prone to
human errors and it is time consuming. When relying on
human raters to manually analyze images, there can be signifi-
cant interrater variability (1,2). Priming effects can subcon-
sciously influence evaluation of images, as faster and more
efficient microscopes enable us to gather more data in a
shorter amount of time; the limiting factor becomes the time
needed to analyze those large quantities of data. As researchers
must manually select representative images to analyze, this can
introduce selection biases. Leaving the selection process to
humans can therefore become problematic even when not
considering the additional errors and biases in the actual analy-
sis workflow. Using fully automated analysis software solutions
could help by significantly reducing the time needed to per-
form image analysis and allowing for a larger amount of data
to be analyzed in the same amount of time. Using algorithms

to extract the features needed for statistical evaluation to con-
firm or reject the null hypothesis also reduces the risk of sub-
consciously favoring some images over others. The research
community has been trying to deal with this problem for cen-
turies, using blinding, randomization, and anonymization tech-
niques to evaluate clinical and research data without prejudice,
but in practice this is oftentimes hard to achieve.

Another challenge, which is especially hard for more inex-
perienced researchers and students, is the learning curve when
analyzing datasets. As most tasks are problem specific (e.g.
counting axons, nuclei, or other subcellular components),
raters could adapt their judgment over the course of the rating
process, resulting in different evaluation standards for images
that were evaluated later in the study compared to those rated
earlier (3).

Reproducibility through deterministic algorithms
According to a survey of 1576 researchers conducted by
Nature, more than 70% of researchers have failed to reproduce
other scientists’ experiments (4). Many preclinical studies can-
not be translated into the clinical field and findings cannot be
reproduced by other laboratories. A team at Bayer HealthCare
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in Germany reported that only about 25% of published pre-
clinical studies could be validated to the point at which proj-
ects could continue because there were significant
inconsistencies between published data and in-house data
when investigators tried to reproduce the results of the articles
(5). Discrepancies between published data and validation data
can happen for a number of reasons, including the use of dif-
ferent protocols and equipment, lack of identifiability of
research resources (6), and the use of a p value as the only
marker of significance (7). A lack of reproducibility is also
impacted by subjective analysis and interpretation of data by
human researchers. To overcome this challenge, multiple
approaches are needed to generate more reliable and reprodu-
cible results. One approach could be the use of modern com-
puter vision algorithms, which have become increasingly
reliable for tasks such as cell detection, segmentation, and fea-
ture analysis, for example of heterogeneity, which can be used
as prognostic factors of disease (8,9). Algorithms and software
for the analysis of microscopic images have been used since
the 1950s and have been considerably improved and devel-
oped (10). New algorithms are developed constantly, with
ever higher accuracy and less segmentation errors, using state-
of-the-art machine learning methods that are able to compete
using the latest statistical segmentation methods (11).

One of the main advantages of using computer vision appli-
cations and machine learning classifiers for the analysis of
microscopy images is their deterministic nature. Once trained,
a convolutional neural network (CNN) will consistently pro-
duce the same results for a given set of data (12). Further-
more, the increasing open-source community and the
possibility to easily share source code, algorithms, and configu-
rations with each other allow for a rapid transferability of
newly developed algorithms between research labs (13). This
will allow researchers to re-run the experiments of their col-
leagues to better understand their findings and to investigate
how the proposed algorithms perform on their own datasets,
which may not be publicly available. Leveraging new technolo-
gies to iterate through multiple analysis approaches, using dif-
ferent kinds of architectures and algorithm designs without the
need to implement every single one from scratch, can signifi-
cantly speed up the research process.

Computer-aided digital microscopy has already been shown
to significantly reduce intra- and interobserver variabilities
(14). The addition of machine learning algorithms to micro-
graph analysis software could further improve this effect. The
analysis of large-scale datasets could be made possible through
the use of deep learning-based algorithms, which have proven
to be able to tackle complex tasks such as differentiating com-
plex structures in immunohistochemical-stained images (15).

Another advantage of learning methods is their inherent
ability to adapt to new data, as a trained classifier can be
retrained or expanded once new data for training are available.
In the best-case scenario, this could lead to permanently
improving an algorithm that dynamically adapts to shifts and
changes in the data as it becomes more and more “familiar”
with the new input.

M A C H I N E L E A R N I N G I N M I C R O S C O P Y
Review of the machine learning methodology

This review does not strive to give an extensive explanation for
the diverse and complex machine learning algorithms and
model architectures that are continuously improved and
invented, representing an entirely separate topic. Multiple
articles have been published that explain the theory and math-
ematical foundations as well as the possible use cases of
machine learning and deep learning as applied in medical
research (16–18). This review will focus on providing a con-
ceptual overview of the main concepts to provide a better
understanding of real-use cases.

Machine learning is a term used to describe any computing
strategy that allows a program to build an analytical model on
its own when only provided with a dataset without any human
expert knowledge (12). In recent years, the design of new
algorithms and the acceleration of computations by better
hardware have had an impact on many fields of research
including neuroscience by identifying predictive variables or
model complex structures (19). In microscopy analyses,
machine learning algorithms help to automate image comput-
ing to study and detect new aspects in computational neuro-
science by analyzing patterns and modeling complex structures
(20).

One application is the automated identification of cell-type-
specific genes in the mouse brain using images of in situ
hybridization expression patterns matched with gene datasets
(21). This application provides quantitative data that facilitate
more accurate computational modeling of the results than
other methods.

One subfield of machine learning is deep learning, which
utilizes artificial neural networks. Deep learning algorithms
have a special architecture, that is neural networks, which are
comprised of different layers composed of multiple nodes
called neurons. In densely connected networks, which form
the basis of deep learning architectures, each neuron of each
layer is connected to each neuron in the next layer; this allows
them to learn complex relationships of different features of the
input data. The organization of the neurons in the networks
can be summed up into 3 main components: an input layer, 1
or more hidden layers, and an output layer (22); processing
happens in the hidden layers. To understand how machine
learning algorithms differ from more traditional, statistical
rule-based approaches to image segmentation and classifica-
tion, we must first understand the task at hand. If we consider
the challenge of image segmentation, the goal is to identify a
distinct set of features that characterize the objects of interest
inside the obtained image (23). Traditional segmentation
methods relied on a mixture of different features, for example
intensity, texture, and the detection of edges of objects, to seg-
ment images. These features can be combined to form a set of
rules to semantically segment images. This mixture of different
features can be regarded as a function that transforms the
input data (e.g. a microscopy image), to the desired output
(e.g. the full segmentation of the image into subregions such
as cells). While rule-based systems are designed by hand by
researchers using their subject-specific knowledge, machine
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learning approaches extract this function autonomously once
they are properly trained. The selection and curation of train-
ing data by humans is critical for the performance and reliabil-
ity of machine learning models. The quality and
representativeness of the training data directly impact the
accuracy and generalizability of the resulting model. Training
data that are incomplete, biased, or of poor quality can lead to
poor performance and inaccurate predictions even if the
machine learning algorithm is well-designed. Therefore, it is
essential that human experts carefully curate and annotate the
training data to ensure that they are representative of the real-
world data and cover a wide range of relevant scenarios. This
is particularly important in the field of microscopy image anal-
ysis in which the complexity and variability of the data can
pose significant challenges for machine learning algorithms.
The best possibly achievable performance of a model is most
often dependent on the quality of the data.

The “learning” property of machine learning models is
achieved by implementing 2 functions into the algorithm: a
loss function and an optimization function. The loss function
describes how far off the machine learning algorithm perform-
ance is from the task at hand. In the example of image segmen-
tation, it computes a numerical value for the difference
between the desired segmentation and the actual output of the
algorithm. This “loss” is then subject to minimization by the
optimization function. The optimization function tries to find
the combination of different parameters of the algorithm (also
called weights), which results in the smallest loss (Fig. 1). The
resulting architecture is a continuous iteration between com-
puting the loss of the algorithm by the loss function, adapting
its parameters by the optimization function, and then running
the new, improved algorithm again and evaluating its loss
again; this is called Backpropagation (24).

The step-wise adaption of parameters to find the global
minimum of the loss function is based on the principle of gra-
dient descent (25). Machine learning algorithms can either
learn supervised or unsupervised. Unsupervised learning deals
with data without labels provided by humans. Its most com-
mon uses are to find relationships between the data points in
large datasets, to subsequently find clusters in the dataset, or
to extract the most important features of the dataset. The loss
function here is based in finding parameters that allow for min-
imal differences between the data points in each subgroup.
Supervised learning requires a set of data with the optimal sol-
ution for the task, called training data. This training set is used
to compute the loss function in the initial learning phase of
the algorithm to optimize its parameters. After the training
phase, it can take in new data without the solution and com-
pute the solution itself based on the previously learning
parameters.

Recent improvements in software algorithms (for the loss
and optimization functions) (25) and hardware architecture,
such as graphical processing units and the introduction of ten-
sor processing units (26), have enabled a significant advance-
ment in the field of machine learning-related research areas.
By increasing speed and while simultaneously decreasing com-
puting costs and the effort required for the setup, machine
learning research has become feasible for research areas out-
side of mathematics and computer science.

The barrier to include machine learning algorithms effi-
ciently into research workflows decreases further as time pro-
gresses with the invention of new tools that require less and
less coding experience (27). While training and designing
deep learning models from scratch for specific tasks is a com-
plex and challenging task, there are already a number of pre-
trained models for many tasks such as cell segmentation and
pathology classification available, which can be used out-of-

Figure 1. Illustrations of the loss function as function of the number of iterations (left) and as function of the weight of the network (right).
The loss of the machine learning algorithm decreases with more iterations (i.e. more training time). The network tries to find the best
combination of weights (also called parameters) that result in the smallest loss function. With every iteration, the network moves further
toward the global minimum. The x- and y-axes represent the weights of the network. For visualization purposes, only 2 parameters are
displayed. When dealing with a deeper neural network and simultaneously optimizing all parameters during the training, this multivariate
optimization problem can take on much higher dimensions. The z-axis illustrates the cumulative loss function. It is possible for the machine
learning algorithm to get stuck in local minima. Multiple solutions to this problem exist, depending on the architecture of the algorithm.

AI software solutions for micrograph analysis • 597



the-box with the appropriate software. Some approaches to
this task are presented later in this review.

Dataset curation
The curation of a high-quality training dataset is essential for
developing accurate and reliable machine learning models for
microscopy image analysis. In this section, we discuss the key
steps that are necessary for the curation of a training dataset.

Identify the relevant data: the first step in curating a training
dataset is to identify the relevant data that will be used for
model training. This may include a range of microscopy image
types, including brightfield, fluorescence, and confocal images,
among others. It is important to ensure that the data are repre-
sentative of the real-world scenarios for which the model is
intended to be used.

Data cleaning and preprocessing: once the relevant data
have been identified, the next step is to clean and preprocess
the data. This may include tasks such as removing irrelevant
images or correcting errors in the metadata associated with the
images.

Preprocessing is an essential step in preparing microscopy
images for machine learning, as it can help to improve the
quality and consistency of the data and can enhance the accu-
racy and performance of machine learning models. Some of
the most important preprocessing steps for microscopy images
in machine learning include the following: (1) Image normal-
ization: normalization is a technique used to standardize the
intensity values of the pixels in an image. This can help to
reduce the effects of variation in illumination and can improve
the consistency of the data. Most machine learning frame-
works provide this functionality. (2) Filtering: image filtering
can be used to remove noise and improve the quality of the
image. There are many different types of filters that can be
used, including median filters, Gaussian filters, and bilateral fil-
ters, which are implemented in most image viewer platforms.
(3) Image segmentation: segmentation is the process of dividing
an image into different regions or objects. This can be useful
for identifying specific features or structures within the image
and can be used to extract quantitative information for further
analysis. For example, in microscopy images, 1 step could be
to divide the image into foreground and background, to be
able to operate more efficiently. (4) Image registration: image
registration is the process of aligning multiple images to a
common coordinate system. This can be useful for creating
composite images or when comparing images over time. This
step is not always needed for microscopy image analysis but,
for example it is necessary for Magnetic Resonance Imaging
(MRI) scans of organs that need to be aligned to each other.
(5) Image augmentation: image augmentation is the process of
creating new training images by applying random transforma-
tions to existing images. This can help to increase the diversity
of the training data and improve the generalizability of the
machine learning model, particularly when there is not much
training data available.

Annotation of data: if the goal is to develop a new model,
the next step is to annotate the data by adding labels or tags to
the images. This can be done manually or using automated
tools that are implemented in most image viewer software

(e.g. level tracing and grow from seeds). It is important to
ensure that the annotation is accurate and consistent and that
the labels reflect the true nature of the image content. The
quality of the training data will be responsible for the final per-
formance and accuracy of the model to a significant degree.

Selection of training and validation data: the dataset must
be split into training and validation datasets. The training data
are used to train the model, while the validation data are used
to evaluate the performance of the model. It is important to
ensure that the split is representative and that the training data
are not biased toward certain types of images. A very impor-
tant point is to avoid any leakage of test data into the training
dataset. If we happen to train our model on test data, we will
produce a falsely elevated accuracy when evaluating the per-
formance of our model. Keeping the training a testing data
separate is therefore a key step in dataset preparation.

Balancing the dataset: in some cases, the dataset may be
unbalanced, with a disproportionate number of images in 1
class compared to others. It is important to balance the dataset
by adding or removing images to ensure that each class is
equally represented. If we are training a model to classify
images as pathologic or healthy but training our model on a
dataset of mostly healthy images, it may learn that predicting
“healthy” for every image results on average on a high score
and incentivize the model to produce false negatives.

Quality control: the final step is to perform quality control
on the dataset to ensure that it meets the desired quality stand-
ards. This may involve reviewing the annotations, checking the
balance of the dataset, and evaluating the performance of the
model on the validation dataset.

In conclusion, the curation of a training dataset is a critical
step in developing accurate and reliable machine learning
models for microscopy image analysis. By following the steps
outlined above, it is possible to create a high-quality dataset
that can be used to train and evaluate machine learning models
for a wide range of applications in the field of medical
microscopy.

Deep learning algorithms
Deep learning architectures include a variety of models, which
mainly differ in architecture and optimization and loss func-
tions. Currently, there are several main architectures of neural
networks, namely multilayer perceptron, recurrent neural net-
works, and CNN.

A multilayer perceptron is a feedforward artificial neural net-
work model that maps sets of input data onto a set of appro-
priate outputs (Fig. 2) (28). It is composed of multiple layers
of nodes in a directed graph, with each layer fully connected to
the next one. Each node uses a nonlinear activation function,
which means it uses all its input values to return a value
between 0 and 1 that gets forwarded to each neuron in the
next layer. The concept of linking multiple nodes together and
combining their inputs to obtain the activation for the next
layer enables the network to learn complex functions to proc-
ess data on its own. It can be thought of as the blueprint for a
complicated function in which parameters get dynamically
adapted over time to find the best combination for the task at
hand.
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Recurrent neural networks (RNNs) are a class of artificial
neural networks that use a directed cyclic graph to process
sequences of data items (29). They are like simple feedforward
artificial neural networks but contain cycles that enable them
to exhibit dynamic temporal behavior. RNNs are designed to
process variable-length sequences. Subtypes of this architec-
ture are mostly used for tasks such as natural language process-
ing and time series prediction as they are designed to process
and extract patterns from sequential data thereby profiting
from their ability to consider previous states (30,31). Neural
networks have been successfully used to predict Alzheimer dis-
ease progression by extracting patterns from temporal data
obtained over the course of the disease from its training data
(31,32). Using similar approaches with other network architec-
ture and careful data selection could lead to detect patterns of
disease and progression markers in a number of neurological
conditions.

CNNs are composed of alternating convolutional and pool-
ing layers (Fig. 3) (33). They are designed to process data that
have a grid-like topology, such as digital images, films, and
sound, and can extract spatial features from them in a process
similar to that in the human visual cortex. They are most

widely used for image classification, object detection, and
image segmentation. Convolutional layers consist of a set of
feature detectors that are applied to small regions of the input.
Each detector uses a small set of parameters; the weights are
shared among all locations and scales at which the detector is
applied. This means that a single weight matrix is used to com-
pute the output of a convolutional layer. By using convolu-
tions, which can be also thought of as kernels, the network is
able to learn basic features in images such as borders, edges,
and shapes, depending on the depth of the network. We can
observe a spatial hierarchy in CNNs in which simple patterns
learned by the first couple of layers will be combined to form
more complex patterns in the following layers. Convolution
layers are often followed by subsampling layers. The subsam-
pling layers reduce the spatial resolution of the input and thus
decrease the size of the feature vectors. This effectively reduces
the computational burden of the network and forces the net-
work to learn a more invariant representation of the input.
The decrease in the computational burden is important
because the number of learnable parameters in a CNN
increases much faster with its depth when compared to tradi-
tional neural networks. Multiple adaptions in its architecture

Figure 2. Basic neural network architecture. The Input layer represents the data which is handed to the network as pixel values. The hidden
layers can have an arbitrary number, the depth of the networks correlates with the computational burden. The dynamic adaption of weights
during the training process happens in the hidden layers. Each neuron represents a covariable of the final transformation function learning
by the network. The output layer is the output of the final computation, for example the classification of data into different labels. In the
case of classification problems, it outputs a single label, while in segmentation problems it outputs pixels with a label assigned to each
individually, which are then reconstructed into the final image.
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were invented to deal with this problem, such as the addition
of “skip connections,” which bypass some hidden layers and
connect directly into layers further down the network (34).

The CNN architecture can be trained to detect different
types of objects in images, such as the presence of a road sign
on a highway, a brain tumor in an MRI or distinct cell lines in
microscopy images. This makes them versatile and capable of
adapting to many different requirements of different specialties
in medical research. The adaptability of these networks to dif-
ferent challenges has led to various applications in neuro-
science, such as glial cell segmentation (35), segmentation of
neuronal membranes (36), and subcortical brain structure seg-
mentation (37). The main advantage of CNNs is their ability
to automatically learn robust features from large training data-
sets when trained accordingly. By using data augmentation
methods during training, they are able to learn features that
are invariant to rotations and translations by extracting geo-
metric features in an image; this helps to reduce the amount of
manual feature engineering by human experts (29). The main
disadvantages of CNNs are that they require large amounts of
training data and computational power to train and they are
notoriously difficult to optimize (Table 1). This is because the
network depth and the number of tunable parameters are usu-
ally large, even though there are some recent advances in deal-
ing with overfitting problems (38,39).

The U-Net is a special kind of CNN that was developed for
use in medical image segmentation and proposed by a research
team from the University of Freiburg in 2015 (40). This archi-
tecture is characterized by a symmetric configuration of a con-

tracting sequence of layers, which reduce the size of the input
image and extract features from it, and a symmetric, expansive
path, which up-samples the segmented image to match the
input shape and therefore produce an accurate segmentation
of the image. This symmetric contracting-expanding architec-
ture inspired the name “U-Net” because the shape is reminis-
cent of a “U.” This network takes in an image and outputs its
complete segmentation into the labels it was trained on. The
segmentations each model can produce therefore largely
depend on the training set and labels on which it was originally
trained, again highlighting the need for high-quality, curated
datasets. The efficiency of the U-Net has been demonstrated
in several studies; this has recently resulted in the design of
the “nnU-Net,” short for “no-new-U-Net,” which is a frame-
work developed by the Medical Image Computing Team in
Heidelberg (41). This design has won numerous segmentation
challenges and is currently considered state-of-the-art for most
medical segmentation tasks (42).

The nnU-Net aims to remove most of the preprocessing
and architectural design, which are major barriers for new
researchers coming to the field of machine learning. It works
in a completely automatic fashion and designs the entire train-
ing and validation pipeline autonomously when it is provided
with adequate training data. Many research laboratories have
already adapted the framework and conducted studies on its
performance on multiple tasks, such as brain tumor segmenta-
tion (43) and fetal brain tissue segmentation (44). Most of the
studies have studied the performance of nnU-Net on radio-
logic images, but there are several networks specifically

Figure 3. The architecture of a convolutional neural network. The input image is processed by multiple kernels which result in several
feature maps learned by the network in the convolutional layers. The pooling layers act to decrease the computational burden and
emphasize the primary features of the learned patterns. The last layers are fully connected to end in an output layer which again outputs the
desired result of the computation, for example a classification of the picture or a label map of the image. This architecture is specifically
designed for dealing with imaging data, as the spatial relationships between neighboring pixel groups can be preserved and learned by the
network.
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designed for histology images, such as StarDist (11). A more
detailed look at networks specifically designed for micrograph
analysis follows.

Classification versus segmentation problems
Classification tasks for image analysis describe the purpose of
predicting a discrete class label from a set of classes; for exam-
ple, if the tissue seen in the image contains pathological tissue
or not (45,46). Each input image is assigned a label. Possible
use cases are the detection of alteration in tissue slices, such as
scarring, tumor cell infiltration, or abnormal growth patterns.

Segmentation describes the process of dividing an image
into multiple segments that are continuous sets of pixels, also
known as superpixels. Each segmented region is homogeneous
and represents a distinct component of the image. Examples
for segmentation problems are outlines of single cells, defining
tumor borders or finding distinct patterns in images (47). Seg-
mentation tasks can be thought of as a “pixel-wise” classifica-

tion problem, answering the question of classification for each
pixel separately. While there are already multiple rule-based
segmentation methods that are heavily used to facilitate micro-
scopy image analysis, data-driven implementation can provide
several advantages. A study in 2020 showed that data-driven
algorithms do not only hold up and even beat the accuracy of
rule-based systems but at the same time are much faster once
trained (48). This is crucial in a dynamic field of biomedical
research in which reiterating through numerous approaches to
solve a problem is needed.

Current challenges and their possible solutions
As far as modern machine learning algorithms and research in
the fields of computer science and mathematics have come,
there are still some significant challenges in the attempt to
translate these insights into the healthcare/research sector.
Furthermore, the authors want to emphasize that machine
learning approaches to data analysis problems are not necessa-
rily a substitute for the use of statistical algorithms or rule-
based models. They should be seen as another tool to auto-
mate and advance the image analysis process and as a new way
to gather insights into the growing amount of data we are able
to gather with new technologies. By combining statistical and
machine learning-based algorithms we can profit from con-
cepts and tools from both toolsets (Fig. 4).

Articles published in life science journals do oftentimes not
provide enough information about the exact machine learning
algorithms and tech stack used to enable other researchers to
recreate the experiment (49). Only 6% of research articles on
artificial intelligence release their code, leaving many questions

Table 1. Comparison of advantages and disadvantages of
convolutional neural networks

Advantages Disadvantages

High accuracy Requires large amounts of data
Designed to deal

with image data
High computational costs

Can extract spatial
features in a
hierarchical matter

Hard to optimize due to
large parameter size

The displayed arguments can be seen as a tradeoff between accuracy and complexity,
which results in an increased need for time and computational costs.

Figure 4. Comparison between traditional image segmentation workflows and machine learning workflows. Left: the traditional approach,
where the statistical algorithm to solve the classification or segmentation problem is designed by manually finding rules in the dataset which
are then applied and tested on the whole dataset. If no satisfying outcome is observed, the process is repeated with another choice of
parameters. Right: the machine learning approach. Researchers must decide on network architecture and hyperparameters, such as depth,
learning rate and optimization algorithm. Once the network is designed, it is fed with training data to learn accurate representations and
transformative functions on its own. If the results are not satisfying, we can either keep training the network or adapt its architecture.
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about the correct and exact implementations of algorithms
open (50). Furthermore, the training of models depends heav-
ily on the abundance of high-quality datasets. Models trained
on a subset of data acquired at 1 institution may not be trans-
ferable to another due to the use of different protocols, differ-
ent equipment, and different analysis approaches, all of which
may have an influence on the performance of the model. Pub-
lic datasets are rare, which carries the risk of unintentional
overfitting the data when training multiple machine learning
algorithms frequently on the same datasets. This demonstrates
the need for open, publicly available datasets in addition to
open-sourced algorithm to further advance research in the bio-
medical imaging domain. The work on those archives has
already started, with a great example being The Cancer Imag-
ing Archive (TCIA) (51). This effort by the National Cancer
Institute aims to provide curated and open datasets to help
researchers build generalizable machine learning and data anal-
ysis models. The importance of archives like the TCIA is illus-
trated by the fact that only 51% of research articles in the field
of machine learning for human health care use public datasets
(50). Developing machine learning algorithms on private data-
sets prevents other researchers from independently evaluating
the integrity and generalizability of the model and can lead to
unintentional overfitting of the data to the oftentimes much
smaller, private datasets.

The key to successful application of machine learning is to
identify the classes of data that can be collected in a reliable
and consistent manner. In biomedicine, we often deal with
highly complex, multifaceted data, which makes data collection
and preparation more difficult. One of the challenges in this
field is how to ensure that the data collected are truly represen-
tative of the underlying system.

If large amounts of data are collected efficiently, the amount
of data needed to analyze and discover patterns and relation-
ships will grow accordingly. This will put a strain on the com-
putational resources research institutions have available and
necessitates a cooperative environment between computer sci-
entists and researchers. It is notable that dataset size is not the
only or even the most important factor for the performance of
machine learning algorithms in the medical domain. A 2021
study found that the choice of the classifier and how closely
the distribution of the dataset represents the true distribution
of data are among the most important factors (52). This fur-
ther confirms the notion that the overall design of machine
learning studies should be picked deliberately and with suffi-
cient knowledge of the different parameters in mind.

Another different kind of challenge is the additional task for
researchers in the biomedical fields to keep up with the advan-
ces in the development of new algorithms and best practices in
the bioinformatics sector; selecting the best algorithm for the
problem at hand and configuring it accordingly can signifi-
cantly improve its performance (53). The possible solution is
to outsource the tasks of providing computing power, disk
space, and server maintenance to cloud-based systems. How-
ever, this is especially problematic in the field of medical
research, where data often fall under very strict security laws
and restrictions.

File types and sizes
Another challenge for the consistent implementation of
machine learning-based software solutions for micrograph
analysis is the variety of file types that have been established
over the years. There are several file types that are commonly
used, including TIFF (tagged image file format), JPEG (joint
photographic experts group), PNG (portable network
graphics) (54), BMP (bitmap), DICOM (55), and proprietary
file formats such as CZI (56). Among these, TIFF is consid-
ered the gold standard for microscopy image analysis due to
its high resolution and support for multichannel images. TIFF
files can store uncompressed data or lossless compressed
image data that preserve the quality of the original image (57).
JPEG is another commonly used file type, particularly for web-
based image sharing due to its relatively small file size. How-
ever, JPEG compression can result in the loss of image quality,
which can limit its usefulness in some microscopy applications.
PNG is another lossless file format that is becoming more pop-
ular due to its support for transparency and its ability to store
multichannel images. BMP and GIF (graphics interchange for-
mat) are older file formats that are less commonly used in
microscopy image analysis today but may still be encountered
in some contexts. An example for a popular proprietary file for-
mat is the CZI file format, used by Zeiss microscopes, which is
becoming increasingly popular in microscopy image analysis.
The CZI format can store multiple images, metadata, and
annotations in a single file, making it useful for storing large
amounts of microscopy data (57). In addition, the CZI format
can store multichannel images, time-lapse sequences, and 3D
stacks, which is useful for a variety of applications. However,
since the CZI format is proprietary, it may pose challenges in
data sharing and interoperability with other software packages
that do not support this format. Interoperability is key for con-
ducting high-quality research, as other laboratories and
research groups should be able to seamlessly integrate new
insights into their own work and comprehend the steps
described in each study. Another important file format, espe-
cially in the clinical setting, is the DICOM (digital imaging
and communications in medicine) file format, which is the
standard format used in medical imaging, including micro-
scopy imaging. DICOM files can store a variety of image types
and metadata, such as patient information, imaging parame-
ters, and image processing history. DICOM files are widely
used in medical settings due to their compatibility with various
imaging modalities and equipment, as well as their support for
interoperability between different healthcare systems (56),
However, the DICOM format can be more complex and less
flexible than other image file formats and may require special-
ized software for analysis and visualization.

Micrograph images can differ greatly in size depending on
the microscopy technique used, the imaging parameters, and
the resolution required. For instance, a typical light micro-
scopy image of a single cell can range from a few hundred kilo-
bytes to several gigabytes in size. Similarly, electron
microscopy images of cellular organelles or tissues can range
in size from a few hundred kilobytes to several gigabytes. Par-
ticularly, when dealing with whole slide images in a high
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resolution, the size can grow quickly and this can pose chal-
lenges for image viewers in terms of storage, retrieval, and
visualization.

To deal with large image sizes, image viewers can use vari-
ous techniques. One common technique is image compres-
sion, which reduces the size of the image file by removing
redundant or irrelevant data. Lossless compression methods
can be used to compress image files without losing any infor-
mation, while lossy compression methods such as JPEG can be
used to reduce file size at the cost of some loss of image
quality (58).

Another approach is to use image viewers that can handle
large image sizes, such as specialized software packages like
Fiji/ImageJ or Orbit, which have been specifically designed for
this. These software packages can handle large image sizes by
loading only a portion of the image into memory at a time,
which allows users to navigate and visualize large datasets
efficiently.

Lastly, cloud-based image viewers or image hosting services
such as OMERO or Cytomine can also be used to store and
share large microscopy datasets with collaborators across dif-
ferent locations. These platforms provide web-based interfaces
that allow users to view, annotate, and share microscopy data
without the need for large file transfers (59).

Deep learning for micrograph analysis
There are special networks adapted for micrograph image anal-
ysis that have gained momentum over the last years, with
research labs around the globe exploring new ways of develop-
ing and testing different network configuration, setups, and
integration into existing software to produce more reliable and
usable deep learning models. One notable contribution of the
open-source researcher community to these efforts has been
the creation of ZeroCostDL4Mic (60). This platform aims to
simplify the process of using these sophisticated networks and
apply them to actual research problems by providing access to
pretrained models, which are already embedded in the appro-
priate setup to be used out-of-the-box without excessive need
for configuration. If researchers want to train their own models
using the published architecture of the model instead of using
the pretrained weights, there is also the possibility of connect-
ing their local dataset to the environment to train the model
for themselves. In most cases, a GoogleColab (61) environ-
ment is utilized to provide quick access for researchers to test
out the networks and evaluate them for their specific needs.

This helps translating the research on deep learning archi-
tectures into the field of their actual implementation in micro-
graph analysis. They also provide tutorials and references to
the papers where the networks have been published for the
first time.

As for the different networks, there have been numerous
different approaches to the already mentioned problems of
segmentation and classification, but also for further tasks such
as denoising, that is artificially increasing the resolution of
images and translating image types into each other (62) (e.g.
brightfield to IHC). A very practical overview can be found in
the work of Xing et al (63), which gives an overview about the
different tasks that have already been solved using deep learn-

ing networks, which networks the teams used, and what the
advantages and disadvantages of each study were. Most
research conducted with neural networks for image analysis is
based on the same network architectures discussed above.
Therefore, one of the main tasks to build a deep learning
framework fitting the specific needs of research laboratories is
to identify the correct model for the problem at hand. To pro-
vide a useful overview on how to apply different networks to
different problems, we have summarized some of the most
important networks and their use cases in Table 2.

The StarDist network has proven to be a highly accurate
and reliable network choice for segmentation tasks at the cellu-
lar level (11). StarDist is a deep learning method that uses a
CNN for the detection and segmentation of cells in micro-
scopy images. The network is based on the concept of star-
convex polygons, which are a generalization of star-convex
shapes. During inference, the network predicts a set of star-
convex polygons that fit the cells in the image. The star-
convex polygons are defined as the intersection of multiple
disks and are chosen to provide a good tradeoff between fitting
the cell shape and being computationally efficient. StarDist is
also available as an open-source software package, making it
readily accessible to researchers and practitioners in the field
(https://github.com/stardist/stardist).

Another very popular choice of network is Cellpose, which
has been trained on a large training dataset of cells of varying
size and shape (64). Cellpose is based on a combined
approach that uses simulated diffusion to produce topological
maps of the cells and a U-Net to predict gradients along these
maps. By following the gradients, which converge to the same
center, single cells can be tracked. This unique approach signif-
icantly increases the accuracy of segmentation in comparison
to a plain U-Net, probably due to the complex nature of seg-
menting cells with different shapes and sizes.

Other open-source models specifically designed for micro-
scopy image analysis and approaches to address the challenge
of differentiation objects of such varying shape as cells and
subcellular structures are listed in Table 4.

P R A C T I C A L O P E N - S O U R C E S O F T W A R E
S O L U T I O N S F O R R E S E A R C H E R S

With an ever-increasing amount of data, the need for conven-
ient, reliable, and efficient data analysis software is greater than
ever. Open-source software is an important component of this
effort as it provides a way to share and collaborate on software.
It allows researchers from different institutions around the
world to integrate seamlessly, add to existing solutions, and
learn from and share their software with the community (65).
The availability of open-source software helps to keep data
analysis costs low and accelerate the development process in
institutions in developing countries. There are already several
well-validated and sophisticated open-source image analysis
applications that specialize in providing tools for scientific
imaging. We present an overview of those solutions as well as
a short comparison between them in Table 3. Moreover,
recent advances in code-free machine learning systems enable
researchers with no or little coding knowledge background to
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leverage machine learning resources with so-called “code-free”
machine learning platforms (27). While these will help with
widespread adoption, a thorough understanding of the under-
lying algorithms and background is recommended to ensure
the use of these algorithms to their full potential. The section
below will give an overview of the most commonly used tools
for implementing machine learning approaches into the work-
flow of digital histopathology analysis. It is notable that there
are many more efficient and highly developed commercial soft-
ware solutions that provide functionalities for the analysis of
micrograph images. An overview of the most commonly used

Open-Source Viewers, meaning that the source code is open
to the public and freely available, follows.

QuPath
QuPath is an open-source, multiplatform, software for image
processing and analysis designed for scientists to analyze and
annotate large volumes of histopathological image data (66). It
is based on Java and runs on Windows-, macOS-, and Linux-
based systems. Its main advantages are its ease of use software
as it comes with a comprehensive and intuitive graphical user
interface. It offers an integrated, powerful application

Table 2. Overview of the most commonly used, open-source deep learning models designed for the task of microscopy image analysis

Project Reference Model architecture Use cases Advantages Open-source code

U-Net (76) U-Net Segmentation of vari-
ous structures, very
adaptive

• Basis for most modern
neural networks in image
analysis

• High customizability

Various

StarDist (11) Modified U-Net þ pol-
ygonal representation
of objects

2D and 3D object
detection and seg-
mentation, designed
for complex shapes.

• Polygonal representation
of objects, high accuracy
at complex shapes

• Works well on crowded
images

• Fast and accurate
segmentation

https://github.com/
stardist/stardist

Cellpose (60) Modified U-Net þ
vector representation
of objects

2D and 3D object
detection and seg-
mentation, continu-
ously improved by
the community
training

• Generalizable to various
cell types

• Size-independent cell
segmentation

• Robustness to image
noise and variations in
intensity

• Growing community,
continuously improved

https://github.com/
MouseLand/cellpose

SplineDist (77) Modified U-Net
(extended StarDist)

Extension of the
StarDist network,
segmentation of
objects with more
complex shapes and
curves

• Spline-based representa-
tion of objects, allows for
more complex shapes
being accurately
delineated

• Captures objects with
higher degree of variabil-
ity in shape

• Can handle overlapping
and touching objects

https://github.com/uhl-
manngroup/splinedist

EmbedSeg (78) ERFNet (convolutional
network with residual
connections)

Instance segmentation
of cells and nuclei in
microscopy

• Embedding-based seg-
mentation approach

• Robust to object occlu-
sion and overlap

• Small memory footprint
enables researchers to
run on less specific soft-
ware (e.g. laptops)

https://github.com/
juglab/EmbedSeg

CellSeg (79) R-CNN (region based
convolutional
network)

Segmentation on
highly multiplexed
fluorescence images

• Very detailed tutorials
• Easy to use, out-of-the-

box segmentation
• Fast integration with

other programming work-
flows due to low-code
implementation

https://github.com/
michaellee1/CellSeg

Every model can be used for the task it was originally trained for or retrained from scratch, given enough training data is present. All of the listed models are freely and publicly
available, some are even provided with hands on tutorials to help new researchers get started using them. While this list is not exhaustive, the authors would recommend to start
out with one of the models listed above, due to their ease of use and already proven accuracy at the task of micrograph analysis.

604 � Journal of Neuropathology & Experimental Neurology, 2023, Vol. 82, No. 7

https://github.com/stardist/stardist
https://github.com/stardist/stardist
https://github.com/MouseLand/cellpose
https://github.com/MouseLand/cellpose
https://github.com/uhlmanngroup/splinedist
https://github.com/uhlmanngroup/splinedist
https://github.com/juglab/EmbedSeg
https://github.com/juglab/EmbedSeg
https://github.com/michaellee1/CellSeg
https://github.com/michaellee1/CellSeg


programming interface for custom algorithms to develop
problem-specific workflows inside the application. Experienced
users can write their own scripts in the scripting language
“groovy” to automate workflow inside the software. It comes
with a large number of preinstalled algorithms and support for
popular machine learning frameworks, most notably OpenCV,
which is one of the most popular computer vision libraries cur-
rently available (67). The ready-to-use implementation makes

it easy to try out different algorithms for the same problem;
however, it limits the possibilities for researchers to implement
other frameworks and algorithm into QuPath when compared
to Fiji.

ImageJ2/Fiji
ImageJ2 is a medical computing software designed to analyze
images and the rewrite of the original ImageJ software,

Table 3. Comparison table between advantages, disadvantages, and the used programming language for development of different open-
source microscopy viewers, namely QuPath, orbit, ImageJ/Fiji, and napari

Viewer Advantages Disadvantages Language Operating system WSI support

QuPath Good user interface
Easy learning curve
Many machine learning

tools already integrated
Native support for WSI

Limited number of
plugins

Little support for
major deep-learn-
ing libraries

Java macOS, Windows,
Linux

Yes

ImageJ/Fiji Good community with
quick support

High number of plugins
Already in use by many

research labs

Steep learning curve
Rather technical

setup
Different plugins are

required for many
processing steps

Java macOS, Windows,
Linux

Plugin required

Orbit Integration with many
server architectures

Specifically designed for
WSI

Many machine learning
tools already integrated

Limited number of
plugins

Smaller community
than alternatives

Java macOS, Windows,
Linux

Yes

napari Good user interface
Integration with all scien-

tific Python frameworks
and libraries

Easy to develop own
workflows

Very young project
Smaller community,

although growing
Still under active

development for
the first stable
release

Python macOS, Windows,
Linux

Plugin required

BioImageXD Many native functions for
common image process-
ing steps implemented
from well validated
frameworks

Less community sup-
port than other
viewers

Less intuitive user
interface

Python, Cþþ macOS, Windows,
Linux

Yes

Cytomine Web-based, zero footprint
viewer

Very intuitive user
interface

Good for teaching and
interaction

Only web-based
client

Data has to be
uploaded which
could lead to pri-
vacy issues

Java Web based Yes

Icy Many advanced computer
vision functionalities

Graphical workflow design
editor

Great visualization
capabilities

Little native machine
learning support

Designed for
researchers with
some programming
knowledge

Java MacOS, Windows,
Linux

Yes

Cellprofiler Easy to create whole proc-
essing pipelines

Automatic processing of
large number of images

Interation with Cell pro-
filer Analysis for data
analysis

Slow at large image
files

Limited
customizability

Python macOS, Windows No

This list is not exhaustive but provides an overview about the different arguments a research department might consider when choosing a software for building image analysis
workflows. Different requirements have different solutions, where each of the viewer software solutions was built with different intentions.
WSI, whole slide image.
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optimized for dealing with multidimensional image data to
focus on scientific imaging (68). Fiji, which stands for “Fiji is
just ImageJ” is a distribution of ImageJ2 that already bundles a
lot of the most used plugins developed for ImageJ into a single
installment. It is used in many areas of medicine including bio-
medical imaging, pathology, molecular biology, neuroscience,
and dentistry and is accessible to users of all levels of expertise.
The software is available for all operating systems and can inte-
grate with a variety of other tools and viewers. In September
2015, the ImageJ website reported that the software was down-
loaded over 1 000 000 times, with more than 30 000 registered
users contributing to the community. Its widespread adoption
in the medical community has led to an extensive network of
developers that create and maintain ready-to-use plugins for
various tasks such as segmentation, classification, and feature
extraction. Thanks to the numerous contributions of its large
community and the active development, Fiji offers custom sol-
utions to nearly every common task in medical imaging and
many specialized problems as indicated by its over 2000 plu-
gins available on its update site.

Orbit
Orbit is another open-source whole slide image analysis tool
written in Java (69). It was designed to be used with a tight
integration with existing solutions in mind. One outstanding
feature is therefore the possibility to connect to existing image
servers like the OMERO server architecture (60). This can
shorten the time it takes for new researchers to get started
with analyzing their images by reducing the setup time and
specific knowledge to set up data directories. Orbit can con-
nect to local servers or cloud clusters and is able to connect
with ImageJ to use the wider plugin options. Orbit was
designed to handle whole-slide scans that are challenging to

analyze due to their oftentimes very large size. Similar to
QuPath, experienced users can create their own scripts in the
scripting language “groovy.”

napari
napari is the newest software of the image viewer applications
having been released in 2020 as an alpha-build (70). It is still
under heavy development but has attracted many researchers
due to its native integration with the scientific programming
stack of the Python programming language. This image viewer
is completely written in Python, which established itself as the
main programming language of the scientific community in
recent years. This tight integration with the Python program-
ming framework and its associated scientific libraries results in
a modular platform that can be easily extended and modified,
provided that some knowledge of the Python programming
language is present. The napari image viewer can also be
directly started from Jupyter notebooks, which are a document
format specifically developed for researchers of all fields to
publish their code and results in a readable and executable for-
mat (71). napari aims to integrate seamlessly with the current
landscape of research using Python frameworks and libraries.
Currently, however, there are multiple features still missing
that are available by other software solutions, such as easy
intuitive ways to process multiple images at once or design
workflows without programming knowledge.

BioImageXD
BioImageXD is an open-source bioimage informatics platform
that provides a range of advanced image processing functional-
ities for 3D and 4D microscopy data (72). One of the
strengths of BioImageXD is its ability to implement other
well-established frameworks such as VTK (the visualization

Table 4. Examples of different applications of machine learning applications for different fields of neuropathological challenges

Name of study Reference Model Outcome Relevant field

3D segmentation of glial cells
using fully convolutional net-
works and k-terminal cut

(37) CNN High accuracy (F1 0.89) in 3D
segmentation of glial cells

Neuropathology, basic
research

Code-free machine learning for
classification of central nervous
system histopathology images

(80) CNN High precision in detecting vari-
ous brain tumor entities (e.g.
glioma, subtypes of glioma,
metastasis)

Neuropathology,
neurooncology

Deep neural networks segment
neuronal membranes in elec-
tron microscopy images

(38) CNN Superhuman pixel error rate (60
� 10�3) on segmenting neuro-
nal membranes for studying
connectomes

Basic research

Artificial intelligence in neuropa-
thology: deep learning-based
assessment of tauopathy

(81) CNN High accuracy in detecting neuro-
fibrillary tangles for diagnosis of
tauopathies

Neuropathology,
neurodegeneration

Automated brain histology classi-
fication using machine learning

(82) CNN Low- versus high-grade glioma
classification of brain histology
slides

Neuropathology,
neurooncology

Near real-time intraoperative
brain tumor diagnosis using
stimulated Raman histology
and deep neural networks

(83) CNN Intraoperative diagnosis of brain
tumors from hematoxylin and
eosin-stained (H&E)
specimens

Neurooncology, neuro-
surgery,
neuropathology

The papers listed here show some of the diverse use cases of neural networks in supporting researchers and pathologists in their work and research projects.
CNN, convolutional neural network.
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toolkit) and ITK (the insight toolkit), which further extend its
capabilities in image processing and analysis. This makes it
possible to utilize various algorithms and methods for filtering,
segmentation, registration, and visualization, which are useful
for various microscopy applications.

In addition to the implementation of other frameworks,
BioImageXD has a large selection of native image processing
functionalities that are designed to enable efficient and effec-
tive processing of 3D and 4D microscopy data. These include
the ability to perform complex segmentation tasks, 3D render-
ing and animation, and tracking of cells in time-lapse images,
among others. BioImageXD also offers the ability to combine
different processing methods and workflows to create custom-
ized image analysis pipelines, which can be used to perform
sophisticated analysis on complex microscopy data.

However, 1 potential disadvantage of BioImageXD is that
its user interface may be less intuitive compared to other soft-
ware packages, which can make it more challenging for some
users to navigate and use effectively. This may also be one of
the reasons why the community support around BioImageXD
is significantly less pronounced than for most of the other
image viewers. For this reason, it may require a learning curve
for some researchers to fully utilize its capabilities. Even
though it provides many functions without the need for pro-
gramming skills, the lack of good tutorials and learning materi-
als can pose an obstacle to implementing this software
solution into the workflow of laboratories.

Cytomine
Cytomine is an open-source software package designed for col-
laborative analysis and management of large-scale microscopy
imaging data. Cytomine provides a web-based interface that
allows users to access and manage microscopy data, as well as
collaborate with other researchers in the analysis and annota-
tion of the data. One of the key strengths of Cytomine is its
ability to handle large datasets because it uses a distributed
architecture that can scale to thousands of images and tera-
bytes of data. This also solves the problems of having less com-
putationally capable hardware available because the main setup
and configuration as well as storage and computation are all
handled in the cloud. Additionally, Cytomine provides a vari-
ety of image analysis tools, including segmentation, classifica-
tion, and annotation, which can be used to perform detailed
and accurate analysis of microscopy data.

Another advantage of Cytomine is the support of a wide
range of image formats, including proprietary formats from
various microscopy equipment manufacturers, which can facili-
tate data sharing and interoperability.

However, 1 potential disadvantage of Cytomine is that the
client is solely web based. This necessitates uploading the data
to the Cytomine cloud. Even though Cytomine was designed
with data security and privacy in mind, this may pose a chal-
lenge for many laboratories. Some researchers may be subject
to data protection regulations that require them to store and
process their data within certain jurisdictions, which may limit
their ability to use cloud-based software that operates outside
those jurisdictions. As such, researchers should carefully con-
sider their data protection obligations and seek legal advice, if

necessary, before using cloud-based software for microscopy
image analysis. Nonetheless, Cytomine is a powerful tool for
collaborative analysis and management of large microscopy
imaging data, particularly for those who require machine learn-
ing and deep learning capabilities.

Icy
Icy is an open-source software package designed for bioimag-
ing, including microscopy image analysis (73). One advantage
of Icy is its user-friendly interface that provides easy access to
a wide range of analysis tools and plugins. Icy also supports a
variety of microscopy image data types, including multidimen-
sional time-lapse images, 3D stacks, and high-content screen-
ing data. Moreover, Icy provides a flexible and modular
architecture that enables users to develop and integrate their
own plugins and algorithms into the software.

One disadvantage of Icy is that it can be slow and memory
intensive when working with large datasets, which may limit its
scalability. Additionally, while Icy provides a wide range of
analysis tools, some users may require additional plugins or
algorithms that are not readily available in the software. More-
over, while user friendly, Icy may lack some of the advanced
features and customizability that are available as plugins of
other software packages such as ImageJ/Fiji due to the compa-
ratively smaller plugin offer.

CellProfiler/cell profiler analyst
CellProfiler is an open-source software package designed spe-
cifically for high-throughput microscopy image analysis (74).
CellProfiler also includes a wide range of prebuilt image analy-
sis modules and algorithms, as well as the ability to create cus-
tomized workflows for specific analysis tasks. Moreover,
CellProfiler has a user-friendly interface that makes it accessi-
ble to researchers with varying levels of programming exper-
tise. CellProfiler allows users to create a pipeline of analysis
modules to be applied to multiple images in a batch-
processing mode, thereby allowing for efficient processing of
large datasets.

This batch-processing mode is particularly useful for high-
throughput microscopy applications where thousands or even
millions of images need to be analyzed. The predefined work-
flow also enables users to apply standardized and reproducible
analysis methods, reducing variability in the results and facili-
tating comparison between different datasets.

Once the images have been processed using CellProfiler,
the CellProfiler Analyst software provides a unique way to
quickly analyze and visualize the results obtained by the image
analysis workflow. This tight integration can be used to per-
form data analysis, including visualization, statistical analysis,
and machine learning in 1 step, further simplifying the process
of analyzing large datasets and extracting useful features. The
Analyst software is a user-friendly interface for exploring and
visualizing large datasets and for identifying correlations and
trends within the data.

The ability to automate image analysis and data extraction
with CellProfiler and subsequently analyze the data using Cell-
Profiler Analyst is a unique and powerful feature that makes it
possible to perform sophisticated image and data analyses on
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large datasets in a standardized and reproducible manner. This
is particularly important for high-throughput microscopy appli-
cations, where the volume and complexity of the data can
make manual analysis impractical or error prone.

A disadvantage of CellProfiler is that it can be computation-
ally intensive, requiring high processing power and storage
capacity to handle large datasets. Additionally, the learning
curve for CellProfiler can be steep, particularly for researchers
without prior programming experience, even though the soft-
ware provides a way to create workflows completely from a
graphical interface without the need to write any code. How-
ever, there is no native support for whole slide images. To use
whole slide images, the extension of CellProfiler with other
image viewer software solutions like QuPath is necessary.

The Python programming framework (including the most
used libraries)

Python is an object-oriented, open-source programming lan-
guage that was designed to be both readable and easy to learn
(Python Software Foundation. Python Language Reference,
version 3.10.7. Available at http://www.python.org). Python is
suited to rapid application development, with clear syntax and
an extensive standard library. As of 2022, it is the most widely
used programming language on GitHub, the largest developer
platform to date. It also includes several standard modules that
allow for the processing of scientific data, such as NumPy,
SciPy, and matplotlib (often referred to as the SciPy stack,
short for scientific Python). Used together, Python and SciPy
provide some of the most powerful tools to analyze complex
datasets and create statistical and machine learning models
and visualizations. Due to the above-mentioned features, the
Python programming framework has seen a rise in adaption
among the research community in the recent decade. Its intui-
tive syntax allows for a fast adaption and easy learning curve,
which enables researchers with little to no programming back-
ground to still develop data analysis and visualization work-
flows within a reasonable amount of time. Its popularity as a
beginner-friendly language has also resulted in an extensive
and growing set of openly available tutorial for various recur-
ring tasks, ranging from computer vision and visualizations to
natural language processing and workflow optimization. The
importance of Python as the main development language for
machine learning and artificial intelligence applications is
visualized by the fact that the 2 most widely used frameworks
for deep learning applications, namely TensorFlow (75) Goo-
gle and PyTorch by Meta (76), are both primarily aimed
toward Python developers. There are also dedicated frame-
works and libraries for image processing tasks in the Python
programming language, such as scikit-Image (77) and, more
recently, the deep learning PyTorch-based Medical Open Net-
work for Artificial Intelligence (MONAI) framework which is
actively developed by many research institutions and commer-
cial companies like NVIDIA (78).

Conclusion
Machine learning algorithms can have a positive impact on the
research workflows of neuroscience labs dealing with micro-
graph images. They can be used to automatically segment and

classify images and extract quantitative information from them.
By automating tasks that were traditionally done manually,
they can help to increase reproducibility, objectivity, and effi-
ciency in the research group. While many network architec-
tures are actively developed and improved, the most used and
best-tested implementations can be accessed easily by their
integration into modern open-source microscopy viewers.
When choosing a research framework for the image analysis
workflow, care must be taken to choose the right tools and
networks for the challenge at hand. While more mature solu-
tions have a larger community and plugin collection, newer
viewers can provide possibilities for researchers to integrate
the latest implementations of machine learning models and
algorithms into their work. Using machine learning in neuro-
science research does require a basic understanding of the
underlying concepts to be able to identify possible shortcom-
ings and challenges and choose the right algorithms. Doing so
can improve the quality of research and offer new ways to
gather insights into the data.
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