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ABSTRACT

Objective: To retrieve and appraise studies of deployed artificial intelligence (AI)-based sepsis prediction

algorithms using systematic methods, identify implementation barriers, enablers, and key decisions and then

map these to a novel end-to-end clinical AI implementation framework.

Materials and Methods: Systematically review studies of clinically applied AI-based sepsis prediction algorithms

in regard to methodological quality, deployment and evaluation methods, and outcomes. Identify contextual fac-

tors that influence implementation and map these factors to the SALIENT implementation framework.

Results: The review identified 30 articles of algorithms applied in adult hospital settings, with 5 studies

reporting significantly decreased mortality post-implementation. Eight groups of algorithms were identified,

each sharing a common algorithm. We identified 14 barriers, 26 enablers, and 22 decision points which were

able to be mapped to the 5 stages of the SALIENT implementation framework.

Discussion: Empirical studies of deployed sepsis prediction algorithms demonstrate their potential for improv-

ing care and reducing mortality but reveal persisting gaps in existing implementation guidance. In the exam-

ined publications, key decision points reflecting real-word implementation experience could be mapped to the

SALIENT framework and, as these decision points appear to be AI-task agnostic, this framework may also be

applicable to non-sepsis algorithms. The mapping clarified where and when barriers, enablers, and key deci-

sions arise within the end-to-end AI implementation process.

Conclusions: A systematic review of real-world implementation studies of sepsis prediction algorithms was

used to validate an end-to-end staged implementation framework that has the ability to account for key factors

that warrant attention in ensuring successful deployment, and which extends on previous AI implementation

frameworks.
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INTRODUCTION

Sepsis accounts for nearly 20% of deaths worldwide, killing over 11

million people in 2017.1 Sepsis has been defined as a “life-threaten-

ing organ dysfunction caused by a dysregulated host response to

infection”.2,3 Early recognition and treatment of sepsis can reduce

mortality, and rule-based surveillance systems for detecting sepsis in

hospital settings can improve outcomes.4,5

More recently, sepsis prediction algorithms employing artificial

intelligence (AI),6–8 herein called machine learning algorithms

(MLAs), that can detect evolving sepsis in patients earlier than

rule-based methods, have proliferated.9,10 Most MLA studies assess

performance based on static training and testing data collected ret-

rospectively and analyzed in silico,11 whereas healthcare providers

seek to implement MLAs in dynamic, complex real-world clinical

settings using live or near-live data.

Theoretical MLA implementation frameworks12–16 have

attempted to identify key stages, tasks and contextual factors that

warrant consideration, but practical translation into end-to-end

MLA implementation in clinical practice is uncertain. While system-

atic reviews have evaluated pre-implementation studies of sepsis

MLAs,6–8,11,17 including interviews generating implementation

methods,18 none have focused on MLAs actually implemented. Indi-

vidual studies of deployed MLAs have revealed barriers and enablers

that implementation frameworks must incorporate if they are to

fully inform successful end-to-end MLA implementation.18–20

In this article, we identified and appraised studies of clinically

applied sepsis MLAs using systematic methods and then map the

serial steps in deployment described in these studies to a recently

derived AI implementation framework, called SALIENT (reported

in a companion paper21 and described in brief below). The mapping

sought to clarify where and when barriers, enablers, and key deci-

sions arise within the end-to-end AI implementation process and to

validate SALIENT’s capability to guide stakeholders involved in

end-to-end MLA implementation.

Background
The process by which AI interventions are evaluated at any given

stage in the implementation cycle is maturing. The recently reported

Decide-AI research reporting guidelines depict key stages of algo-

rithm development, evaluation, and implementation,22 (Figure 1)

which, in the companion paper to this work,21 were mapped to

Stead et al’s multi-stage approach to translating medical informatics

interventions from the lab to the field.12 This mapping was used to

derive an end-to-end AI implementation framework, called SALI-

ENT (Figure 3 and fully described elsewhere21), which accounted

for factors found to be missing in many implementation frameworks

when subjected to the Stead et al’s taxonomy,12,13,16,23,24 that is,

components, both technical and clinical, that need to be developed,

evaluated, and integrated over several stages.

The resulting SALIENT stages and associated reporting guide-

lines are: (I) Definition; (II) Retrospective study—TRIPOD(-AI)25,26;

(III) Silent trial—TRIPOD(-AI)25,26; (IV) Pilot trial—Decide-AI22;

and (V) Large trial/roll-out—CONSORT(-AI).27 The SALIENT

framework integrates all elements of the reporting standards, and,

compared to prior frameworks, renders all components of the end-

to-end solution, how and when they integrate, and underlying

implementation tasks (not shown here) fully visible. However, simi-

lar to most prior frameworks, SALIENT has not been validated in

its ability to accommodate reported real-world AI implementation

stages, barriers, enablers, and decisions.

OBJECTIVE

This study had 2 objectives: (1) conduct a systematic review of real-

world implementation studies of sepsis MLAs in clinical practice

and extract information into how MLA performance, adoption, and

different implementation modes were assessed and impacted clinical

care processes and patient outcomes; and (2) map the findings

regarding barriers, enablers, and key decision points to the different

stages and components of the SALIENT AI implementation frame-

work to assess its potential utility for guiding real-world MLA

implementation.

MATERIALS AND METHODS

Systematic review of sepsis MLA implementation

studies
Search strategy

The systematic review was performed according to PRISMA guide-

lines.28 Five databases (Pubmed/Medline, EMBASE, Scopus, Web of

Science, and clinicaltrials.gov.) were searched between January 1,

2012 and June 23, 2022 for titles and abstracts published in English

using keywords and synonyms for: (1) predict; AND (2) sepsis;

AND (3) machine learning; AND (4) trial; and NOT (5) child (see

Supplementary Appendix SA for complete search queries).

A forwards and backwards citation search (snowballing strategy)

was then applied to included papers to identify additional articles

that reported new MLAs, or, provided further information about a

sepsis MLA described in previously included papers. The latter were

labeled linked papers, describing MLAs at different stages of imple-

mentation, but not considered primary articles.

Study selection

Studies of any design were included if: MLAs were applied to adult

patients in hospital settings in whom sepsis was formally defined;

used live or near-live data; and reported at least one or more algo-

rithm performance metrics (full details in Supplementary Appendix

SB). Covidence software29 supported a 2-stage screening process

with screening of articles by 2 independent reviewers (AHvdV and

RJS), with conflicts agreed by 3-way consensus (AHvdV, RJS,

and KD); and full-text review by 2 independent reviewers (AHvdV

and KD), with selection agreed by 3-way consensus (AHvdV,

RJS, and KD). Snowballing was then applied to all included papers

and any new or linked papers were identified by AHvdV and veri-

fied by KD.

Data extraction

Data were extracted independently by 2 authors (AHvdV and KD)

using Excel templates, with disagreements resolved by consensus of

2 other authors (RJS and IAS). Extracted data included study meta-

data, implementation stage, care setting, MLA details including

training and validation datasets, performance metrics, outcome defi-

nitions and events, and implementation barriers, enablers, and deci-

sion points (see Supplementary Appendix SC for more details).

Decision points were identified when 2 or more studies chose differ-

ent options at a certain point in implementation. Barriers were

defined as pitfalls or problems hindering implementation success

and enablers as tips or activities aiding implementation success.

Consensus between authors (AHvdV, PL, and IAS) determined

which decisions, enablers and barriers to include as found and which

to consolidate under a common title to minimize overlap.
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Quality assessment

Papers reporting all-cause or sepsis-related mortality underwent risk

of bias (RoB) assessment, performed independently by 2 authors

(AHvdV and VRK), using either the ROBINS-I tool30 for non-

randomized studies, or the Cochrane RoB 2 tool31 for randomized

trials. Mortality was chosen for RoB assessment as it was the most

frequently reported and patient-critical measure.

Application of AI implementation framework
The systematic review findings for barriers, enablers, and decision

points were mapped by AHvdV to the stages and elements of the

SALIENT implementation framework, followed by a review by IAS

and adjustments made where discrepancies were found. An item

could be mapped to more than one element and where no obvious

element was found to map to, it was recorded.

RESULTS

Systematic review of sepsis MLA implementation

studies
From 3133 retrieved abstracts, 1126 duplicates were removed, leav-

ing 2007 for screening, from which 12 full-text studies were

included for analysis (Figure 1). Most excluded studies were not sep-

sis prediction studies, or were rule-based rather than AI-based algo-

rithms or were not implemented. An additional 7 articles found by

snowballing were selected, yielding a 19 included papers as primary

articles, with further snowballing yielding 11 linked papers, giving a

total of 30 articles.32–61

Study characteristics

All 30 studies were published between 2015 and 2022, with 8 algo-

rithm groups (A to H) identified according to the common or named

MLA that was the focus of study (Table 1); all were US-based except

for Group (C), which was Brazilian. Five groups (A, B, E, F, H)

implemented MLAs with a quantitative evaluation (before-

after,33,50,59–61 randomized controlled trial,58 2-armed cohort

study,46 prospective observational,33,44,48,53 retrospective observa-

tional34). Two other groups (C, D) provided case studies35,41,43 or

qualitative evaluations42 and one group (G) reported only post-

implementation analyses (retrospective51 or difference-in-differ-

ence52). Groups (B, E) conducted the only multicenter trials with

outcomes of more than 10 000 sepsis episodes.46,61 Median trial

length was 14 months (range 2–79) and median time between pub-

lishing a retrospective study on MLA development and an imple-

mentation study was 3 years (range 1–7).

Two studies were confined to emergency department set-

tings,32,53 6 involved only intensive care unit (ICU) patients,45,49,55–

58 and the remainder involved all wards or non-ICU settings. The

prevalence of sepsis varied from as low as 2.1%47 to as high as

22.7% in non-ICU settings,61 and from 11.3%57 to 32.8%58 in ICU

settings.

Figure 1. Flowchart for study selection.
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Most studies reported MLA evaluations at stage II (retrospec-

tive),32,33,36,38–40,45,48,49,55–57 2 at stage III (silent trial),33,41 4 at

stage IV (pilot trial),50,58–60 3 at stage V (large trial/roll-out),33,46,61

and 11 reported post-deployment evaluations.35,37,42–44,47,48,51–53,62

Quality assessment

Eight papers from 5 groups (A, B, E, F, G) were assessed for risk-of-

bias (RoB) (see Supplementary Appendix SD). Overall, RoB was

serious for 2 groups (A, F), moderate for 2 (E, G) and moderate to

critical for one (B). Major sources of bias were potential confound-

ing from additional sepsis control co-interventions, such as staff

training in sepsis recognition and management, and other changes in

non-sepsis conditions and patient characteristics potentially impact-

ing all-cause mortality at the trial sites. Only 2 trials controlled for

these differences in before-after cohorts.46,52

Implementation evaluation

Eighty-five distinct metrics were identified across 26 (87%) papers,

grouped into 5 evaluation categories: (1) algorithm performance; (2)

algorithm adoption; (3) clinical process effects; (4) patient outcome

effects; and (5) financial impact. All metrics reported are listed in

Supplementary Appendix SE.

Algorithm performance and adoption. Of 27 performance metrics,

sensitivity and positive predictive value were most commonly

reported (7 groups, 18 and 9 papers, respectively), closely followed

by area under the receiver operating curve (AUROC) and specificity

(6 groups, 17 and 13 papers). Most (66%) post-implementation

studies did not report real-world MLA performance (Figure 2), and

of the 3 that did, one reported improved MLA performance58 while

the other 2 showed marked declines,34,50 and similarly for the exter-

nal validation study of the EPIC tool (Group G).51

Table 1. Listing of studies identified in systematic review, grouped by MLA

Group Reference SALIENT

stagea

Study

design

(# sites)

Study period Care

location

Outcomeb

count

(prevalence)

A (EWS 2.0) Taylor et al., 201632 II R (3) ED 1056 (4.7)

University of Pennsylvania.

MLA ¼ random forest; 587 features

Giannini et al., 201933 II R (3) Non-ICU 347 (3.3)

III PO (2) Jan–Jun’16 Non-ICU 1540

V BA (2) Jul’16–Feb’17 Non-ICU 2137

Ginestra et al., 201944 Post PO (1) Nov–Dec’16 Non-ICU NA

B (Insight)

Dascena Inc and University of California.

MLA ¼ various, Inc. Gradient boosted

trees29 and logistic regression45,

6þ variables (laboratory results optional)

Calvert et al., 201655 II R (1) ICU 159 (11.4)

Calvert et al., 201656 II R (1) ICU 270 (0.9)

Desautels et al., 201657 II R (1) ICU 2577 (11.3)

Shimabukuro et al., 201758 IV RCT (1) Dec’17–Feb’18 ICU 22 (32.8)

McCoy et al., 201759 IV BA (1) Nov’16–May’17 ALL 921 (NR)

Calvert et al., 201748 Post NA NA NA

Mao et al., 201836 II R (1) Non-ICU 2142 (2.4)

Burdick et al., 201860 IV BA (1) Jul–Aug’17 EDþICU 1136 (NR)

Topiwala et al., 201934 V RO (1) Feb–Jun’18 ALL 269 (NR)

Burdick et al., 202061 V BA (9) 2017–mid‘18 Non-ICU 14 166 (22.7)

C (Robot Laura)

Brazil; MLA ¼ NR

Gonçalves et al., 202035 Post CS (1) Jan–Jun ‘18 NR NR

Scherer et al., 202237 Post RO (1) Mar–Sep ‘20 NR NR

D (Sepsis Watch)

Duke University.

MLA ¼ recurrent neural

network; 86 variables

Futoma et al., 201738 II R (1) ALL 10 552 (21.4)

Futoma et al., 201739 II R (11) ALL 10 552 (21.4)

Bedoya et al., 202040 II R (1) ALL 813 (18.9)

Sendak et al., 202041 III/V CS (3) Apr’16–Nov’18 ALL NA

Sandhu et al., 202042 Post Q (1) Jan–Apr’19 NA NA

Sendak et al., 202043 Post CS (1) NA NA

E (TREWScore)

Johns Hopkins University.

MLA ¼ Cox proportional hazard;

27 features

Henry et al., 201545 II R (1) ICU 2291 (14.1)

Adams et al., 202246 V 2xAC (5) Apr’18–Sep’20 Non-ICU 13 680 (2.3)

Henry et al., 202247 II R (5) Jan’16–Mar’18 Non-ICU 3858 (2.2)

Post PO (5) Apr’18–Mar’20 Non-ICU 9805 (2.1)

Henry et al., 202248 Post Q (1) Oct’18–Apr’19 ALL NA

F (Sepsis sniffer)

Mayo Clinic.

MLA ¼ decision Tree

Harrison et al., 201549 II R (1) ICU 86 (29)

Lipatov et al., 202250 IV BA (1) Sep’11–May’18 ED þ ICU 1096 (9.8)

G (ESM)

USA, independent. MLA ¼ Log. Reg.

Wong et al., 202151 Post R (1) Dec’18–Oct’19 Unclear 2552 (6.6)

Schootman et al., 202252 Post DiD (15) Jan’16–Jun’19 ALL 6926 (NR)

H USA, independent. MLA ¼ naı̈ve

Bayes; 5 features

Brown et al., 201653 II R (2) ED 549 (0.4)

Post PO (1) Apr’09–Jun’10 ED 352 (0.4)

Study Designs: R: Retrospective; RO: Retrospective Observational; PO: Prospective Observational; BA: Before-after study; 2xAC: Two-Arm Cohort; RCT:

randomized control trial; Q: qualitative study; CS: case study; DiD: difference-in-difference analysis.
aStages in the SALIENT framework: I ¼ problem definition; II ¼ retrospective development; III ¼Silent trial; IV ¼ Pilot trial; V ¼ Large trial/Roll-out; Post¼

Post deployment study.
bOutcome definitions are itemized in Supplementary Appendix SF, Table F2.

NA: not applicable; NR: not reported; ED: emergency department; ICU: intensive care unit; ALL: patients from all wards.
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MLA adoption, measured as the proportion of alerts clinicians

responded to, was only reported in Group (E) at 89%, Group (F) at

77%–84% and Group (C) at 100%.

Clinical impact. Of 36 distinct clinical process outcomes reported

across 9 papers in 5 groups, the most common were median lead

time to first antibiotic use (5 papers, 4 groups), the 3-h sepsis care

bundle compliance rate and the increases in antibiotic use (both 3

papers, 3 groups).

Ten different patient outcomes were reported, most commonly

mortality and length of hospital stay (LOS) (both 5 groups, 9

papers). All 9 papers34,44,46,50,52,58–61 reported decreased mortality,

be that all-cause, sepsis-related or both, although this was statisti-

cally significant only for 5 studies: Group (B), both all-cause58 and

sepsis-related,59–61 and Group (E), for sepsis-related only,46 both

involving a large samples of >13 500 septic patients. Only Group

(E) adjusted their findings for differences between cohorts in patient

characteristics. Only Group (B) performed more than one independ-

ent post-implementation mortality study, with all 5 studies showing

improved mortality,58–61 although Topiwala et al34 reported poor

post-implementation MLA performance and no significant improve-

ment in mortality.

Of the 2 groups reporting significantly improved sepsis-related

mortality, only Group (E) reported strong MLA adoption (89%)

and significant decreases in antibiotic lead time.46 Group (B)

reported no adoption data and only their smallest study reported

improvement in a single process outcome: lead time to antibiotic

use.58 Despite group (F) reporting high adoption rates (77% to

84%) and significantly improved rates of sepsis care bundle compli-

ance, post-implementation the MLA specificity dropped markedly,

from 96% to 80%, and there was no significant change in all-cause

mortality.50

Identification of implementation barriers, enablers, and

decision points and mapping to SALIENT AI

implementation framework
Barriers, enablers, and decision points provide real-world evidence

of factors that are reported by practitioners and can impact MLA

implementation success.

Barriers and enablers

We identified 14 unique barriers (Table 2) and 26 unique enablers

(Table 3) from a total of 70 mentions across all studies. The most

common barriers, identified by at least 3 groups, were lack of clini-

cian trust (B1), alert fatigue (B4) and dismissal of alerts, mainly

because clinicians perceived no clinical signs of deterioration (B3).

However, 8 barriers were unique to a single group (D), and despite

more enablers than barriers, just 2 groups (D, E) provided 80% of

the group-level enabler instances.41–43,48 The most commonly

reported enabler was frequent communications to raise awareness

of the MLA during and after clinical trials (E4), with clinician

involvement (E1), improvement cycles (E3), clinical champions (E5),

and test versions for training (E6) reported by more than 2 groups.

Overall, 90% of all barriers and enablers were AI task agnostic,

Figure 2. Evaluation results for algorithm performance, adoption, clinical process, and mortality improvement for each MLA group. Figure includes risk of bias

(RoB) assessment for studies reporting mortality assessment (M ¼ moderate [some concerns for RoB-2], S ¼ serious, C ¼ critical). Black numbered squares

denote the cited paper for that result. AUC: area under the receiver operating curve; Sens: sensitivity; Spec: specificity; PPV/NPV: positive/negative predictive

value. Solid shaded up arrow: significant improvement, whereas hollow up arrow: non-significant improvement.
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with just one barrier (B12) and 3 enablers (E2, E11, E26) specific to

sepsis prediction.

All barriers and enablers could be mapped to the SALIENT AI

implantation framework (see Figure 3). All barriers (n¼14) were

located between the silent trial stage (III) and the large trial or roll-

out stage (V). Most enablers and barriers were identified for the clin-

ical workflow solution component (n¼6 and n¼8, respectively in

stages IV and V) and the cross-stage element, ‘Implementation,

change management and adoption’ (n¼8 and n¼14, respectively).

No barriers were identified that related to the regulatory and legal

policy domain or the human computer interface solution compo-

nent, whereas enablers were identified in all solution components

and all cross-stage policy and organizational elements.

Decision points

Twenty-two decision points were identified in our review, with 17

identified by at least 2 groups; all were mapped to the SALIENT

implementation framework (Table 4) and depicted in Figure 3.

Definition decision points (D1-D4). The target population and care

locations were reported by 7 groups (D1); all included the ED, 5

added the ICU or general wards and 4 targeted all areas. No study

reported use of different algorithms for the ICU and non-ICU wards,

despite ICUs collecting more data elements at higher frequency.

Other decisions related to identifying all hospitalized patients with

sepsis, including at ED presentation, or only those acquiring it whilst

in hospital,38 and whether to identify only patients at higher risk of

mortality for prioritized clinical review, thus minimizing clinician

workload.46

Twenty-six different definitions of sepsis were used (see Supple-

mentary Appendix SF, Table F2), ranging from sepsis to severe sep-

sis to septic shock (D2). The prime purpose for implementing sepsis

MLAs varied which in turn determined how they were trained and

evaluated (D3),43 with evaluation metrics and success criteria vary-

ing depending on whether increasing sepsis care bundle compli-

ance,50 providing a sepsis detection and management system,41

reducing anti-microbial overuse52 or decreasing patient mortality

and LOS were primary objectives.34,46,58,59,61 The algorithm objec-

tive also determined the minimum expected performance for the

MLA (D4), in terms of sensitivity (proportion of septic cases

detected) and false alarms (proportion of non-septic cases misidenti-

fied as sepsis). Different thresholds were chosen according to the

anticipated impacts on clinical processes and clinician workload and

adoption.60,61

AI model decision points (D5–D8). We identified 1 statistical AI

model (E), 5 ML models (A, B, F, G, H), 1 deep learning (DL) model

(E), and 1 unknown (C), with no single model being utilized by

more than one group. Selection of model type (D5) varied according

Table 2. Implementation barriers

Barriers (stage) Component

or element

A B C D E F G H Total

B1 Lack of clinician trust (IVþ)18 ICA 2 1 1 1 5/4

B2 MLA retraining concerns: Feedback loops arise when alerts

lead to timely treatment. (IVþ)

AI 1 1/1

B3 Alerts dismissed for wrong reasons, for example, patients with

no sepsis symptoms or with higher acute complexity (IVþ)

CW 2 2 1 5/3

B4 Alert fatigue (IIþ)18 AI; CW; ICA 1 1 1 3/3

B5 Differential nurse/Doctor role, perceptions of role and value

(IVþ)18

CW; ICA 1 1 2/2

B6 Inherent limitations of EHR data, which can be plagued by

missingness, inaccuracies, and changes in practice patterns

over time (IIþ)

DP 1 1 2/2

B7 Data entry delays, leading to delayed predictions (IIIþ) DP 1 1/1

B8 Inventors/company equity owners may have COI and inadver-

tently act in bias ways towards the evaluation of their system

(IIIþ)

ET 1 1/1

B9 Surveillance bias: important to monitor impact of Alerts on

non-septic patients for over-prescription of antibiotics (IVþ)

ET; EM 1 1/1

B10 Substantial cost involved for infrastructure, implementation

personnel time and ongoing maintenance (All)18

ICA; GOV 1 1/1

B11 Lack of individual proficiency of health professionals in the use

of hardware and software (IVþ)

CW; ICA 1 1/1

B12 Clinicians perceive they are better at diagnosing sepsis than the

AI and the alert occurs after they already suspect (IVþ)18

CW; AI; ICA 1 1 2/2

B13 Lack of machine learning foundational knowledge and

firsthand experience (IIþ)63

CW; ICA 1 1/1

B14 Clinician concern over reliance on system (IVþ)63 GOV; QS; ICA 1 1/1

Total papers 8 0 3 9 5 1 0 1 27

Count of barriers identified by the group 6 0 3 9 4 1 0 1 24

For reach barrier, the number of papers that identify the barrier within each group are noted in columns A to H. The totals column is in the format of: total

number of papers/total number of groups. The associated element or component in the derived framework is also identified where ICA: Implementation, change

management & adoption; AI: AI model; CW: clinical workflow; DP: data pipeline; GOV: governance; QS: Quality & safety; EM: Evaluation and monitoring.

Beside each barrier is listed the stage in parentheses, that is associated with that barrier.
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Table 3. Implementation enablers: for reach enabler, the number of papers that identify the enabler within each group are noted in columns

A to H

Enablers (stages) Compo-nent A B C D E F G H Tot.

E1 Clinician involvement is essential at all stages of model/HCI

development and integration into clinical workflow (IIþ)18,63

AI; CW, HCI; GOV 2 2 4/2

E2 Better AI model training methods: for negative cases, use portion

of patient journey when sick, not within 6h or discharge (II/III)

AI 1 1/1

E3 Conduct improvement initiatives (PDSA) cycles during implemen-

tation to quickly garner and act on clinical feedback (IIIþ)

CW; QS; ICA 1 3/2

E4 Frequent communications to increase awareness during and after

trial, for example, weekly meetings, emails, educational sessions

giving progress and setting next goals and highlighting urgent

need. (IVþ)18

ICA 1 1 1 2 5/4

E5 Appoint clinical champions to advocate for the tool (IIþ) ICA 1 2 3/2

E6 Create a test version of the application to train clinicians and

multi-channel training approaches incl. web (III)

CW 1 1 2/2

E7 Use a tablet with training loaded, plus feedback mechanism so

training could occur on-the-job (IVþ)

CW 1 1/1

E8 Implement alternative workflows during peak hours (IVþ)18 CW 1 1/1

E9 Clinicians were taught how to interpret risk scores (IVþ) CW; ET 1 1/1

E10 Iterative approach to design of clinical workflow, human-computer

interface and AI model (IIþ)

AI; CW; HCI 1 1/1

E11 Visually delineating sepsis risk into colors (red cards as high risk,

etc) and tracking patients across distinct tabs (patients to be tri-

aged, screened out for sepsis, and those in the sepsis bundle) (III)

HCI 1 1/1

E12 Perform post-implementation interview (study) to identify

improvements (IVþ)

CW; HCI; QS; ICA 1 1/1

E13 HCI was augmented by completion and fallout indicators to visu-

ally guide the clinician to timely and appropriate care (III)

CW, HCI 1 1/1

E14 Report the number of cases the AI detects that clinicians miss: clini-

cians requested this—build trust (IVþ)

EM; ICA 1 2 3/2

E15 Track and monitor data and model drift (IIIþ) QS; EM 1 1/1

E16 Work with regulatory officials to ensure the solution is qualified as

CDS and not a diagnostic medical device (Iþ)

RL 2 2/1

E17 Establish a multi-disciplinary governance committee to promote

usage, track compliance, provide training and plan for post-trial

sustainability; and an external data safety board to oversee

safety and AI efficacy (Iþ)

GOV 1 1/1

E18 A dedicated full-time role can work with frontline clinicians and

stakeholders to integrate the tool (IVþ)

ICA; CW 1 1 2/2

E19 Strong support from senior leadership (Iþ)18 ICA; GOV 1 1/1

E20 Establish a transdisciplinary team of data scientists, statisticians,

hospitalists, intensivists, ED clinicians, RRT nurses, and infor-

mation technology leaders and develop capabilities across

domains (Iþ)

ICA; GOV 1 1/1

E21 Staggered deployment across sites (Vþ) ICA 1 1/1

E22 Although numbers and statistical trends were used as evidence,

individual patient cases were important to frontline clinicians

(IVþ)

ICA 1 1/1

E23 Carefully navigate the lines of professional authority that physi-

cians have toward the care of patients. Tool described as sup-

porting physicians and nurses. The term AI was never used (Iþ)

ICA; ET 2 2/1

E24 Trust in the model increased as the clinician experienced the algo-

rithm make correct predictions (IVþ)

ICA 1 1/1

E25 A “Model Facts” sheet designed to convey relevant information

about the model to clinical end users; (II)

ET; AI; ICA 1 1/1

E26 System sepsis monitoring was experienced as alleviating demands

on attention and cognition (IVþ)

ICA 1 1/1

Total papers 0 4 2 23 12 1 0 1 43

Count of group enablers 0 3 2 20 8 1 0 1 35

The totals column is in the format of: total number of papers/total number of groups. The associated components in the SALIENT framework are also identi-

fied where ICA: Implementation, change management and adoption; AI: AI model, HCI: human–computer interface, CW: clinical workflow, DP: data pipeline,

GOV: governance; ET: Ethics; EM: evaluation and monitoring; RL: Regulatory& legal and QS: Quality & safety. Beside each enabler is listed the stage in paren-

theses, that is associated with that enabler.
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to perceived accuracy and adoption based on the level of model

explainability,41,45,55 but with trade-offs according to the model’s

ability to support time-series data,38,40 accommodate large, high-

dimensional datasets,48 and demonstrate better performance.41

Group (D) reported clinicians were willing to sacrifice explainability

for more accurate predictions and better standardized treatment of

all sepsis cases,41 while Ginestra et al found clinicians most wanted

transparency regarding the predictive features generating the

alerts.44

Deciding which features to input and how simple (eg, vital signs

only) or complex (eg, waveform data and laboratory results) they

are was seen to influence model generalizability (D6) to different

care locations.38,57,58,62 Group (B) supported different variables for

different sites, claiming flexibility,62 although new models needed to

be trained, validated and maintained at each site. Another decision

was how quickly the MLA needed to make its first prediction after

admission (D7), contingent upon the availability of the required

data, with potential delays, for example, in obtaining laboratory

investigation results.53

Predicting onset of sepsis as early as possible involved trade-offs

between: (1) alerts that were too early, where clinicians may not

have known what to do, and therefore dismissed the

alerts33,41,42,44,47,50,53; and (2) alerts that were too late for patients

for whom clinicians already suspected sepsis and had initiated

appropriate care bundles (in one study up to half44), thereby dimin-

ishing its clinical utility.44,50 The choice also had implications for

MLA training and evaluation (D8).

Data pipeline decision points (D9-D12). Only group (D) contrib-

uted to data pipeline decisions for which only 2 barriers (B6, B7)

and no enablers were reported. Decisions had to be made (D9)

about how to access the data: direct from the Electronic Health

Record (EHR), which could entail partnering with the vendor, or

indirectly from a real-time data warehouse or various feeder sys-

tems.43 Similarly, whether to develop and implement the MLA

in-house or use an external vendor (D10), which involved weigh-

ing up the capability to future-proof the organization for future

AI solutions41 versus implementation and maintenance chal-

lenges arising from separate ownership of the input data and the

AI model.41 The required level of data pipeline sophistication,

including data imputation (D11) and transformation, also neces-

sitated trade-offs between engineering effort versus model per-

formance (D12),41 with group (D) having to remove a data

imputation pipeline because of its complexity.40

Clinical workflow decisions (D13-D15). Whether alerts were to be

sent to and managed by dedicated clinical staff (centralized

approach) or sent directly to clinicians responsible for individual

patient care (distributed approach) varied across studies (D13). Five

(A, C, E, F, G) groups chose the former, whereas Sandhu et al found

physicians preferred the latter, having a nurse contact them directly,

often in-person, rather than by means of EHR-generated alerts

which imposed greater cognitive load and interruptions.42 However,

the same physicians still saw nurse contacts as disruptive, while

nurses found physicians often too busy to contact.42 Having a dedi-

cated clinician receive calls minimized alarm fatigue,41 but group

(E) found a distributed approach more scalable for monitoring mul-

tiple conditions, more feasible in small-staffed sites, and more able

to provoke bedside reviews,48 although clinicians often regarded the

numbers of reviews as unmanageable.59

The MLA alert threshold or setpoint determining the numbers of

alerts was a key decision impacting clinician workload (D14).

Figure 3. The number of barriers (red badge), enablers (green badge), and decision points (blue badge), denoted by the number within the badge, mapped to

each stage and component of the SALIENT AI implementation framework. Implementation stages are labeled in the title row from left to right. The color-coded

solution components are developed in row B, and consist of Clinical workflow (blue), AI model (yellow), data pipeline (green), and human-computer interface

(red). The components are integrated in rows C and D, and rows F and G describe cross-stage elements required throughout the entire implementation process,

such as governance and quality and safety assurance. w/flow: workflow; dev/test: development & test; HCI: human computer interface.

1356 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 7



Group (E) utilized an improvement cycle to decide on the alert

threshold at each local implementation site in improving clinician

adoption.47,59

Related to the timing of alerts (D7), decisions about what actions

clinicians should take for alerts involving patients showing no symp-

toms or signs of sepsis proved problematic (D15), as unclear roles

and responsibilities constituted potential barriers to adoption (B3,

B5).33,44

Human computer interface (HCI) decisions (D16–D20). How algo-

rithm predictions were presented to clinicians and whether they

were accompanied by additional information or even

recommendations varied between groups. The HCI options com-

prised: (1) an alert only (Groups B, H), or with optional attached

information (Group A) sent directly to clinicians via messaging sys-

tems (phones, e-mails, personal tablets) (D16); (2) content inte-

grated within existing EHRs (Groups E, G); or (3) an external

dashboard or application (Groups C, D, F) (D17). Integration into

an EHR relied on organisations having a single EHR, otherwise mul-

tiple HCIs were required. Also, many EHRs did not have in-built

capacity to support complex MLAs,41 whereas external dashboards

conferred flexibility to design a bespoke solution that could also

support mobile devices,41 although requiring clinicians to switch

between applications interrupting workflows.48 The type of alert

Table 4. Decision points identified for each component in the SALIENT framework

Decision Points A B C D E F G H Tot

Definition

D1 Which patients? Age; location: ICU, ED, all non-ICU Identified by differences across papers

D2 What to predict? sepsis, severe, shock? Should you prioritize on

mortality? Patients admitted with sepsis and/or hospital

acquired sepsis?

1 1 1 3/3

D3 What objective/bundle compliance, early identification, mortal-

ity/LOS—primary and secondary outcomes; anti-microbial

mis-use (flow on to model)

1 1 1 3/3

D4 What is the minimum expected performance for alarms?

precision v sensitivity?

1 1 1 3/3

AI model

D5 Which model: ML vs DL (explainable, earliness of prediction)

and where trained

1 2 1 4/3

D6 Which features: simple vs complex, set-in-stone or changeable.

Noting this will impact earliest first prediction: immediately

at ED or later?

1 3 1 5/3

D7 How early to target alerts? (too early—no symptoms/signs, too

late, no clinical utility)

2 1 2 1 1 7/5

D8 What outcome basis for Train/Evaluate? 1 3 1 5/3

Data pipeline

D9 What data access approach to use: direct or separate 2 2/1

D10 Whether inhouse vs external platform/product/solution 2 2/1

D11 What methods of data imputation to use 2 2/1

D12 What level of pipeline sophistication can be supported: model

performance vs engineering effort

1 1/1

Clinical workflow

D13 Whether dedicated vs distributed model of alert handling 1 2 1 4/3

D14 What determines the setpoint decision 1 1 2/2

D15 How to deal with ambiguity over alerted patients that have

NOT decompensated

2 2 1 5/3

Human–computer interface

D16 Whether integrated with EMR or not and if not—are tablets/

phones allowed

3 1 4/2

D17 Whether individual notification (hard alert) or aggregated

dashboard (soft alert)

2 2 1 5/3

D18 Which alert timing: suppression of alerts after first alert;

one-time or repeat

1 2 3/2

D19 Whether to provide clinician feedback or not

D20 Whether prediction is explained or not 2 1 3 2 8/4

Evaluation and monitoring

D21 Which metrics to use Identified by differences across papers

D22 What process to follow: Silent trial or not and which trial

method

1 2 1 4/3

Count of papers 11 9 0 26 16 4 2 4 72

Count of group decisions 8 6 0 14 11 4 2 4 49

The numerals refer to the number of papers by group (A -> H) that discuss a particular decision. The totals column is in the format of: total number of papers/

total number of groups.

EHR: electronic health record; ML: machine learning; DL: deep learning; ICU: intensive care unit; ED: emergency department.
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(D17) varied between hard alerts (such as a pop-up directive) requir-

ing clinicians to immediately respond, and soft alerts (such as col-

ored icons) that were more easily managed.41,42,46,48 No group

indicated which method prompted more appropriate clinical actions

and conferred better clinical outcomes.50

Whether alerts were allowed to fire once or repeatedly until

deactivated (D18) also varied between groups. The EWS2.0 (Group

A) used a one-time alert, but found clinician evaluation of patients

often occurred some hours after the alert fired.33 Group (F) imple-

mented completion and fall-out indicators for single alerts to visu-

ally guide clinicians to more timely review.50 Group (B) supported

multiple alerts for the same patient, but incorporated a snooze fea-

ture to suppress alerts within 6 h of the first alert.59,61 Whether to

include more information about what caused alerts, versus just fir-

ing alerts alone (D20) had implications as to how the algorithm was

trained. The decision by groups (E, F) to enable clinicians to feed-

back whether they thought the alert represented sepsis or something

else (D19) enabled implementation teams to evaluate clinical utility,

and provide feedback to clinicians about missed sepsis cases, which

incentivized greater adoption.42,48

Evaluation decisions (D21, D22). Evaluation decisions (D21)

proved challenging as most groups omitted pre- and post-

implementation evaluations of MLA performance using the same

metrics. If done, it would have enabled linking of MLA performance

with changes in clinical care or outcomes (Figure 2). Pre-

implementation studies reported AUROC ranging from 0.6351 to

0.9747 but only one post-implementation group (B) study58 reported

AUROC of 0.95, which was similar to pre-implementation

studies.55,59,60

In regard to pre-deployment silent or shadow trials evaluating

algorithm performance against conventional clinical judgment in a

live-data environment (D22),33 3 groups (A, D, E) conducted such

trials for 6, 3 and an unknown number of months, respectively, dur-

ing which algorithm validation was undertaken as well as end-to-

end testing of the model, the data pipeline, the HCI and the clinical

workflow.41,48

DISCUSSION

Systematic review of sepsis MLA implementation

studies
The systematic review served to learn how MLA performance, adop-

tion, and different implementation modes were measured and how

they impacted clinical care processes and patient outcomes. We

found MLAs have potential to reduce mortality, but no definitive

causal relationship has been demonstrated. At a minimum, the

causal chain requires a high performing (high sensitivity/low false

alarm) implemented MLA, clinician adoption and resulting positive

changes to clinical processes (see Figure 2). Two groups (B, E) could

demonstrate at least 2 of these, together with a significant reduction

in mortality but only Group E reported definitive evidence of MLA

adoption.

Demonstrating a causal link was limited by: (1) Non-

randomized study designs being subject to confounding bias, such as

sepsis awareness programs accompanying MLA implementation;

and (2) Infrequently reported and non-standardized MLA perform-

ance metrics post-implementation, which, when they were reported,

often showed decreased accuracy. Given these limitations, it remains

unclear whether MLAs were responsible or needed for improved

mortality. In a meta-review of 55 observational studies of sepsis

reduction programs using guideline-based care bundles,64 a signifi-

cant 34% overall reduction in mortality was achieved despite the

absence of digitally embedded sepsis screening or alert tools in most

studies (43/55, 78%).

Other important study findings were, firstly, clinical process

improvements after MLA implementation did not always result in

better patient outcomes, likely due to different clinical process

improvement metrics (N¼36). However, significant reductions in

just one metric, median lead time from alert to first antibiotic, did

coincide with significant reductions in mortality,46,47,58 suggesting

this as an important indicator of MLA implementation success.

Second, it remains unclear whether MLA model choice impacts

implementation success. Seven different algorithms were imple-

mented with 5 reporting improved clinical indicators and mortality

outcomes. The level of MLA performance post-implementation

appears to be more important than choice of algorithm in predicting

effectiveness. Across 2 different MLAs (Groups B and F), only the

algorithm with high post-implementation performance was associ-

ated with significant mortality improvement.50,58 Similar results

were seen for 2 independent implementations of the same algorithm

(Group B).34,58

Third, the choice of outcome definition, in this case sepsis, is crit-

ical as it can directly influence algorithm performance measures,

particularly specificity.6 Definitions of sepsis varied from initial sys-

temic inflammatory process (eg, Sepsis-1 definition)3 to multi-organ

dysfunction (eg, Sepsis-3 definition)65 reflecting a later, more

advanced state of the illness. Importantly, the concern here is diag-

nosing sepsis (ie, using a diagnostic predictive algorithm) rather than

predicting the likelihood of sepsis occurring in a patient before the

inflammatory process begins (ie, a prognostic predictive

algorithm).66

Fourth, how algorithm predictions are presented to clinicians,

and the extent to which they are accompanied by additional infor-

mation or even recommendations are key determinants of clinician

acceptance.67

Mapping to SALIENT AI implementation framework
The second study objective was to map the review findings to the

SALIENT framework to validate its coverage of important real-

world implementation factors. Unlike in similar reviews,6–

8,11,17,68,69 we conducted a novel 2-stage review wherein the second

stage we identified related studies before or after the principal

deployment study, which provided studies across the end-to-end

MLA implementation process. We found the findings of each study

could be mapped to one or more stages within SALIENT and that

all SALIENT stages were utilized across all studies, indicating that

SALIENT’s implementation stages are both necessary and sufficient

for real-world sepsis MLA implementation.

Secondly, every barrier, enabler, and decision identified in the

review could be located to a stage (I-V) and either components (AI

model, data pipeline, clinical workflow, HCI) or elements (A–G)

within SALIENT. Knowing in advance what decisions are required

(for example as a checklist), when they need to be made and in rela-

tion to which part of the implementation process is novel and could

be informative to those engaged in AI implementation planning. We

also found that most of the decision points, barriers and enablers

identified were not specific to sepsis prediction, but were AI-task

agnostic, suggesting SALIENT may have application for non-sepsis

MLA implementation projects.
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Strengths and limitations
As far as we know, our study is the first attempt to undertake a sys-

tematic review of sepsis prediction algorithms deployed in clinical

settings, to identify barriers, enablers, and key decision points, and

to map these to a single, inclusive, end-to-end implementation

framework. The resulting framework and mapped items render

these key decisions and contextual factors explicit, ordered and

transparent, address gaps in current implementation guidance and

offers a pragmatic staged approach for use by clinicians, informatics

personnel and managers. Limitations relate to the small number of

empirical studies of deployed sepsis-prediction algorithms, under-

reporting of post-implementation performance metrics, focus on

adult hospital settings, and potential publication bias from under-

reporting of other sepsis MLA implementation studies.18 Although

risk of bias for mortality reporting studies was moderate to high, all

studies, including the 3 lowest bias papers,46,52,58 reported numeri-

cal reductions in mortality, with 5 being significant.46,58–61

CONCLUSIONS

Our systematic review indicates that implementing MLAs within

adult hospital care settings to predict sepsis has potential to reduce

mortality, but no definitive causal link has been demonstrated.

Implemented MLAs were few and only 2 provided some evidence of

causation. The types of MLA models employed mattered less than

their implementation accuracies and ability to alert clinicians to

order antibiotics earlier.

This study also validated the SALIENT framework demonstrat-

ing real-world MLA implementation barriers, enablers, and deci-

sions could be mapped to its constituent stages and components.

Our findings highlight that AI implementation success has many

more dimensions than the types of MLA employed, including evalu-

ation methods and stages and the many decisions required through-

out the multi-stage process. SALIENT may provide a roadmap for

stakeholders to identify these stages, components and decisions

which, with more robust studies, may be shown to conclusively link

MLA implementation with significant improvement in patient out-

comes. The SALIENT framework also has potential application to

other MLA algorithms seeking to identify patients at risk of other

acute hospital acquired conditions.
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