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Abstract

Purpose: The growing size of public variant repositories prompted us to test the accuracy of 

pathogenicity prediction of DNA variants using population data alone.

Methods: Under the a priori assumption that the ratio of the prevalence of variants in healthy 

population vs that in affected populations form 2 distinct distributions (pathogenic and benign), we 

used a Bayesian method to assign probability to a variant belonging to either distribution.

Results: The approach, termed Bayesian prevalence ratio (BayPR), accurately parsed 300 of 

313 expertly curated CFTR variants: 284 of 296 pathogenic/likely pathogenic variants in 1 

distribution and 16 of 17 benign/likely benign variants in another. BayPR produced an area under 

the receiver operating characteristic curve of 0.99 for 103 functionally confirmed missense CFTR 
variants, which is equal to or exceeds 10 commonly used algorithms (area under the receiver 

operating characteristic curve range 0.54–0.99). Application of BayPR to expertly curated variants 

in 8 genes associated with 7 Mendelian conditions led to the assignment of a disease-causing 

probability of ≥80% to 1350 of 1374 (98.3%) pathogenic/likely pathogenic variants and of ≤20% 

to 22 of 23 (95.7%) benign/likely benign variants.

Conclusion: Irrespective of the variant type or functional effect, the BayPR approach provides 

probabilities of pathogenicity for DNA variants responsible for Mendelian disorders using only the 

variant counts in affected and unaffected population samples.

Keywords

Bayesian analysis; Population frequency; Prevalence ratio; Variant classification; Variant 
interpretation

Introduction

In an era of rapidly expanding genetic testing, there is a growing challenge for clinical 

and research laboratories to determine the phenotypic significance of DNA variants. Many 

algorithms predict disease liability using population data, predictive tools, segregation 

analysis, novelty, allelic information, and prior reporting in expertly curated locus-specific 

or confederated databases.1–3 The overall trend has been to combine an ever-increasing 

number of tools, the most accurate being amalgams of existing prediction algorithms.4,5 This 

approach is fraught with the problem of circularity because many of the incorporated tools 

use the same variant features and training sets.6 Indeed, it is unclear whether the continued 

development of ever more complex algorithms will achieve greater accuracy. We therefore 

sought to determine if we could improve the predictive potential of 1 individual data element 

used to predict pathogenicity.

The widely adopted standards and guidelines devised by the American College of Medical 

Genetics and Genomics (ACMG)/Association of Molecular Pathology integrate population 

data into their criteria.7 The primary assumption when including population data is that 

the frequency of a disease-causing variant in a collection of affected individuals should 

exceed that observed in a sample of individuals without the disease of interest. However, 

the ACMG/AMP recommended that comparison of variant frequencies in affected and 
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unaffected population samples using odds ratios with a somewhat arbitrary threshold is 

problematic when applied to Mendelian disorders with different penetrance characteristics. 

Furthermore, the population criterion becomes less effective as variant frequency decreases; 

prevalence cannot be meaningfully compared for variants that may be observed once or 

only a few times in a sample of diagnosed individuals or not observed in a large sample of 

healthy and presumably unaffected individuals. Finally, the categorical nature of assigning 

this information to different levels of confidence in terms of pathogenicity does not 

accommodate the spectrum of phenotypic consequences conferred by allelic heterogeneity.8

Bayesian methods are well suited to address this problem because they can incorporate 

existing sources of information to infer the likelihood of a very rare or even unobserved 

event.9 Sources may include orthogonal data from the subjects, prior probabilities informed 

by previous studies, or pooled information across individuals. Consequently, we developed 

and tested a population-based approach within a Bayesian framework, termed Bayesian 

prevalence ratio (BayPR). Using only population data, namely the prevalence of variants in 

samples of diagnosed and unaffected individuals, we demonstrated that most variants fall 

into 1 of 2 distributions under the a priori assumption that pathogenic or benign variants 

would self-sort into separate groups.9 Critically, the sorting would occur irrespective of 

functional data or other metrics of disease liability. We showed the utility of this approach 

using the Genome Aggregation Database (gnomAD)10 as the sample of healthy population 

and a worldwide collection of individuals diagnosed with cystic fibrosis (CF) (Online 

Mendelian Inheritance in Man 219700) (caused by variation in CFTR) as the sample of 

population with disease.11 We applied BayPR to expertly curated variants associated with 

Mendelian disorders with different inheritance patterns to demonstrate the generalizability of 

our approach.

Materials and Methods

Data sources

All variants were de-identified. For the control data set, aggregated genomic data were 

downloaded from gnomAD v2.1.1, a publicly available database consisting of 125,748 

exome sequences and 15,708 whole genome sequences from unrelated individuals.10 For 

the CF (CFTR) data set, CFTR genotype data were provided by the Clinical and Functional 

Translation of CFTR (CFTR2) (https://cftr2.org) database.11 For the phenylketonuria (PKU; 

PAH) data set, PAH genotype data were provided by the BIOPKU database.12 For the 

interstitial lung disease (ABCA3) data set, data related to variants were assembled from 

individuals with genetic surfactant dysfunction studied in research laboratories at the 

Washington University School of Medicine and the Johns Hopkins University School 

of Medicine and from publications.13 For the X-linked adrenoleukodystrophy (ABCD1) 

data set, data related to ABCD1 variants were obtained from clinical testing in the 

Johns Hopkins Genomics DNA Diagnostic Laboratory from 2016 to 2020. For the Barth 

syndrome (TAFAZZIN) data set, data related to TAFAZZIN variants were obtained from the 

Human Tafazzin Gene Variants Database (a subdatabase of the Barth Syndrome Registry 

and Repository; https://www.barthsyndrome.org/research/tafazzindatabase.html).14 For the 

Marfan syndrome (FBN1) data set, variants were identified during clinical testing at 
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various CLIA-approved commercial laboratories from 2006 to 2020. For the Loeys-Dietz 

syndrome (TGFBR1/TGFBR2) data set, variants were identified during clinical testing at 

various CLIA-approved commercial laboratories from 2006 to 2020. Further information 

concerning curation for all populations can be found in the Supplemental Material and 

Supplemental Figures 1-5. All genetic data (control and disease populations) and disease 

liability assignments for alleles can be found in the Supplemental Table 1.

Analytic method

An empirical Bayesian approach was used to analyze the counts of the variants in each 

disease-specific population database separately relative to the control gnomAD population 

using a 2-component finite mixture model. Each component modeled the number of 

variants arising from cases (conditional on the total number of observed variants) using 

a binomial likelihood, placing a beta prior on transformation of the prevalence ratio 

(detailed information is provided in the Supplemental Material and Supplemental Figures 

1-5 section). This approach converts the proportion of variants observed in cases to the 

prevalence ratio of cases relative to controls. Estimates were obtained by maximizing 

the marginal likelihood using the expectation-maximization algorithm,15 which was 

implemented using the optimx package in R (R Foundation for Statistical Computing).16 A 

grid search was used to assess sensitivity of the starting values, which include the parameters 

of each mixture component and the mixing fraction for the expectation-maximization 

algorithm. The model allows for variation in the number of individuals successfully typed 

for a given variant in each database but does assume a relatively constant ratio of typed 

individuals in the affected database vs the control database across all variants; variation 

from this ratio would induce a different prior on the prevalence ratio. The R program used 

to generate the probabilities can be found on github (https://github.com/melishg/BayPR/). 

The BayPR method was compared with other predictive algorithms using nonparametric 

estimations of the receiver operating characteristic curves with the Bamber and Hanley 

confidence intervals (CIs) for the area under the receiver operating characteristic curve 

(AUC); the significance levels were adjusted using Sidak’s correction. Heatmaps were 

generated using the contour command in Stata/IC 15 (StataCorp), which uses thin plate 

splines for interpolation. For sensitivity and specificity analyses, score thresholds were 

set to determine whether a variant had a positive or negative result based on the BayPR 

prediction. For pathogenic/likely pathogenic (P/LP) variants, BayPR scores >90% or >80% 

were considered true positives. For benign/likely benign (B/LB) variants, Bayesian scores 

<10% or <20% were considered true negatives. The P/LP and B/LB statuses of variants were 

determined by independent expert review. Only genes with both P/LP and B/LB variants 

underwent sensitivity and specificity analysis.

Results

Predicting the disease liability of CFTR variants using prevalence ratios

Our underlying premise is based on the differences in the prevalence of pathogenic and 

benign variants among healthy and affected population samples. For example, plotting 

22 CFTR variants (all established to be causal for CF by an ACMG expert committee 

in 200417) as a ratio of their prevalence in affected and unaffected population samples 
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reveals a clear deviation from neutrality (Figure 1A). Each variant individually generates a 

relative risk greater than 5.0 with CIs that do not include 1.0, thereby satisfying the ACMG/

Association of Molecular Pathology criteria for pathogenicity.7 However, application of 

relative risk or odds ratios is problematic for many rare pathogenic variants and cannot be 

used to evaluate benign variants. In contrast, prevalence ratios cluster 152 common and 

rare expertly curated CFTR variants into distinct P/LP and B/LB groups (Figure 1B).8,11,18 

To derive the probability of a variant being in one group or the other, we implemented 

a 2-component finite mixture model in an empirical Bayesian framework by pooling 

observed information across the different variants15 (a detailed explanation is provided in the 

Supplemental Material and Supplemental Figures 1-5). The model generates 95% credible 

intervals for the prevalence ratios based on observed allele counts and then groups variants 

according to their similarity to other variants with regard to their observed frequencies. The 

combining of information generates better estimates of prevalence ratio of each individual 

variant and allows assessment of the probability that a variant came from the population 

with higher- or lower-than-average prevalence ratios. The posterior probability derived from 

a prevalence ratio estimates the likelihood that any variant belongs in 1 of 2 distributions. 

We first applied our method, termed BayPR, to 313 CFTR variants interpreted using clinical, 

functional, and segregation information (https://cftr2.org).8,11,18 Parsing of variants based on 

probabilities using BayPR placed variants into 2 distinct distributions—284 out of the 296 

P/LP variants placed in 1 distribution using a probability threshold of >90%, whereas 16 

out of the 17 B/LB variants placed in the second distribution on the basis of having <10% 

probability of being assigned to the first distribution (Figure 1C, Table 1). The probability 

of a variant being assigned to 1 distribution or the other followed expectations for the 

functional mechanism. For example, 185 of 188 (98.4%) null variants (eg, splice donor/

acceptor, frameshift, and nonsense variants) that can be confidently interpreted as P/LP 

using the ACMG/Association of Molecular Pathology variant guidelines7 had probabilities 

that placed them in the disease distribution (Figure 1D). Variants that may allow residual 

CFTR function (eg, missense and synonymous variants) appeared in both distributions, 

primarily in accordance with disease liability established from functional studies.8 BayPR 

generated an AUC of 0.99 (95% CI = 0.98–1.00) for 101 expertly interpreted missense 

CFTR variants (Figure 1E). This was matched only by ClinPred19 (0.99; 95% CI = 0.97–

1.00), which is remarkable given that BayPR is based only on population data, whereas 

ClinPred uses allele frequency data and prediction scores from 16 algorithms and is trained 

on variants from the ClinVar database.20 The AUCs of other commonly used predictors 

ranged from 0.54 to 0.87 (Bonferroni corrected P values compared with those of BayPR 

ranged from <.001 to .03). To assess the utility of BayPR for low-frequency variants, we 

generated probabilities for 161 P/LP variants in CFTR2 that have counts of 20 or less. Of 

these, BayPR assigned >90% probability to 153 variants (95%), indicating that the method 

performs equally well in the case of lower-frequency variants as it does in the case of 

variants that arise more frequently. This attribute will be useful in a clinical situation in 

which a rare variant is identified. For example, if a diagnostic genetic laboratory were 

to identify a single novel CFTR variant not observed in gnomAD, BayPR generates a 

probability of 96.3%, placing it in the disease distribution; if the same variant were observed 

as few as 3 times in gnomAD, then the BayPR-generated probability of belonging to the 

disease distribution drops to 6.8% (Figure 1F).
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Predicting disease liability of unassigned CFTR variants

The status of 969 very rare/private CFTR variants had not been assigned at the time of 

this analysis (ie, variants of unknown significance [VUS]). Application of BayPR assigned 

probabilities exceeding 90% for 735 of these 969 VUS (75.9%), suggesting that they are 

likely to be disease-causing (ie, P/LP) variants, whereas 129 (13.3%) had probabilities less 

than 10%, indicating that they are most likely not disease-causing (ie, B/LB) variants (Figure 

2A). To independently evaluate these BayPR assignments, we sorted the variants according 

to the predicted functional effect. BayPR correctly assigned P/LP probabilities to 378 of 

the 404 null variants (93.6%) (Figure 2B). To assess variants of varying functional effects 

(missense and others), 52 randomly selected variants were independently evaluated by the 

CFTR2 committee using the same criteria applied to all prior annotated variants.11 Of the 

52 variants, 35 of 37 variants interpreted as P/LP had probabilities exceeding 90% and 

all 3 variants annotated as B/LB had 0% probability (Figure 2C). Stratification of newly 

interpreted variants by predicted functional consequence correlated with probability; 19 

of 20 null variants and 16 of 17 missense variants newly assigned as P/LP had BayPR 

>90% (Figure 2D). We then compared ClinVar assignments of 41 variants that had not 

been expertly curated but had CF listed as a clinical phenotype, multiple submitters with 

no conflicts (2-star rating or higher), and a disease annotation of P/LP or B/LB to BayPR 

assignments (Figure 2E). In total, 28 of 34 variants with P/LP designations in ClinVar 

had probabilities >90%, and all 7 B/LB variants had probabilities <10%. Stratification by 

predicted functional effect were consistent with BayPR probabilities for the majority of 

variants (Figure 2F).

Predicting disease liability of variants associated with other Mendelian disorders using 
BayPR

Having established the utility of BayPR for variants in CFTR, we applied this method to 2 

other autosomal recessive disorders, namely PKU, caused by defects in PAH (estimated to 

affect 1 in 23,930 live births globally12), and interstitial lung disease, caused by dysfunction 

in ABCA3 (estimated to affect 1 in 3100 live births among those of European-descent to 1 

in 18,000 live births among those of African-descent in the United States).21 We determined 

BayPR scores for 726 PAH variants that had been evaluated by an expert panel (BIOPKU).12 

The BIOPKU collection differed from the CFTR2 database in that none of the PAH variants 

had been assigned as B/LB. Despite the absence of known negatives, BayPR assigned high 

disease probabilities to almost all P/LP variants. Of the 334 PAH variants associated with 

classic PKU, 329 had probabilities >80%, as did 56 of the 59 mild PKU-causing variants 

(Figure 3A, left panel). Stratifying variants according to their predicted function further 

demonstrated that disease assignments were consistent given that 169 of 174 missense 

variants assigned as P/LP had probabilities >80% (Figure 3A, right panel). Variants in 

ABCA3 were expertly interpreted using the ACMG/AMP criteria7 (225 P/LP; 5 B/LB; and 

102 VUS). The ABCA3 variants distributed into 2 distinct groups: all 225 P/LP variants had 

probabilities >90%, and all 5 B/LB variants clustered in the nondisease-causing component 

(Figure 3B, left panel). When sorted according to predicted effect, all 75 P/LP null variants 

and all 135 missense variants assigned as P/LP had probabilities >90% (Figure 3B, right 

panel).
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We next tested the utility of BayPR for monogenic disorders with different Mendelian 

inheritance patterns. Marfan syndrome (caused by dysfunction of FBN1; reported prevalence 

of 1 in 15,400 in Denmark)22 and Loeys-Dietz syndrome (caused by dysfunction of 

TGFBR1 and TGFBR2; estimated prevalence of <1 in 100,000)23 are autosomal dominant 

monogenic disorders. We applied the BayPR analysis to 178 FBN1, 23 TGFBR1, and 55 

TGFBR2 variants, all of which have been expertly curated as P/LP. All 178 FBN1 variants 

had probabilities >90% (Figure 3C, left panel) regardless of the predicted effect (Figure 

3C, right panel). The 23 P/LP variants in TGFBR1 distributed in such a way that 2 had 

probabilities >90%, 19 had probabilities between 80% and 90%, and the remaining 2 had 

probabilities <10% (Figure 3D, left panel). All variants were either missense (n = 22) or 

in-frame deletions (n = 1) (Figure 3D, right panel). All but 1 of 55 TGFBR2 variants 

previously assigned as P/LP had probabilities >80% and 2 had >90% (Figure 3E, left 

and right panels). X-linked adrenoleukodystrophy (X-ALD) and X-linked Barth syndromes 

are monogenic disorders with an estimated baseline prevalence of 1 in 20,000 to 50,000 

and 1 in 300,000 to 400,000, respectively.24,25 All 59 ABCD1 (X-ALD) variants were 

assigned as P/LP by a single clinical DNA testing laboratory with extensive experience 

in interpretation of ABCD1 variants26 and had probabilities >90%, whereas the 1 variant 

previously assigned as B/LB had 0% probability. Parsing by the predicted effect indicated 

that all 52 missense variants had probabilities >90% (Figure 3F, left and right panels). We 

analyzed 143 variants in tafazzin (TAFAZZIN) expertly curated as P/LP for Barth syndrome 

by the Human Tafazzin Gene Variants Database (https://www.barthsyndrome.org/research/

tafazzindatabase.html). Although only 41 TAFAZZIN variants (28.7%) had probabilities 

>90%, 140 (97.9%) had probabilities >80% and 3 (2.1%) had probabilities <10% (Figure 

3G, left panel). All 63 missense TAFAZZIN variants had probabilities >80%, whereas 2 of 

the P/LP variants with <10% probability were predicted to lead to complete loss-of-function 

(Figure 3G, right panel).

Sensitivity and specificity of BayPR at different probability thresholds and different size 
data sets

We determined the sensitivity and specificity of BayPR at different thresholds for the 3 

genes (CFTR, ABCA3, and ABCD1) that harbored P/LP and B/LB variants (Table 1). For 

this analysis, true positives were variants annotated as P/ LP that exceeded a probability 

of >90% or >80%; true negatives were B/LB variants with probabilities <10% or <20%. 

The sensitivity of BayPR was greater than 95% for all 3 genes and for both combinations 

of probability. Likewise, specificity was greater than 94% for CFTR and ABCD1 at 10% 

and 20% probabilities, whereas specificity dramatically improved for ABCA3 at the <20% 

threshold when compared with the <10% threshold (100% vs 60%). For the remaining 

disorders, an 80% threshold achieved correct assignment of over 97% of all known P/LP 

variants. To test how the size of the control data set would affect BayPR probabilities, 

variants from all 8 genes were reanalyzed using allele counts from a subset (genomes 

only; ~15,000 individuals) of the full gnomAD data set (exomes and genomes of ~140,000 

individuals). For CFTR, a large majority of P/LP variants moved from probabilities >90% 

in the full control data set to probabilities between 80% and 90% in the genomes-only 

control data set (Supplemental Table 1). This reduction in probability was primarily driven 

by rare variants (Supplemental Figure 1). In contrast, for TAFAZZIN and TGFBR2, 102 
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and 21 variants, respectively, moved from <90% probability in the full control data set to 

>90% probability in the genomes-only data set. For all other genes analyzed, variability 

in the control data set size had little effect on the probabilities and predictions of disease 

liability. Finally, inspection of the 16 P/LP variants with probabilities <50% revealed that 

15 had likely explanations for the incongruence—9 occurred in populations that were 

underrepresented in the affected sample when compared with the gnomAD sample (6 in 

CFTR; 3 in PAH) and 5 had phenotype or mechanistic discrepancies (3 in TAFAZZIN and 

2 in TGFBR1) (Supplemental Table 2). These results indicate that BayPR thresholds of 80% 

and 20% encompass the vast majority of variants assigned as P/LP and B/LB, respectively, 

based on the ACMG/Association of Molecular Pathology criteria.

BayPR can inform pathogenicity of variants variably associated with disease

To test if BayPR can differentiate underlying causes of variable disease association, we 

determined the probabilities of 41 variants of varying clinical consequence (VCC) (https://

cftr2.org) and observed that 17 had predicted probabilities >80% and 16 had probabilities 

<20%, whereas the remaining 8 variants fell between these 2 thresholds (Figure 4A). Ten 

variants with probabilities <20% were reported to occur in cis with other CFTR variants. 

The low probabilities indicate that these variants are likely benign when occurring alone but 

may contribute to pathogenicity when combined with other variants. Thus, variants of this 

type can occur in individuals with or without disease, thereby explaining their designation 

as VCC. CFTR variants designated as VCC with probabilities >80% could be benign or 

could contribute to disease but in tight linkage disequilibrium with a pathogenic variant. 

We also applied BayPR to variants associated with mild hyper-phenylalaninemia (MHP), 

which may or may not be clinically recognized. Of the 58 MHP variants, 44 produced 

probabilities >80%, corroborating their disease association. Only 5 variants had probabilities 

<20%, with the remaining 9 falling somewhere in between (Figure 4B). These findings 

reveal that population-based assessment can inform the interpretation of variants that can be 

variably associated with disease.

Discussion

We show here that a component used to interpret variant pathogenicity—population 

frequency—has greater utility than previously recognized when used within a Bayesian 

framework. There are several distinct advantages to a Bayesian approach. First, probabilities 

can be generated for rare variants not previously observed in the general population. The 

rarity of such variants renders rigorous interpretation challenging because it is difficult to 

confirm the variant’s existence in multiple unrelated individuals, obtain adequate clinical 

information for phenotypic evaluation and correlation, and collect primary tissue samples or 

cells from a small number of affected individuals for functional assessment. Consequently, 

many variants interpreted using the ACMG/Association of Molecular Pathology framework 

remain VUS because of the paucity of data. Application of BayPR offers a way to stratify 

such variants as shown in Figure 2. Second, BayPR provides a substantial improvement 

over odds calculations because it capitalizes on the information inherent in the prevalence 

ratios of other pathologic and benign variants in the same gene. Third, population-based 

approaches to variant interpretation, such as BayPR, are independent of variant mechanism 
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and can reveal unexpected mechanisms of pathogenicity. For example, the c.371–2A>G 

variant of TAFAZZIN would be predicted to cause disease (alters +2 nucleotide of 

splice site), but BayPR generated a probability of <10%. Further evaluation revealed 

that the variant interrupts a splice site at the start of exon 5, an exon excluded in the 

prominent RNA isoform of TAFAZZIN in humans.27 Thus, population data can provide an 

independent evaluation of variants that have functional testing results that are inconsistent 

with the associated phenotype and of variants not expected to affect the protein itself (eg, 

synonymous changes) but that are observed in affected individuals. Finally, based on our 

analysis of 8 genes, we propose that BayPR achieves excellent accuracy at probabilities 

>80% for pathogenic variants and <20% for benign variants. Variants with probabilities that 

do not fall between 20% and 80%— although potentially more difficult to annotate and 

interpret—may represent hypomorphic alleles with varying penetrance and/or expressivity. 

Identification of such variants may offer insight into the disease spectrum or represent a 

clinically-distinct entity, such as in the case of MHP.

There are several potential limitations to variant interpretation methods that are based on 

population data alone. Within the control population, size matters; larger data sets should 

provide a more accurate estimate of rare variant frequencies among presumably unaffected 

individuals. Our results support this supposition because BayPR probability predictions 

for CFTR variants (particularly for rare variants) improved when the full gnomAD data 

set (exomes and genomes) was used when compared with using genomes alone. Ongoing 

efforts to expand the size and diversity of healthy and affected population samples should 

progressively improve the accuracy and utility of population-based approaches to variant 

interpretation.10,28,29 It is essential to consider the ancestry composition of the affected 

and healthy populations even if both populations are quite diverse. Imbalance between 

control and affected population diversity may lead to an overestimation of the pathogenicity 

of variants found in underrepresented populations, whereas the converse is true for 

underrepresented populations in the disease population.30 For example, BayPR generated 

low disease probabilities for 9 pathogenic variants that occur more frequently in populations 

underrepresented in CFTR and PKU (Supplemental Table 2). Indeed, the prevalence of a 

disease may be less important than the degree of ascertainment of all affected individuals 

as was shown for Barth syndrome. Therefore, it is recommended that the potential effects 

of stratification should be considered before the use of any population-based estimator of 

pathogenicity,7 including BayPR.

A second consideration is phenotyping. Variants associated with mild presentation or late-

onset disease could result in some affected individuals in the healthy control population. 

Thus, BayPR will be less effective for late-onset conditions unless appropriate age 

thresholds are applied to the control population. In addition, phenotypes with substantial 

etiologic heterogeneity owing to multiple causative genes or low heritability may have 

distorted prevalence ratios. However, we note that BayPR was able to accurately assign 

pathogenicity to variants in 2 genes responsible for Loeys-Dietz Syndrome. A third issue 

is applicability of prevalence ratios to de novo variants. Although our method is based 

on the distribution of transmitted alleles in healthy and affected individuals, BayPR 

generated accurate probabilities for the 2 X-linked disorders in which de novo variants 

account for 40% (X-ALD)31 and 13% (Barth Syndrome)14 of cases. A fourth concern 
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was overcounting P/LP variants owing to the presence of related individuals (eg, multiple 

affected siblings or affected relatives from different generations) in the affected group. 

Overcounting, particularly of rare variants, can result in false assignment of a benign variant 

as disease causing because of its biased prevalence ratio. In the US CF population, there 

are 959 families with 1962 affected twins or siblings among a sample of 30,000 affected 

individuals,32 representing a potential overcounting of approximately 3.3%. Overcounting 

could be more problematic for rarer disorders such as Barth Syndrome because a diagnosis 

is more likely when 2 or more affected siblings are present; however, curation of TAFAZZIN 
variants requires that variants are only submitted multiple times if they are observed 

in unrelated individuals (https://www.barthsyndrome.org/research/tafazzindatabase.html). 

Conversely, a minor excess of alleles caused by the presence of siblings appeared to have no 

discernable decrease in the accuracy of BayPR for CF or for the rarer Mendelian disorders 

considered here (interstitial lung disease and Barth syndrome).

Population data provides a powerful tool for variant interpretation as recognized in the 

criteria developed by the ACMG/AMP and in the accuracy of interpretive algorithms that 

incorporate population data.7,19 Here we showed that a method based solely on variant 

counts can perform as good or better than popular interpretive tools using multiple data 

sources and algorithms (including functional predictions). We interrogated a variety of other 

predictive tools4,5,19,33–38 and showed that only ClinPred, which incorporates population-

level data in a similar manner to our method, rivaled BayPR with regard to sensitivity 

and specificity. Important limitations to ClinPred and similar tools include the inability to 

incorporate population data if a variant does not appear in a healthy population sample and 

the inability to evaluate all variants. In contrast, BayPR generates probabilities for variants 

that are not present in control samples and for all variants in affected samples, including 

null variants that can provide independent evidence in situations in which it is challenging to 

apply the Very Strong strength level for pathogenicity in the ACMG/AMP criterion to assign 

pathogenicity (eg, nonsense variants that do not elicit nonsense-mediated messenger RNA 

decay).39 The potential of population-based data used by BayPR emphasizes the importance 

of disease-specific data sets, such as CFTR2 and BIOPKU, that not only collect variants 

observed in affected individuals but also collect the allele counts of such variants, especially 

those suspected to be benign. Although complete ascertainment of a disease population is 

ideal, we have demonstrated how multiple, current locus-specific databases have sufficient 

data to enable accurate interpretation of variants by BayPR. Furthermore, clinical and 

research laboratories could employ BayPR to generate probability scores using their own 

variant counts for cases in which there is reasonable confidence that the individuals tested 

have the phenotype of interest. As novel variants are discovered within a disease population, 

the affected sample can be updated and BayPR probabilities can be recalculated. Although 

BayPR could be a standalone predictor of pathogenicity, it could also be combined with 

orthogonal approaches or be incorporated into guidelines such as those developed by the 

ACMG/Association of Molecular Pathology and serve as a valuable tool in the classification 

of VUS for which limited clinical or functional information is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Differentiating CFTR variants using BayPR.
A-D. Data are jittered for display purposes only; precise allele counts and BayPR 

probabilities are provided in Supplemental Table 1. A. A plot of the prevalence ratios 

(PRs) of 22 of the most common pathogenic CFTR variants (black dots) according to the 

frequencies in the affected CFTR2 and healthy (gnomAD) individuals shows an expected 

deviation from neutrality (gray line). The designation of each of these variants as P by 

the ACMG/AMP remains unchanged since their initial interpretation in 2004. B. A plot 

of the PRs of 135 P/LP(red dots) and 17 B/LB (green dots) variants interpreted by the 

CFTR2 that have been observed at least once in gnomAD reveals 2 relatively distinct 

populations. C. Plot of CFTR variants according to allele count and BayPR probability of 

being disease-causing. All 313 variants have been interpreted by CFTR2 as CF-causing 

P/LP(n = 296) or not CF-causing B/LB (n = 17) using clinical and functional criteria. 
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D. BayPR probabilities of 313 CFTR variants stratified according to their functional 

consequence. E. Receiver operating characteristic curves were plotted for BayPR and 10 

in silico prediction algorithms using data from 101 CFTR missense variants. The reference 

standards are annotations in the CFTR2 database based on clinical and in vitro data. F. 

Heatmap depicts the estimated probability of a CFTR variant to be associated with disease 

based on absolute counts of the variants in the CFTR2 and gnomAD databases. The area in 

black represents >90% probability of being associated with CF, and the area in light gray 

represents <10% probability. Importantly, this heatmap is only applicable to the CF data 

presented in this manuscript and does not apply to other genetic disorders. This heatmap 

was generated using the contour command in Stata/IC 15, which uses thin plate splines 

for interpolation. acc, acceptor; ACMG, American College of Medical Genetics; AMP, 

Association of Molecular Pathology; B, benign; BayPR, Bayesian prevalence ratio; CF, 

cystic fibrosis; CFTR2, Clinical and Functional Translation of CFTR; del, deletion; don, 

donor; gnomAD, Genome Aggregation Database; ins, insertion; LB, likely benign; LP, 

likely pathogenic; P, pathogenic.
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Figure 2. Differentiating CFTR variants of unknown significance with Bayesian prevalence ratio 
(BayPR).
A-F. Data are jittered for display purposes only; precise allele counts and BayPR 

probabilities are provided in Supplemental Table 1. A. CFTR variants that had not 

undergone interpretation by CFTR2 (n = 969; gray dots) cluster primarily into high 

(>90%; 735 variants) or low (<10%; 129 variants) probabilities. B. BayPR probabilities 

of unassigned CFTR variants stratified according to their functional consequence. C. A 

total of 52 unassigned CFTR variants were subsequently and independently assessed for 

disease liability by CFTR2 using clinical and functional criteria. D. BayPR probabilities 

of newly-assigned CFTR variants stratified according to their functional consequence. E. 

CFTR variants that remain without a CFTR2 interpretation and which have P/LP or B/LB 

interpretations in ClinVar (n = 41) cluster primarily into high (>90%; 28 variants) or low 

(<10%; 9 variants) probabilities. F. BayPR probabilities of ClinVar-assigned P/LP or B/LB 

CFTR variants without a CFTR2 annotation parsed by predicted functional effect. acc, 

acceptor; B, benign; CFTR2, Clinical and Functional Translation of CFTR; del, deletion; 

don, donor; ins, insertion; LB, likely benign; LP, likely pathogenic; P, pathogenic; UTR, 

untranslated region; VUS, variant of unknown significance.
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Figure 3. Differentiating expert assigned variants in genes associated with recessive, dominant, 
and X-linked disorders using BayPR.
A-G. Data are jittered for display purposes only; precise allele counts and BayPR 

probabilities are provided in Supplemental Table 1. Left panel. A total of 393 PAH variants 

are plotted by allele count and BayPR probabilities with disease assignment of either P 

or LP (red dots). A. Right panel. Parsing PAH variants by predicted functional effect. B. 

Left panel. A total of 230 ABCA3 (autosomal recessive interstitial lung disease) variants 

plotted by allele counts and probabilities with disease assignments of P/LP (red dots) or 

B/LB(green dots). B. Right panel. ABCA3 variants parsed by predicted effect. C. Left panel. 
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A total of 178 FBN1 variants are plotted by allele count and BayPR probabilities with 

disease assignment of P/LP. All 178 variants have probabilities >90%. C. Right panel. FBN1 
(autosomal dominant Marfan syndrome) variants parsed by predicted effect. (D) Left panel. 

A total of 23 TGFBR1 (autosomal dominant Loeys-Dietz syndrome) variants assigned as 

P/LP are plotted by allele count and BayPR probabilities. D. Right panel. TGFBR1 variants 

parsed by predictive effect. E. Left panel. A total of 54 TGFBR2 (autosomal dominant 

Loeys-Dietz syndrome) variants assigned as P/LP are plotted by allele count and BayPR 

probabilities. E. Right panel. TGFBR2 variants parsed by predicted effect. F. Left panel. 

A total of 61 ABCD1 (X-linked adrenoleukodystrophy) variants previously assigned as 

P/LP or B/LB are plotted by allele count and BayPR probabilities. F. Right panel. ABCD1 
variants parsed by predicted effect. G. Left panel. A total of 143 TAFAZZIN (X-linked Barth 

syndrome) variants are plotted by allele count and BayPR probabilities, all with previous 

disease assignment of P/LP. G. Right panel. TAFAZZIN variants parsed by predicted effect. 

acc, acceptor; B, benign; BayPR, Bayesian prevalence ratio; del, deletion; don, donor; 

ILD, interstitial lung disease; ins, insertion; LB, likely benign; LP, likely pathogenic; P, 

pathogenic; UTR, untranslated region; VUS, variant of unknown significance.
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Figure 4. Variants associated with variable expressivity have a wide distribution of Bayesian 
prevalence ratio (BayPR) probabilities.
A, B. Data are jittered for display purposes only; precise allele counts and BayPR 

probabilities are provided in Supplemental Table 1. A. A total of 41 CFTR variants with 

disease assignment of varying clinical consequences are plotted by BayPR probabilities and 

CFTR2 allele count and show a wide distribution. Of those, 16 variants have probabilities 

<20%, 17 variants have probabilities >80%, and 8 have probabilities between 20% and 80%. 

B. A total of 58 PAH variants associated with MHP are plotted by BIOPKU allele count 

and BayPR probabilities and show a wide distribution. Of those, 44 have probabilities >80% 

and 5 variants have probabilities <10%; the remaining 9 variants fall between 20% and 80% 

probability of belonging to the disease-causing component. CFTR2, Clinical and Functional 

Translation of CFTR; MHP, mild hyperphenylaninemia.
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