Skip to main content
. 2023 May 9;9:e1377. doi: 10.7717/peerj-cs.1377

Table 6. Performance of MET detection model using different LLMs and spaCy.

Dataset Model Precision Recall F1-score
Tweets BETO 0.632682 0.603598 0.617797
ALBETO 0.528998 0.561043 0.54455
DistilBETO 0.571313 0.585950 0.578539
MarIA 0.551669 0.586644 0.568619
BERTIN 0.596184 0.589159 0.592651
spaCy 0.6099071207 0.5130208333 0.5572842999
Headlines BETO 0.6452513 0.667148 0.656017
ALBETO 0.571177 0.6114769 0.590640
DistilBETO 0.604351 0.616269 0.610252
MarIA 0.651957 0.622416 0.636844
BERTIN 0.624006 0.608056 0.615928
spaCy 0.6363636364 0.5651041667 0.5986206897
Total BETO 0.701815 0.693103 0.697432
ALBETO 0.632689 0.628821 0.630749
DistilBETO 0.639000 0.651067 0.644978
MarIA 0.666136 0.670400 0.668261
BERTIN 0.651033 0.644374 0.647687
spaCy 0.7108066971 0.6080729167 0.6554385965