Table 5. Compare the detection performance, detection speed, number of parameters of YOLOv4 and the proposed model (YOLOv4-ours) on the VisDrone2019 dataset.
Model | Class | P/% | R/% | mAP/% | Parameter/million | t/s |
---|---|---|---|---|---|---|
YOLOv4 | All | 53.91 | 42.88 | 42.79 | 63.99 | 0.025 |
Pedestrian | 61.66 | 47.57 | 50.48 | |||
People | 48.67 | 31.04 | 30.76 | |||
Bicycle | 44.01 | 19.16 | 19.57 | |||
Car | 70.30 | 75.44 | 76.42 | |||
Van | 57.58 | 46.12 | 48.62 | |||
Truck | 58.49 | 52.28 | 52.13 | |||
Tricycle | 45.89 | 29.05 | 26.40 | |||
Awning-tricycle | 32.98 | 23.07 | 18.78 | |||
Bus | 64.45 | 61.24 | 61.72 | |||
Motor | 55.08 | 43.79 | 42.98 | |||
YOLOv4-ours | All | 62.71 | 51.20 | 52.76 | 44.79 | 0.028 |
Pedestrian | 68.98 | 56.04 | 60.59 | |||
People | 58.45 | 36.89 | 39.14 | |||
Bicycle | 50.72 | 29.42 | 29.81 | |||
Car | 77.16 | 82.41 | 83.72 | |||
Van | 65.84 | 52.63 | 56.59 | |||
Truck | 68.11 | 59.57 | 62.95 | |||
Tricycle | 55.14 | 39.41 | 38.19 | |||
Awning-tricycle | 44.53 | 33.78 | 30.92 | |||
Bus | 73.73 | 70.23 | 72.56 | |||
Motor | 64.48 | 51.58 | 53.15 |