Skip to main content
. 2023 Mar 22;9:e1314. doi: 10.7717/peerj-cs.1314

Table 5. Compare the detection performance, detection speed, number of parameters of YOLOv4 and the proposed model (YOLOv4-ours) on the VisDrone2019 dataset.

Model Class P/% R/% mAP/% Parameter/million t/s
YOLOv4 All 53.91 42.88 42.79 63.99 0.025
Pedestrian 61.66 47.57 50.48
People 48.67 31.04 30.76
Bicycle 44.01 19.16 19.57
Car 70.30 75.44 76.42
Van 57.58 46.12 48.62
Truck 58.49 52.28 52.13
Tricycle 45.89 29.05 26.40
Awning-tricycle 32.98 23.07 18.78
Bus 64.45 61.24 61.72
Motor 55.08 43.79 42.98
YOLOv4-ours All 62.71 51.20 52.76 44.79 0.028
Pedestrian 68.98 56.04 60.59
People 58.45 36.89 39.14
Bicycle 50.72 29.42 29.81
Car 77.16 82.41 83.72
Van 65.84 52.63 56.59
Truck 68.11 59.57 62.95
Tricycle 55.14 39.41 38.19
Awning-tricycle 44.53 33.78 30.92
Bus 73.73 70.23 72.56
Motor 64.48 51.58 53.15