Table 7. Comparison of the performance of different detection algorithms on the VisDrone2019 dataset.
Model | mAP/% | Parameter/million | t/s |
---|---|---|---|
YOLOv4 | 42.79 | 63.99 | 0.025 |
Faster-RCNN (ResNet50) | 33.24 | 70.55 | 0.062 |
YOLOv5l | 42.10 | 46.16 | 0.020 |
YOLOR | 43.17 | 52.51 | 0.023 |
FPN | 32.20 | — | — |
Cascade R-CNN | 31.91 | — | — |
RetinaNet | 21.37 | — | — |
YOLOv4-ours | 52.76 | 44.79 | 0.028 |
Note:
The best results are in bold.