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A B S T R A C T   

The COVID-19 pandemic has necessitated the development of reliable diagnostic methods for accurately 
detecting the novel coronavirus and its variants. Deep learning (DL) techniques have shown promising potential 
as screening tools for COVID-19 detection. In this study, we explore the realistic development of DL-driven 
COVID-19 detection methods and focus on the fully automatic framework using available resources, which 
can effectively investigate various coronavirus variants through modalities. We conducted an exploration and 
comparison of several diagnostic techniques that are widely used and globally validated for the detection of 
COVID-19. Furthermore, we explore review-based studies that provide detailed information on synergistic 
medicine combinations for the treatment of COVID-19. We recommend DL methods that effectively reduce time, 
cost, and complexity, providing valuable guidance for utilizing available synergistic combinations in clinical and 
research settings. This study also highlights the implication of innovative diagnostic technical and instrumental 
strategies, exploring public datasets, and investigating synergistic medicines using optimised DL rules. By 
summarizing these findings, we aim to assist future researchers in their endeavours by providing a compre-
hensive overview of the implication of DL techniques in COVID-19 detection and treatment. Integrating DL 
methods with various diagnostic approaches holds great promise in improving the accuracy and efficiency of 
COVID-19 diagnostics, thus contributing to effective control and management of the ongoing pandemic.   

1. Introduction 

The COVID-19 pandemic caused by the novel coronavirus has been a 

significant public health crisis since December 2019 [1]. The COVID-19 
pandemic has significantly impacted the world, affecting millions of 
lives and causing widespread social and economic disruptions [2]. The 
World Health Organization (WHO) declared it a global health 
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emergency in January 2020 [3]. COVID-19 patients typically experience 
respiratory symptoms like fever, cough, lung damage, and other symp-
toms such as myalgia, diarrhea, and fatigue [4,5]. In severe cases, 
pneumonia can lead to organ failure and death. Coronaviruses are a 

group of large, enveloped RNA viruses that cause significant human and 
animal diseases [6,7]. One of the key challenges in addressing this 
pandemic is the development of effective diagnostic methods for 
COVID-19 and its variants [8]. Deep learning (DL), a rapidly evolving 
field of artificial intelligence, has shown promising results in various 
applications, including medical diagnosis [9]. In recent years, DL 
methods have been employed to diagnose COVID-19 and its variants and 
identify synergistic medicine combinations for treating the disease [10, 
11]. 

The rapid spread of SARS-CoV-2 among humans has caused a surge 
in COVID-19 cases, posing a severe threat to the global economy and 
health [12]. Vaccines and antiviral drugs are urgently needed to combat 
this deadly disease, but their development can take months if not years 
[13]. Advanced technological methods can be used to control the 
outbreak [14], and many screening techniques have been developed to 
identify patients infected with COVID-19 and its mutants (Alpha, beta, 
gamma, omicron, Kappa, Zeta, Lambda, Epsilon, Lambda, Delta, Zeta 
and Theta etc.). However, the appropriate use of diagnostic tests still 
requires clarification, depending on patients’ medical history or the 
examination’s goal. 

To effectively combat the COVID-19 outbreak, various tools, meth-
odologies, and critical approaches are required [15]. Monitoring and 
testing methods are also necessary to detect the virus and its mutant 
variants. Traditional detection methods such as chest X-rays, PCR, and 
serologic assays have been refined to cater to COVID-19 and its variants 
[16]. Physical diagnostic tools based on biosensors have been devel-
oped, with electrochemical biosensors being the most popular and 
considered the first line of defence against COVID-19 [17]. In addition, 
artificial intelligence (AI) can play a critical role in combatting 
COVID-19 due to its potential advantages [18]. Machine learning (ML) 
and deep learning (DL) techniques are utilized to process vast datasets 
[19], while AI-centric technology can complement current conventional 
technologies to address global COVID-19 issues in healthcare systems. 

However, the effectiveness of AI technologies during the pandemic de-
pends on human effort and collaboration, and the successful imple-
mentation of AI-based systems is subject to their codes and potential 
challenges. 

The accurate diagnosis of COVID-19 is crucial in controlling the 
spread of the disease, and it requires various laboratory techniques [20]. 
However, these techniques can pose significant challenges that must be 
addressed to ensure consistent and reliable test results. Proper specimen 
collection, timely analysis, and adherence to safety measures in the 
laboratory are essential for achieving accurate diagnosis while ensuring 
the safety of laboratory personnel. Fig. 1 serves as a visual representa-
tion of the various laboratory techniques employed in diagnosing 
COVID-19, such as reverse transcription polymerase chain reaction 
(RT-PCR),enzyme-linked immunosorbent assay(ELISA), and other mo-
lecular diagnostic tools. The figure also highlights the utilization of DL 
strategies for COVID-19 diagnosis and explores the frameworks 
employed for their implementation. 

1.1. Major research gaps 

One of the leading research gaps in deep learning for diagnosing 
COVID-19, its variants, and synergistic medicine combinations is the 
lack of large-scale datasets. Deep learning models require vast amounts 
of data for practical training. Still, given that the pandemic is relatively 
new, there is a shortage of large-scale datasets for this purpose. Addi-
tionally, most studies on deep learning for COVID-19 diagnosis focus 
solely on the original strain of the virus, ignoring the different variants 
that have emerged. As such, there is a need for further studies that 
investigate the effectiveness of deep learning models in diagnosing 
COVID-19 variants and predicting the efficacy of different medicine 
combinations. Finally, the interpretability of deep learning models is 
limited, as they are often considered black boxes, making it difficult for 
doctors to understand how they make their diagnoses. 

1.2. Motivations 

The utilization of DL models has demonstrated their potential to 

List of abbreviations 

Abbreviation Definition 
DL Deep Learning 
ML Machine Learning 
AI Artificial Intelligence 
COVNet Convolutional 
CCN Convolutional Neural Network 
DNN Deep Neural Network 
LSTM Long Short-Term Memory 
GAN Generic Access Network 
COVID-19 Coronavirus Disease 2019 
ELISA Enzyme-Linked Immunosorbent Assay 
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 
NAT Network Address Translation 
CPU Central Processing Unit 
PCR Polymerase Chain Reaction 
ELM Extreme Learning Machines 
RT-LAMP Real-Time Loop-Mediated Isothermal Amplification 
GAN Generative Adversarial Network 
CRISPR Clustered Regularly Interspaced Short Palindromic 

Repeats 
CXR Chest X-Rays 

FDA Food and Drug Administration 

Abbreviation Definition 
SERS Surface-enhanced Raman spectroscopy 
BT Biosensor Tests 
NGS Next-Generation Sequencing 
FAT Fast Antigen Test 
WHO World Health Organization 
MRI Magnetic Resonance Imaging 
CT-Scans Computed Tomography Scans 
PET Positron Emission Tomography 
ANN Artificial Neuron Network 
DTI Deep Learning Identifies 
GCNs Generic Code Numbers 
LFAs Lateral Flow Assays 
NAATs Nucleic Acid Amplification Tests 
LAMP Loop-Mediated Isothermal Amplification 
RDTs Rapid Diagnostic Tests 
RNN Recurrent Neural Networks 
RT-PCR Reverse Transcription Polymerase Chain Reaction 
CADD Computer-Aided Drafting and Design 
EUA Emergency Use Authorization  
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enhance the accuracy and speed of diagnosing COVID-19 from medical 
images, such as chest X-rays and CT scans. As the pandemic continues to 
spread, timely and precise diagnosis is crucial for effectively managing 
the disease. DL models can potentially identify new variants and syn-
ergistic medicine combinations, which can be deployed to combat the 
disease. Given the emergence of new variants and the need for efficient 
and precise methods to identify these variants, along with predicting the 
efficacy of different medicine combinations, there is a growing demand 
for DL models to fill this gap. DL models can potentially reduce the 
burden on healthcare systems by facilitating early and accurate diag-
nosis and management of the disease. The COVID-19 pandemic has 
caused significant strain on healthcare systems worldwide, and any in-
terventions that can alleviate this burden are highly sought after. 

1.3. Research objectives 

This review explores the impact of recent technological advance-
ments in biosensors on the accuracy and speed of COVID-19 and its 
variants (Alpha, beta, gamma, omicron, Kappa, Zeta, Lambda, Epsilon, 
Lambda Delta, Zeta and Theta etc.) diagnosis. We consider various 
diagnostic techniques, management strategies, and the efficiency of 
using deep learning (DL) to tackle the challenges and complexities of 
treating COVID-19 patients. We also evaluate several research studies 
that offer valuable insights into the potential of using synergistic drug 
combinations for COVID-19 and its variant treatment, where DL tech-
niques can reduce time, cost, and complexity and provide reliable 
guidance for the appropriate use of synergistic drug combinations in 
clinical and research settings. Our study also highlights the implications 
of the latest diagnostic technical and instrumental technologies. It ex-
plores the use of open datasets and synergistic medicine research to aid 
future prospectives. The review aims to inform future research efforts 
and improve COVID-19 diagnosis and treatment by examining these 
implications. Our study offers a comprehensive and informative analysis 
of COVID-19 diagnosis methods, their challenges, and the application of 
deep learning strategies. The study sheds light on the latest advance-
ments in COVID-19 diagnosis and treatment, which can aid healthcare 
professionals and researchers in their efforts to combat this global health 
crisis. 

2. Diagnosis of COVID-19 

Toward point-of-care diagnostics of COVID-19 and its variants 

(Alpha, beta, gamma, omicron etc.), identification protocols are 
commonly founded on the pathogenic movement history to the influ-
enced territories, just as an examination of their clinical manifestations 
and some further investigations [21]. Retrospective investigation re-
veals that the clinical symptoms of COVID-19 screening and contain-
ment techniques are remarkably unusual and fundamentally similar to 
legionnaires’ diseases and other respiratory viral pneumonia, which are 
not comparable for immunocompetent people [22]. Fast and touchy 
determination is as yet not accessible, albeit some indicative techniques 
are accessible for infection location, each with fluctuating degrees of 
particularity and dependent on interesting objective atoms or, then 
again, numerous SARS-CoV-2. These strategies exploit neurotic changes 
in the patient’s organs through imaging, for example, figured tomog-
raphy or viral nucleic corrosive sort RT-PCR utilizing at least one 
quality, or entire genome sequencing of the up-and-coming age of 
immunological particles delivered by the patient or by the infection in 
the patient’s body. 

Tests dependent on the antigen-counter-acting agent reaction, for 
example, ELISA and utilizing all of these symptomatic techniques have 
their points of interest and weaknesses [23]. A few strategies have been 
set up and are considered Gold Standard techniques that can likewise be 
duplicated for this new infection. In contrast, others are a work in 
progress and assessment for the finding of this infection. Then again, 
there are different strategies; innovations/gadgets have likewise been 
grown; however, pending endorsement and proposed use in COVID-19 
techniques are depicted here. 

The detailed view of COVID-19 and its variants (Alpha, Beta, 
Gamma, Delta, Omicrons), innovative methods, identifications, utiliza-
tions of database search information and extractions procedures, and 
synergistic drug combinations in clinical and research settings are 
mentioned in the context of DL perspective (COVNet, CCN, DNN, LSTM, 
GAN, VGGc etc.) to examine and relate the outcomes are mentioned in 
Fig. 2. 

3. Databases and search strategy 

We used electronic databases, including PubMed (https://pubmed. 
ncbi.nlm.nih.gov/), Embase (https://www.embase.com/), Cochrane 
Central Register of Controlled Trials (https://www.cochranelibrary.co 
m/central/about-central), Chinese Biomedical Literature Database 
(http://allie.dbcls.jp/pair/CBM;Chinese+BioMedical+Disc.html), 
China National Knowledge Infrastructure (https://en.cnki.com.cn/), 

Fig. 1. AI-Based Deep Learning Models for Accurate Prediction and Monitoring of COVID-19 and its Variants.  
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Chinese Science and Technology Periodical Database (http://www.nlc. 
cn/newen/periodicals/) and Wanfang database (http://www.wanfang 
data.com/) are utilizing catchphrase mixes for potency and timing of 
antiviral therapy possible updating and identifications, retrieve terms 
from such databases as per query “new corona-virus [24], COVID-19 
[25], 2019-nCoV [26], COVID-2019 pneumonia [26], SARS-CoV-2 
variants [27], Alpha, beta, gamma, delta, omicron etc., conventional 
synergistic medication [28], and synergistic Medicine”. 

Moreover, in the field of COVID-19 research, several practical and 
theoretical databases have been utilized to predict novel relationships 
and understand the intricacies of the disease and its variants. For 
instance, CovInter, as described by Ref. [29], is an interactive database 
specifically designed to explore the intricate connections between 
coronavirus RNAs and host proteins. The study conducted by Ref. [30], 
utilized multiple databases to investigate RNA-RNA interactions be-
tween SARS-CoV-2 and viral development, providing valuable insights 
into the exploration of COVID-19 infection. Additionally, the Thera-
peutic Target Database, as highlighted by Ref. [31], has played a pivotal 
role in facilitating target-oriented drug discovery efforts for COVID-19. 

To facilitate the efficient exploration of electronic databases and 
retrieve comprehensive information related to COVID-19, its variants, 
and therapeutic approaches in a user-friendly manner, a comprehensive 
PubMed search methodology and comparative systems were also 
employed [32].By analyzing patient details, inquiries, and examina-
tions, our aim to evaluate the connection between symptoms and 
persistent diseases as per [29–31]. To verify this relationship, in-
dividuals and examiners can visually examine encoded symbols ob-
tained from a wide range of databases. These databases include 
gathering procedures, scholarly recognition initiatives, testing libraries, 
and national registration sites, collectively providing a diverse and 
extensive information collection. 

4. Computational frameworks for COVID-19 diagnostics and 
therapeutics 

Artificial intelligence (AI) and machine learning (ML) have emerged 
as crucial tools in combating the COVID-19 pandemic. These technolo-
gies have the potential to process vast amounts of data rapidly and 

accurately, offering valuable insights and complementing traditional 
methods in healthcare. However, it is to note that AI interventions’ 
success relies heavily on human input and collaboration. The effec-
tiveness of AI techniques is contingent upon the expertise and skills of 
the individuals who develop and program the AI-based systems. 
Therefore, the synergy between human knowledge and AI capabilities is 
crucial for achieving desired outcomes in the fight against COVID-19 
[33].To achieve proficiency in cross-functional applications, including 
image analysis, data retrieval, and protein structure prediction, 
combining intensive training in medicine and wellness is essential. This 
approach promotes cutting-edge practices and improves supervised 
learning methods for accurate COVID-19 detection. DL has significantly 
impacted the COVID-19 epidemic, creating new research opportunities 
and applications for machine perception, semantic analysis, and medi-
cine. These techniques can enhance accurate diagnosis, protein structure 
prediction, and drug repurposing [34,35]. However, the interpretation 
of computational models and conflicting statistical properties can pose 
challenges. 

Supervised, unsupervised, and semi-supervised learning can all be 
applied in the context of COVID-19 and its variant detection, as 
mentioned in Fig. 3. Supervised learning trains algorithms on labelled 
datasets to classify new data, and it can be used to identify patterns or 
images associated with the disease [36]. Unsupervised learning trains 
algorithms on unlabeled datasets to identify clusters or patterns in the 
data [37], which can be helpful in identifying groups of patients with 
similar symptoms or risk factors. Semi-supervised learning combines 
both, using labelled and unlabeled data to improve model accuracy for 
maintaining the topological structures to solve the multiple frameworks 
[38]. For example, semi-supervised learning can train models on a small 
set of labelled COVID-19 patient data and a more extensive set of un-
labeled patient data to identify patterns and improve accuracy. By 
leveraging these learning techniques, researchers can improve the ac-
curacy and speed of COVID-19 detection and ultimately improve patient 
outcomes. 

The application of systems medicine approaches in identifying 
differentially expressed biomarkers has been valuable in exploring po-
tential biomarker signatures. However, crucial features may be over-
looked. In earlier studies [39], researchers employed specific machine 

Fig. 2. DL approaches for exploration of COVID-19 variant analysis and treatment optimization.  

Q. Rafique et al.                                                                                                                                                                                                                                

http://www.nlc.cn/newen/periodicals/
http://www.nlc.cn/newen/periodicals/
http://www.wanfangdata.com/
http://www.wanfangdata.com/


Computers in Biology and Medicine 163 (2023) 107191

5

learning algorithms to reduce the dimensionality of the clinical feature 
space and identify clinical prognostic indicators for COVID-19. The 
models, combined with pertinent clinical studies, are essential for 
readiness against the emergence or resurgence of infectious diseases. 
Recent endeavours have concentrated on utilizing machine learning 
methods to explore biomarkers and clinical marker signatures for the 
optimal management of COVID-19 [39]. In numerous studies with 
identical numbers of patients in all clinical cohorts have demonstrated 
that the identified markers play a fundamental role in the pathogenesis 
and clinical manifestations of COVID-19 [39,40]. Furthermore, the 
clinical biomarker signature is distinct in terms of its unique feature 
combination and independent of patient demographics. 

Convolutional neural networks have become well-known deep 
learning algorithms and efficient ways for recognizing inconsistencies, 
anomalies, and diagnoses in chest radiography [41]. Throughout the 
COVID-19 pandemic, scholars use a Convolutional Neural Network to 
analyze appropriate COVID-19 its variants (Alpha, beta, gamma, omi-
cron, Kappa, Zeta, Lambda, Epsilon, Lambda, Delta, Zeta and Theta etc.) 
diagnoses. Studies have shown deep learning algorithms may improve 
CT scan pictures’ specificity, sensitivity, and diagnostic efficacy [41]. DL 
is a feasible, efficient, and dependable method for precise COVID-19 
virus detection [42]. It highlights the possibility of enhancing image 
properties using artificial intelligence and identifying cost-effective and 
reliable imaging techniques for predicting deadly infections. Multiple 
researchers have recently utilized deep learning for the COVID-19 virus. 
Jamshidi et al. [34], Minaee et al. [43], Muhammad and Hossain [44], 
Campos-Ferreira et al. [45], Mostafa et al. [46], Velay et al. [47] and 
Zhang et al. [26]have made notable contributions to the literature. 
Although implementing deep learning approaches significantly in-
fluences diagnosing COVID infections using image data, scholars 
encounter difficulties implementing solutions effectively owing to 
intra-class correlation. Scale Variation, Occlusion, Illumination, Back-
ground Clutter and View-Point Variation [43]. 

Gathering, analyzing, and combining the data like that of patients’ 
physical and physiological measures comprises big data. Initially, 
training a machine requires preparing the big data to be mined, such as 
medical reports, registries, images, etc. Learning data involves under-
standing variables and recognizing significant features like the size of 
data and the number of attributes describing the data. Before processing 
and analysis, raw data are curated and remodelled, where data is 

reshaped, repaired, and integrated. Scientists intervene in ML by 
exploring and analyzing the data to extract the most delicate structures, 
patterns, and characteristics [48]. 

As shown in Fig. 4, DL techniques work independently of man’s in-
terferences. DL, a subset of ML, comprises several algorithms’ layers for 
inferences upon inputting data. Yet, DL differs from ML since the system 
has variable data representations. DL networks operate via artificial 
neural network (ANN) layers; meanwhile, ML algorithms often need 
structured data. Supervised learning is learning a function mapping an 
input to output. In contrast, unsupervised learning is unique to minor 
human supervision, and the machine learns by seeking unknown pat-
terns in a dataset with no previous tags [49]. 

Meanwhile, the database server is linked via the network and 
securely connected to the main central processing unit (CPU). The 
excessive microprocessors in the database software enables the database 
to transfer enormous amounts of data to the mainframe computer. The 
following selection layer is developed via a smart ANN and could take up 
among the leading imaging technologies in the system [50]. When a 
medical professional confirms the advice provided by this layer, the 
third layer’s images are subjected to pathological applications, visual 
and automatic microscopic imaging technologies, computed tomogra-
phy scans (CT-Scans), magnetic resonance imaging (MRI), and positron 
emission tomography (PET). The fourth layer is designed for enhancing 
and optimizing images. A DL approach was used to structure the 
network to achieve a sorting network for differentiating COVID-19 from 
influenza-A viral pneumonia, and the conventional ResNet was used to 
extract features [51]. The fifth layer is designed to finally diagnose using 
the stored data on the system where algorithms learn via an ANN 
technique. DL techniques, like a convolutional neural network (CNN), 
could reach such targets for their nonlinear modelling capability and be 
extensively applied to process medical images for diagnosis [41]. 

4.1. Computed tomography (CT) scan 

Many studies advise using computed tomography as an additional 
diagnostic strategy for COVID-19 pneumonia since it has a high sensi-
tivity for diagnosis and provides results even before symptoms and 
clinical symptoms are based on pre-trained convolutional neural net-
works [52,53]. Clinical evaluation and routine clinical practices for 
COVID-19 patients provide wide-ranging sensitive detection paths to 
understand the meta-analysis accuracy of diagnostic explanations [54]. 
According to a recent report from Wuhan, a CT scan is significantly more 
sensitive than PCR to the putative SARS-CoV-2 [55]. The results 
concluded tha more sensitive and accurate conclusion could be reached 
in patients with adverse RT-qPCR reports with a combination of CT-Scan 
and other standard techniques such as RT-qPCR or other sensitive 
diagnostic tests [56]. In addition, high-resolution chest computed to-
mography has also been shown to be an essential tool for the early 
detection of SARS-CoV-2 and rapid and necessary intervention [57]. 
Therefore, several studies have recently used CT images of breasts and 
lungs to diagnose COVID-19 and its variants (Alpha, beta, gamma, 
omicron, Kappa, Zeta, Lambda, Epsilon, Lambda, Delta, Zeta and Theta 
etc.) [58]. Previously, typical CT images of patients infected with 
SARS-CoV and MERS-CoV also exhibited symptoms similar to those of 
COVID-19 [59]. According to these results, CT scans have proven to be 
an excellent diagnostic tool for screening patients with COVID-19, 
especially in areas with a high prevalence of a pandemic. CT scans are 
indicative and confirmatory tools for the detection of pathogens in the 
diagnosis of COVID-19 its variants (Alpha, beta, gamma, omicron, 
Kappa, Zeta, Lambda, Epsilon, Lambda, Delta, Zeta and Theta etc) [60], 
and some show lacks associated with specific deficiencies, such as the 
inability to separate cases from other pneumonia (viral or non-viral) 
which may misguide for exact treatments. 

Fig. 3. Multiple computational techniques and applications for fighting 
COVID-19. 
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4.2. Radiographic images 

Graphically designed diagnostic procedures in epidemics serve a 
fundamental function in identifying and identifying COVID-19 instances 
by filtering hitting origins that, on average, produce better performance 
than the main radioscopy strategies [61]. Chest X-rays (CXR) 
&radiographs are two examples of radiographic images that extensively 
use the DL methodology [62]. These radiographic scans include a 
plethora of information, including patterns & cluster-like configurations 
that can be used to identify epidemics similar to COVID-19 [63]. 

DL algorithms can be effectively used for medical image analysis. 
Many DL models have shown promising results for the detection of 
COVID-19 its variants (Alpha, beta, gamma, omicron, Kappa, Zeta, 
Lambda, Epsilon, Lambda, Delta, Zeta and Theta etc.) [64]. Numerous 
methods have been developed to diagnose COVID-19 in X-ray images 
automatically. Most of the researchers used CNNs that were already in 
use and built to classify actual photographs for COVID-19 identification. 
Natural images frequently contain enormous, well-defined structures, in 
contrast to COVID-19 radiography patterns, typically characterized by 
oblique lung lines and areas of transparency and accumulation [65]. 

First, the lack of and low quality of COVID-19 radiography images 
appears to impact the categorization method significantly [66]. Most 
past studies relied on datasets that, at most, contained a few hundred 
COVID-19 CXR graphs that had been confirmed. Poor suggestions were 
generated as a result of over-fitting and higher generalized errors. The 
currently available radiographic image reporting is preferred to trans-
ferring deep features using fully convolutional models, such as those 
from ResNet utilizing the ImageNet dataset, which entirely differs from 
the aspects of medical images [67]. 

4.3. Chest X-rays 

The chest X-ray (CXR) is one of the essential non-invasive thera-
peutic adjuvants crucial in the initial examination of various lung dis-
eases. Having professional radiologists evaluate CXR pictures to check 
for contagious abnormalities linked with COVID-19 can serve as a sub-
stitute diagnostic tool for identifying COVID-19 or confirm the corre-
sponding diagnostic [68]. 

Deep CNNs are often utilized in image processing applications 
because of their predictive solid modelling capabilities. Following the 
target medical image analysis, CNN uses a convolutional technique to 
benefit from the image’s structural information and automatically create 
attribute hierarchies [69]. Using novel concepts in CNN design has 
increased the application of Deep learning in medical image processing, 

identification, and data classification tasks. A CXR is the most popular 
imaging method for determining SARS-CoV-2 infection. According to a 
few studies, CNN is effective at interpreting COVID-19 radiography 
images, according to a few studiAccording to a studies, CNN is effective 
at interpreting COVID-19 radiography images, and their usefulness 
justifies further research [70]. 

Analyzing these small distinguishing characteristics on CXR images 
is challenging and needs a domain expert. Additionally, the exponential 
increase in infected people makes it difficult for radiologists to establish 
an early diagnosis, leading to severe morbidity and mortality [71]; the 
process of visualizing c COVID-19 and its variants through x-ray image 
analysis with DL working details is mentioned in Fig. 5. 

4.4. Computational frameworks and COVID-19 therapeutics: A key 
approaches to drug targets 

Accessible research and data swapping can help data analysts to 
identify potential therapeutics, and computational scientists must seek 
realistic criteria for their “digital illusions” before publishing computa-
tional results. The coming contemporary research procedures may 
dramatically minimize the number of articles while increasing the 
number of computer-aided, evidence-based potential antiviral medica-
tions discoveries. 

Non-experts now employ computer-aided drafting and design 
(CADD)approaches to datasets and biological targets crucial to SARS- 
CoV-2 drug development since computational resources and software 
are more readily available [72]. Dozens of drugs have been suggested as 
potential COVID-19 treatments, and many of these have entered phar-
macological trials with little to no supporting evidence or explanation. 
Several have been approved by the Food and Drug Administration 
(FDA), for example, remdesivir and baricitinib, but none cure the dis-
ease. Per Serval virtual analysis, even computational skills cannot 
replace experimental approaches for developing excellent medical ideas. 
In contrast, using well-processed historical empirical findings and strict 
numerical methodologies can allow for the rapid practical identification 
of potentially active compounds. 

Several Deep Docking (DD) and Quantitative Structure-Activity Re-
lationships (QSAR)hits were picked and compared with experimental 
results by different research groups [73], resulting in the identification 
of several potential therapies and the repurposing of cenicriviroc and 
two more drugs, among others. In the case of combinations, the 
AI-derived hypothesis of baricitinib as a potential COVID-19 treatment 
resulted in the FDA awarding an Emergency Use Authorization (EUA) 
for its combination with Remdesivir. 

Fig. 4. ANNs in Action for Unveiling the Versatile 5-Layered Applications to track Symptom based on speedy protocols.  
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Sixteen synergistic and eight antagonistic therapeutic interactions 
were found utilizing data mining algorithms and QSAR [74], including 
the most prominent being nitazoxanide - umifenovir for synergy and 
remdesivir - (hydroxy)chloroquine for antagonism, and then compared 
with experimental results. Amodiaquine, identified as a possible 
anti-COVID-19 repositioning option using knowledge-mining tech-
niques, demonstrated preliminary antiviral efficacy in CPE and 
titer-lowering assays and animal investigations. Given its three-week 
half-life, amodiaquine might be an excellent answer, especially where 
Remdesivir, Favipiravir, and other antivirals are unavailable. 

4.5. Key deep learning techniques and applications for COVID-19 

4.5.1. Predicting the outbreak 
ANN-centred techniques are an option to forecast the outbreak of 

COVID-19 its variants (Alpha, beta, gamma, omicron, Kappa, Zeta, 
Lambda, Epsilon, Lambda, Delta, Zeta and Theta etc). The timely data on 
the epidemic [75] have been collected and arranged for forecasting 
transmission of the infection. Recurrent Neural Network (RNN) is a type 
of deep learning (DL) technique used to analyze and predict time series 
data and overview of details we, indicated in Fig. 6. In the context of 
COVID-19, RNNs can be used to forecast the transmission of the virus 
based on spatial and medical big data. Clockwork RNN (CW-RNN), 
Gated Recurrent Unit RNN (GRU RNN), and Long Short-Term Memory 
(LSTM) networks are all variations of RNNs that are designed to handle 

complex, multi-step problems. 
These networks can be used to analyze large, complex data sets and 

make predictions about the spread of COVID-19. Comparing these three 
network types, the Clockwork RNN is designed to handle long-term 
dependencies and is especially useful for forecasting data with long- 
term patterns. GRU RNN and LSTM networks, on the other hand, are 
designed to handle short-term dependencies and are more effective at 
handling sequences with short-term patterns. Overall, the use of RNNs 
and its variants in analyzing and predicting the transmission of COVID- 
19 via spatial and medical big data provides a powerful tool for moni-
toring the spread of the virus and informing public health decision- 
making [75]. 

The RNN, also known as Feedback Network or Auto Associative 
Network (AAN), is a type of ANNs where a guided cycle is formed via 
linking units. RNNs are promising in providing outputs in many auto-
matic and DL functions [76] especially analyzing qualitative inputs like 
locations or countries. It will likely upgrade the model with timely RNN 
data and learning capabilities. Such an ANN model could predict the 
viral epidemiological model in various locations with better speed and 
precision of recognition and classification [77]. 

4.5.2. Detecting the COVID-19 infectionits variants 
Although there has not been enough experience either for technical 

experts or radiologists in responding to COVID-19, radiology scans, such 
as digital photography (DR) or computed tomography (CT), have been 

Fig. 5. Unveiling Insights through Visual Intelligence: Harnessing DL Methods to Visualize X-ray Images for Detection of COVID-19 and its Variants.  

Fig. 6. Navigating the Pandemic Landscape for Predicting COVID-19 Transmission with RNNs: An In-Depth Comparison of Clockwork RNN, GRU RNN, and LSTM 
Networks using Spatial and Medical Big Data. 
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functioning well in COVID-19 its variants (Alpha, beta, gamma, omi-
cron, Kappa, Zeta, Lambda, Epsilon, Lambda, Delta, Zeta and Theta etc.) 
mentioned in Fig. 7 screening, diagnosing, and evaluating progress [78]. 
In the middle of this epidemic, a negative RT-PCR but a positive CT one 
might show COVID-19 infection showing the significance of fast 
detecting and addressing the disease clinically and socially [55]. Ac-
cording to the structure, the image sorting framework distinguishes 
various disorders. The framework employs relative distance-from-edge 
as an additional weight to learn the estimated position data of the 
patch on lung imaging [79]. However, radiologists adept at extracting 
diagnostic information from images in structured tags for training ML 
models bear the total burden of acquiring more medical images for ML 
applications. Expertly reading diagnostic imaging reports could mainly 
deal with scope, syntax, and specific terms required to translate the 
photos [80]. Ultimately, DL frameworks could be a valuable diagnostic 
tool through efficiently screening COVID-19 patients early [44]. 

COVID-19 infection might destroy the respiratory epithelial cells. 
Lately, a study has displayed that visualizing and detecting COVID-19 
and its variants (Alpha, beta, gamma, omicron, Kappa, Zeta, Lambda, 
Epsilon, Lambda, Delta, Zeta and Theta etc.), which might be unde-
tectable through conventional techniques, could be done via the pre-
liminary disseminated airway discharges onto respiratory epithelial 
cells coupled with whole-genome sequencing and transmission electron 
microscopy of culture supernatant [81]. Fig. 8 shows the implemented 
process of recommended Generative Adversarial Network (GAN). GAN 
is a unique neural network framework where two networks are trained 
simultaneously, one produces images, and the other classifies them [82] 
via efficient modelling of the potential dissemination of the training 
data. GANs have been used to translate image-to-image [83], and frag-
menting [84], among other applications [85]. 

4.5.3. Predicting complications 
Lately, the adversarial training plan has gained significant interest 

for its capabilities in reversing domain shift and producing samples of 
new images, especially in text-to-image generation [86], 
super-resolution [87], and image-to-image translation [88]. COVID-19 
might lead to acute myocarditis. Long/Short Term Memory (LSTM) 

network might estimate COVID-19-associated cardiovascular involve-
ment, as shown in Fig. 9. 

In feed-forward neural networks, signals could move in one forward 
direction from the input to the output [89]. RNN enables signs to move 
in both directions, allowing loops in the network and intrinsic links 
between hidden units [90]. The RNN works out the sequential inputs via 
a recurrent hidden state where activation in every phase relies on the 
preceding one; thus, the network shows dynamic temporal behavior 
[91]. 

4.6. Molecular assays techniques for COVID-19 detection 

4.6.1. RT-PCR 
For example, RT-PCR depends on its capacity to enhance a limited 

quantity of hereditary viral material and is viewed as the best quality 
level for SARS-CoV-2 infection distinguishing proof [92]. Presently, 
RT-PCR is used to measure epidemiological inference ordinarily upper 
respiratory tract using segregating sites [93] and provides detailed in-
formation about the quantification of SARS-CoV-2 estimated rate of the 
global pattern of the virus [94]. Moreover, a few investigations have 
been performed on serum, faecal or visual emissions using the vitality of 
emerging technologies [95]. As of late, the Rutgers Clinical Genomics 
Laboratory [96] built up an RT-PCR test Combo Kit [97] for clinical 
diagnostics from RNA of patients’ blood products [98].Utilizing quick 
spit tests gathered and less agonizing than other examining techniques 
diminishes the hazard to parental figures and may consider more sig-
nificant volume tests [97]. 

RT-PCR starts by in vitro transforming viral genomic RNA into DNA 
using RNA-subordinate SARS-CoV-2 to offer pharmacological elements 
in testing for epidemiology identifications [99]. This response depends 
on the little DNA arrangement of a molecular logic system intended to 
explicitly perceive correlative successions in the viral RNA genome and 
converse transcriptase to produce a short complementary DNA (cDNA) 
duplicate in viral RNA [100]. Constant RT-PCR and ongoing DNA 
enhancement are checked as the PCR response advances to detect 
SARS-CoV-2 VOC monitoring and its variants like alpha, beta, gamma 
and omicrons B1 and B2 [101]. According to the TaqMan measures, this 

Fig. 7. Unraveling the mysteries of zoonotic origin delving into the intricacies of COVID-19 variants.  
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is finished utilizing a fluorescent colour or DNA test explicit for a 
grouping marked with a fluorescent particle and a blurring atom [101]. 
The enhancement process is repeated using an automated system for 
around 40 cycles or until the viral cDNA can be identified, typically by 
fluorescent or electrical indicator. 

RT-PCR is generally a couple-of-step technique for evaluating viral 
concentration from effective samples [102]. One-advance constant 
RT-PCR runs the entire RT-PCR reaction on a single cylinder that con-
tains the essential preliminaries [102]. The two-advance continuous 
RT-PCR method uses multiple cylinders to conduct independent 
converse translation and intensification reactions. Yet, it is more 
adaptable and effective than the one-advance method [102], fewer raw 
ingredients are needed, and cDNA can be stored for later objective ex-
amination. The one-advance technique is frequently chosen for 
SARS-CoV-2 detection because it is swiftly balanced, comprises limited 
example handling, reduces track time, lowers the risk of error and 

contamination, and continuously combines RT and PCR stages. The 
majority of molecular diagnostic tests to date have targeted different 
SARS-CoV-2 genomic regions with real-time RT-PCR technologies, such 
as the ORF1b or ORF8 sections, the R-dependent nucleocapsid (N), S 
protein RNA polymerase (RdRP), or envelope (E) genes. 

The first COVID-19 RT-PCR symptomatic tests began included 
COVID-19 RT-PCR diagnostic disease control and prevention (CDC) 
[103,104]. TaqPath COVID-19 Combo pack (ThermoFisher-Applied 
Biosystems), Allplex 2019-nCoV Assay and SARS-CoV - 2.RT-PCR tests 
are continually advancing with improved discovery strategies and pro-
gressively robotized techniques. For instance, the ePlex SARS-CoV-2 test 
created by GenMark Diagnostics [105] uses the ePlex instrument, “The 
real example answer for reacting”, to recognize SARS-CoV-2 in naso-
pharyngeal smears [106]. Each test cartridge contains reagents for 
attractive extraction of intense stage viral RNA, enhancement, and 
cDNA location consolidating electro-wetting and GenMarkeSensor 

Fig. 8. Revolutionizing COVID-19 analysis: Harnessing the power of generative adversarial networks (GANs) to efficiently model transmission and dissemination.  

Fig. 9. Unveiling the future empowerment of Leveraging LSTM for prognosticating cardiovascular involvement in COVID-19.  

Q. Rafique et al.                                                                                                                                                                                                                                



Computers in Biology and Medicine 163 (2023) 107191

10

innovation. Target DNA is blended in with iron-marked sign tests inte-
gral to explicit targets. The focus on DNA hybridizes to the sign and 
catches tests, the two of which are appended to gold-plated anodes. The 
proximity of an object is determined using voltammetry signals to detect 
COVID-19 its variants (Alpha, beta, gamma, omicron) [107]. 

Although RT-PCR is the most generally utilized technique for dis-
tinguishing SARS-CoV-2 diseases, it has the inconvenience of requiring 
significant level lab staff from costly lab instruments, which can take 
days to create results [108]. Subsequently, a few organizations and labs 
around the globe are attempting to improve the effectiveness and speed 
of RT-PCR advancements and to create different innovations. 

4.6.2. Isothermal nucleic acid amplification 
RT-PCR requires several temperature changes for each cycle, incor-

porating propelled warm gear [109,110]. Isothermal nucleic acid 
amplification is an optional method allowing consistent temperature 
enhancement while eliminating the need for a heated cyclize. As a result 
of this guideline, numerous strategies have been developed. 

4.6.3. Reverse transcription loop-mediated isothermal amplification (RT- 
LAMP) 

RT-LAMP was created as a quick and practical option in contrast to 
SARS-CoV-2. RT-LAMP requires four objective quality/area explicit 
preliminaries to improve affectability and consolidate LAMP with an 
opposite translation venture to empower the discovery of RNA. The 
response can be tested incrementally by measuring turbidity or fluo-
rescence with varying colors. Because continuous RT-LAMP diagnostics 
require a warm-up and visual evaluation, its simplicity and applicability 
make it an attractive candidate for infection detection [111]. 

4.6.4. Transcription-mediated amplification (TMA) 
TMA is a licensed isothermal intensification method that exploits a 

canister produced during retrovirus replication to significantly enhance 
specific RNA or DNA regions more effectively than RT-PCR. It uses 
retroviral reverse transcriptase and T7 RNA polymerase to differentiate 
nucleic acids from various microbes. Per this criterion, the Panther 
Fusion stage from Hologic may perform both RT-PCR and TMA [112]. 
The Panther combination stage stands apart for its high test effectiveness 
(up to 1,000 tests in 24 h) and its capacity to control other regular 
respiratory infections whose manifestations cover COVID-19 utilizing a 
similar example and a similar patient assortment bottle [113]. 

The fundamental advancement includes hybridizing the target viral 
RNA to a specific catch test and an additional oligonucleotide containing 
a T7, and it is captured in attractive micro-particles [114]. The con-
nected RNA target hybridized to the T7 advertiser preliminary is then 
deciphered into a corresponding cDNA. RNase H-turn around tran-
scriptase action at that point severs the objective RNA clone from half 
and half twofold RNA cDNA, leaving a solitary abandoned cDNA, which 
incorporates the T7 advertiser. An extra preliminary is utilized to pro-
duce two-fold abandoned DNA, which is then translated into RNA en-
hancers with T7 RNA polymerase [115]. These new RNA enhancers, at 
that point, go into the TMA procedure with the goal that this exponential 
intensification procedure can create billions of RPL in under 60 min. The 
discovery procedure includes the utilization of single-abandoned nucleic 
corrosive flares that explicitly hybridize to ongoing RNA amplicon. 
Every focal point is associated with a fluorescent light and a fire 
quencher. When the focal point is hybridisedwith a RNA amplicon, the 
fluorophore can transmit a sign upon excitation [116]. 

4.6.5. CRISPR-based tests or assay 
The typically appropriated short palindromic rehashes (CRISPR) 

speak to a group of corrosive nucleic successions in prokaryotic crea-
tures, such as microorganisms [117]. Many bacterial proteins, called 
compounds related to CRISPR, delineated by Cas9, Cas12, and Cas13, 
can be perceived and cut these arrangements. Certain chemicals of the 
Cas12 and Cas13 families can be modified to target and cut the viral 

RNA arrangements [118]. 
Two organizations, Mammoth Biosciences and Sherlock Biosciences, 

made by spearheading CRISPR scientists, are freely investigating the 
chance of utilizing the CRISPR quality-altering technique to distinguish 
SARS-CoV-2. The SHERLOCK technique created by Sherlock Biosciences 
uses Cas13, which can cut correspondent RNA arrangements because of 
the control of SARS-CoV-2 precise RNA actuation [119]. The DETECTOR 
trial of Mammoth Biosciences depends on the cleavage of correspondent 
RNA by Cas12a to explicitly identify the viral RNA successions of E and 
N qualities, trailed by isothermal enhancement of the objective, bringing 
about visual perusing with a fluorophore. These CRISPR-based tech-
niques don’t require complicated equipment and can be employed with 
paper strips to detect the presence of SARS-CoV-2 infection. These tests 
are both inexpensive and should be completed in under 60 min. These 
tests have enormous potential for determining the goal of care [117]. 

4.6.6. SHERLOCK 
SHERLOCK is a different molecular detection approach, most 

notably the SHERLOCK test; SARS-CoV-2 might be identified using this 
[120]. SHERLOCK combines nucleic acid amplification with CRISPR/-
Cas enzymology to identify the target nucleic acid. Guide RNA integrates 
to Cas nuclease by CRISPR-Cas devices. CRISPR RNA, which correlates 
to the target RNA, and TRACR RNA operate as a scaffolding for the Cas 
nucleus in the guide RNA that recognizes the target sequence are the two 
primary components of the guide RNA. The programmable endonu-
clease function of CRISPR-Cas technology permits the identification of 
nucleic acids with exceptional accuracy and sensitivity [121]. 

In a nutshell, Cas13 or Cas12 nuclease is controlled by CRISPR RNA 
and its nonspecific endonuclease activity is activated using CRISPR RNA 
binding to a target gene, cleaving adjacent RNAs, including the reporter 
RNA, creating a signal and framework for sensitive and specific detec-
tion of RNA [122,123]. In the SHERLOCK detection technology, 
recombinase polymerase amplification duplicates the target RNA. 
Cas13a ribonuclease, a tiny fluorophore-quenching probe, and a guide 
RNA to connect the target gene are introduced in that order after 
amplification. When Cas13a ribonuclease returns to an active state after 
cleaving its target RNA, it attaches to and digests more RNA without 
specificity. The target RNA is broken down in the target gene presence, 
and then Cas13a′s non-specific activity breaks down for the fluorescent 
signal production by the fluorophore-quenching probe [124]. SHER-
LOCK can be run in a single or dual-step procedure, depending on the 
need for data delivery speed and accuracy. The dual-step reaction takes 
30–60 min and has a sensitivity level of femtomolar. In contrast, the 
single-step reaction takes 15–30 min and has a sensitive range of fem-
tomolar to attomole [121]. 

Cas13 is inactive if the target RNA has two or more errors; hence 
SHERLOCK can discriminate among SARS-CoV-2 and other viruses. 
Transporting freeze-dried items is inexpensive, which is another 
advantage. As there are no predesigned SHERLOCK tests, constructing 
the reaction mixture and nucleotides is complex, and nucleic acid 
amplification is another issue [120]. CRISPR technology and a 
graphene-based FET were coupled to create the CRISPR-Chip, enabling 
rapid and sensitive nucleic acid detection and fluorescent protein gene 
[121]. By functionalizing graphene with a catalytic CRISPR group, the 
electrical properties of the biosensor are altered, and an electrical signal 
is generated. The biosensor identified the target gene with a sensitivity 
of 1.7 FM in 15 min. SHERLOCK may identify SARS-CoV-2 as this 1-h 
treatment offers rapid COVID-19 diagnosis [120,125]. 

4.7. Immunoassays 

Although RT-PCR-based viral RNA location has been generally uti-
lized in the analysis of COVID-19its variants (Alpha, beta, gamma, 
omicron), it can’t be used to screen the advancement of illness arranges 
and can’t be applied to comprehensive distinguishing proof of past 
contamination and invulnerability. Immunoassays are biochemical tests 
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that use antigens or antibodies to identify the presence and quantity of a 
particular biomarker. The detection process relies on a competitive af-
finity response between the target biomarker (antigen or antibody) and 
other molecules in the sample for restricted binding sites given by the 
immobilized capture reagent (antigen or antigen). Antigen tests evaluate 
the presence of the SARS-CoV-2 antigen, whereas serology tests measure 
the anti-SARS-coV-2 antibody created to combat SARS-coV-2 [126]. 
Numerous researchers and manufacturers of medical devices have 
designed and tested COVID-19 immunoassays to detect the presence of 
antigens or antibodies in COVID-19 patients [127]. 

4.7.1. Serological tests 
Serological tests are characterized as an examination of serum or 

blood plasma. They have been precisely reached to incorporate testing 
of spit, sputum and other body liquids for the nearness of immuno-
globulin M (IgM) antibodies [128]. Furthermore, the immunoglobulin G 
(IgG) in this study plays an essential role in the study of disease trans-
mission and the advancement of immunizations. It assesses the path-
ways of the immunizer reaction on both short (days to weeks) and long 
(years or lasting), as well as the abundance and a good variety of anti-
bodies. IgMs are first detected in serum a few days and hours after 
infection, followed by a progression to IgG [129]. Along these lines, IgM 
can be a pointer of beginning phase contamination, and IgG can be a 
marker of current or past disease. IgG can likewise be utilized to 
recommend the nearness of many insusceptible contaminations. As of 
late, the complexity and affectability of immunoassays have expanded 
not just for the location of the antibodies themselves but also for the 
utilization of antibodies (mostly monoclonal antibodies) for the identi-
fication of antigens obtained from microbes. These tests have tremen-
dous potential for the study of disease transmission of COVID-19 [130]. 
Yet, the test outcomes can be influenced by, in any event, three cir-
cumstances: (1) a subset of individuals with a positive outcome from 
atomic hereditary testing for SARS-CoV-2 contaminations are harmful 
because of deferred counteracting agent creation after contamination, 
(2) people might be HIV constructive yet contrary for sub-atomic he-
reditary test outcomes reflecting prior and milder disease freedom, and 
(3) affectability and explicitness of the examines. The latter issue is 
critical since even a tiny percentage of false favourable outcomes due to 
inadequate specificity can lead to the deceptive predicted pervasiveness 
of antibodies in a particular community, negatively affecting financial 
decisions and genuine belief in the outcomes [131,132]. 

Assurance of presentation to SARS-CoV-2 is profoundly subject to the 
recognition of IgM or IgG antibodies explicit for different viral antigens, 
including, however not constrained to, the nail glycoprotein (S1 and S2 
subunits, receptor restricting space) and the atomic protein [133]. These 
philosophies incorporate the standard catalyst-connected immune--
sorbent test (ELISA), immune-chromatographic investigation of the 
parallel stream, balance bioassay, and explicit chemosensors. Each or-
ganization offers points of interest (speed, multiplexing, and comput-
erization) and burdens (prepared workforce, devoted research centers). 
In serological examples, quick antigen tests utilizing antibodies to 
identify the nearness of viral antigen (s) supplement these 
counters-acting agent identification strategies. The improvement of high 
throughput serological tests is at the core of significant symptomatic 
organizations [134]. 

In addition to direct diagnosis, indirect SARS-CoV-2 detection can be 
done by analyzing an infected person’s immunological response. A 
recent study has shown the serological identification of COVID-19 in 
several fluids, including saliva samples [135]. Serological diagnosis, 
instead of nasopharyngeal swabs, focuses mainly on blood samples or 
viral detection [136]. After seven days post-infection, 50% of infected 
patients have antibodies in their blood, and all infected individuals have 
antibodies after 14 days. This assessment of the fundamental immune 
response is essential for analyzing community transmission. IgM and IgG 
antibody analyses are the most crucial for detection. Immunoassay de-
notes the bio-analytical approach that relies on the interaction between 

antigen and antibody [137]. 
ELISA and LFA are the two widely prevalent serological diagnostic 

procedures based on immunoassays. For COVID-19, its variants (Alpha, 
beta, gamma, omicron, Kappa, Zeta, Lambda, Epsilon, Lambda, Delta, 
Zeta and Theta etc.) diagnosis, particular antigens or antibodies are 
required. The infection stage is crucial for establishing the COVID-19 
detection technique. Several studies indicate that less than five days is 
needed for significant viral load, and at least seven days is required for 
antibody formation. Nevertheless, following seven days of infection, the 
concentration of antibodies may decline. Consequently, numerous 
immunoassay techniques for rapidly detecting COVID-19 have been 
established [138,139]. 

4.7.2. Enzyme-linked immunosorbent assay (ELISA) 
ELISA is a microwell, plate-based investigation procedure intended 

to recognize and evaluate substances, for example, peptides, proteins, 
antibodies and hormones [140]. The test can be subjective or quanti-
tative, and the chance of results is generally 1–5 h. On account of 
SARS-CoV-2, the plate wells are typically covered with a viral protein. If 
present, antiviral antibodies stuck patient examples will imbroglio 
explicitly, and the bound immune response protein complex can be 
distinguished with an extra hint of counteracting agent to deliver a 
colourimetric or fluorescent perusing. ELISA is rapid, can test many 
samples, and may be changed to robotization for increased throughput. 
However, it may differ in affectability and is helpful for determining 
care purposes. An ELISA test distinguishes antibodies delivered in the 
patient’s blood because of disease with SARS-CoV-2 [141]. The whole 
test can be acted in a cylinder or well and includes blending tolerant 
examples, antibodies, antigens and proteins with a shading evolving 
atom. The model underneath depicts a commonplace ELISA test for 
antibodies [142]. 

To date, IgM and IgG detection by ELISA has shown high specificity 
and sensitivity in detecting COVID-19. This approach is also known as an 
enzyme-linked immunosorbent assay (ELISA) [143] since particular 
antibodies-enzymes associations are generated during the ELISA pro-
cedure to identify different proteins and bacteria in the bloodstream. 
Identifying the COVID-19 antibodies or the COVID-19 viral antigen 
produced by the host’s immune system is possible. The antibody is 
covered or fixed using 96-well microtiter plates before adding the 
sample containing the particular analyte (virus, protein, or antigen). The 
enzyme-tagged antibody recognizes the coupling of the fixed antibody 
with the analyte in the presence of a specific substrate that emits visible 
colour, luminescence or fluorescence [144]. Similar procedures are used 
to identify COVID-19 antibodies, IgG and IgM [145]. 

Several ELISAs have been developed recently to detect human IgA 
antibodies, which are the first to form in reaction to viral stimulation 
[146]. Their identification is crucial because it helps scientists under-
stand how the body responds to the illness. In a short amount of time, 
multiple COVID-19 ELISAs were also created and are being utilized. And 
have received global approval. Usually, such tests are utilized to eval-
uate a patient’s immunological health [143]. COVID-19 patients with a 
negative molecular nasopharyngeal swab are tested for IgM and IgG 
detection by ELISA [143,147]. 

Due to the quick formation of these molecules in clinical samples, 
ELISAs are used to identify the viral protein. It is feasible to use anti- 
SARS Cov-2 human IgA diagnosing or mass screening applications 
[148]. In reality, nasopharyngeal swabs must undergo confirmatory 
molecular testing during positive ELISA results [127]. The specificity 
and sensitivity of these tests have results between 75.6%, 100%, 85.7% 
and 100%, respectively, even though these values may vary significantly 
depending on the provider and the individual antibody or viral antigen 
examined [149]. In contrast, ELISA-based serological testing is more 
credible than fast antibody or antigen assays [150]. Searching for IgG is 
often more precise than searching for IgM or IgA [145]. Remember that 
the runtime of the test and the infection depend on sensitivity and 
specificity. The efficiency of SARS CoV- 2 ELISAs, the capacity to analyze 
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several samples concurrently, and the accessibility of the automatic or 
semi-automated method can accurately quantify viral antigens or 
human antibodies. Therefore, this method became an important clinical 
way for extensive surveillance and monitoring initiatives mainly used 
for particular categories such as Covid19 diagnosis [143]. 

4.7.3. Lateral flow immunoassay (LFT) 
This test is usually a subjective (positive or negative) chromato-

graphic examination that is little, compact and utilized at the consid-
eration site. The test is a kind of rapid diagnostic test (RDT) because the 
outcome can be obtained within 10–30 min. By and by, liquid examples 
are applied to a substrate material permitting the example to go through 
a piece of immobilized viral antigen, at the point when present, hostile 
to CoV antibodies gather in the band, where shading creates with the 
gathered following antibodies to show results. The test is modest and 
doesn’t require qualified staff; however, it just gives subjective out-
comes. When utilized related to symptomatology, a determination of 
contamination might be conceivable. Fast antigen test using anti-CoV 
antibodies rather than immobilized viral antigen, allowing for a more 
easy assessment of the current disease [151]. 

4.7.4. Neutralisation assay technique (NAT) 
Balance tests decide a counteracting agent’s capacity to restrain the 

viral contamination of cultured cells and the cytopathogenic impacts of 
viral replication. For this test, tolerant examples are weakened with 
whole blood, serum or plasma and added to diminishing focuses in cell 
societies. If killing antibodies are available, their levels can be estimated 
by deciding the edge by which they can forestall viral replication in 
societies of contaminated cells. The time for the balance test results is 
commonly 3–5 days; however, late advancement has diminished this to 
a couple of hours [152]. This test requires cell culture offices and, for 
SARS coronavirus, level 3 biosafety research facilities (BSL3). Despite 
these constraints, the assurance of killing antibodies in the present 
moment is significant for the remedial utilization of therapeutic plasma 
and, in the long haul, for improving immunizations [153]. 

4.7.5. Luminescent immunoassay (LI) 
Glowing immunoassays incorporate techniques that bring down the 

furthest reaches of counteracting agent reagents. They, by and large, 
identify with chemiluminescence and fluorescence. Earlier researchers 
built up a peptide-based attractive chemiluminescence catalyst immu-
noassay for the analysis of COVID-19, and Diazyme Laboratories, Inc. 
(San Diego, California) declared the accessibility of two new completely 
mechanized serological tests for SARS-CoV-2 running on completely 
robotized Diazyme DZ-light 3000 Plus chemiluminescent [154]. 

4.8. Additional diagnostic methods 

4.8.1. Biomarkers 
Multiple biomarkers found in biofluids may potentially be utilized to 

identify SARS-CoV-2. Research has indicated that patients with COVID- 
19 have a high concentration of leukocytes, C-reactive protein, blood 
platelets, lymphocytes, and D-dimer [155]. A quantitative examination 
of molecular markers to distinguish severe COVID-19 individuals with 
severe symptoms were recognized due to elevated blood creatinine, 
urea, and cystatin C levels than patients with mild conditions [156]. All 
of these indicators may be associated with the function of glomerular 
filtration, which may be exploited for the prior identification and 
distinction between intense and mild instances. It is challenging to use 
these biomarkers to diagnose COVID-19 and correlate them with 
different disease severities. These biomarkers are not unique to 
COVID-19; an aberrant concentration of these biomarkers is also present 
in various disorders [157]. 

As a biomarker, sputum comprising reactive oxygen molecules (ROS) 
is utilized to develop a genuine electrochemical biosensor for COVID-19 
detection [158]. As SARS-CoV-2 infects lung cells, mitochondrial ROS 

would be created in excess, corresponding to the considerable rise in 
cellular ROS in SARS-infected persons [159]. Consequently, a large 
concentration of ROS is utilized as a biomarker to diagnose COVID-19 
and its variants (Alpha, beta, gamma, omicron). As COVID-19 and 
influenza are more prone to be misdiagnosed, ROS level may be a 
valuable biomarker for identifying COVID-19 patients and differenti-
ating them from influenza. 

4.8.2. Biosensor tests (BT) 
It has been possible to develop a biosensor for the continual and real- 

time SARS-CoV-2 diagnosis that is clinically applicable [160,161]. The 
nucleic acid of SARS-CoV-2 is detected by the biosensor using photo-
thermal effect and plasmon sensing. Surface conduction electron local-
ized resonance oscillations close to the target biomarker is found using 
light by LSPR sensors. This binding and affinity alter the plasmonic 
material is refractive index [162]. Two-dimensional gold nanoislands 
(AuNIs) having a complementary sequence hybridize with the 
SARS-CoV-2 viral nucleic acid. The thermoplastic effect occurs when 
AuNIs, plasmonic nanoparticles with large optical cross-sections, 
transform incoming light into heat without emitting radiation [163]; 
this provides the procedure with an in-situ heat source. By having a 
detection limit of 0.22 pM, localized thermoplastic heating may raise the 
temperature of hybridization and enable accurate differentiation from 
related SARS-CoV-2 gene sequences [164]. 

Biosensor tests depend on changing the particular cooperation be-
tween biomolecules into a quantifiable estimation by optical, electrical, 
enzymatic and different strategies. Surface plasmon reverberation (SPR) 
is a method that estimates episode light impedance at a fixed limit 
because of nearby obstruction, for example, the adsorption of antibodies 
or antigens. An SPR-based biosensor was created to determine SARS 
with a coronaviral surface antigen tied to a gold base [165]. The SPR 
chip had a lower recognition breaking point of 200 ml against SCV an-
tibodies in a short time. Also, as of late, PathSensors Inc. declared a 
canary biosensor to distinguish the new SARS coronavirus. This stage 
utilizes a smart immunosensor that joins the infection with the symptom 
enhancement to give an outcome within 3–5 min. The biosensor is relied 
upon to be accessible for research in May 2020. 

Several electrochemical biosensing approaches have been utilized to 
quickly and precisely detect COVID-19 infection. These biosensor-based 
devices rely on electrochemical and impedance reactions when viral 
proteins or RNA bind to specific antibodies or probes. Many different 
types of biosensor technologies are now available for COVID-19 diag-
nosis. Localised surface plasmon resonance (LSPR) biosensors, crystal 
microbalance biosensors (QCB), fluorescence-based biosensors, col-
ourimetric biosensors, electrochemical biosensors, quartz surface- 
enhanced Raman scattering (SERS) biosensors, and others are plat-
forms used diagnosed COVID-19. SERS and Electrochemical biosensors 
are the most frequently deployed point-of-care platforms [45]because of 
their small size, simplicity of use, and cheap cost. Electrochemical bio-
sensors, SARS CoV-2 viral RNA and proteins may be identified [164]. 

Additional nano biosensor research might exacerbate problems with 
residual detection. The application of polymer-coated biosensors for 
quick, precise detection has been shown [17]; this contrasts with the 
previously discussed nanoparticle-decorated biosensors. It is advised to 
use polymers containing acrylic groups for bulk biosensor manufacture. 
LFA biosensors are the efficient approach to detect SARS-CoV-2 on the 
commercial market, outperforming all other approaches. The public is 
interested in the powerful CRISPR-Cas technology combined with LFA. 
This biosensor is inexpensive, on-site monitoring equipment that allows 
non-specialists to conduct real-time testing and has excellent specificity 
and sensitivity. A fast antigen test with gold-standard RT-PCR is 
preferred since diagnoses cannot be made with absolute certainty at the 
service point [166]. 

4.8.3. Aptamer-based nano-biosensor 
Aptamers are synthetic RNA or DNA molecules that can bind to 
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specific targets, including proteins. In the context of SARS-CoV-2, 
aptamers can be designed to bind to the centre protein of the virus. 
This makes them a potential tool for quickly detecting the presence of 
the virus. The developers of an aptamer-based point-of-care (POC) test 
for SARS-CoV-2 are developing a test that can deliver results in just 30 s 
without the need for sample preparation steps. This could provide a fast 
and convenient method for detecting the virus in real-world settings 
[167]. 

The most recent advancements in aptameric nano biosensors for 
SARS-CoV-2 diagnosis are a crucial milestone. In the future, applying 
deep learning algorithms may impact the choice and accuracy of the 
nano-biosensor for COVID-19 and its variants (Alpha, beta, gamma, 
omicron, Kappa, Zeta, Lambda, Epsilon, Lambda, Delta, Zeta and Theta 
etc.) identification exploration is mentioned in Fig. 10. Extensive med-
ical validation tests and studying complex materials like blood, sweat, 
faeces, inhaled air, and a few others are needed to fully comprehend 
sensor robustness and commercial potential. The development of 
wearable diagnostic equipment may be helpful for continuous COVID- 
19 monitoring. Employing additive manufacturing, such as 3D or 4D 
printing, creates multiple items for various uses. In reality, 3D-edge-cut-
ting technology can generate diverse nanocrystals for uniquely manu-
factured aptameric nano biosensors to diagnose COVID-19its variants 
(Alpha, beta, gamma, and omicron). 

4.8.4. Fast antigen test (FAT) 
Notwithstanding sub-atomic genetic testing, quick antigen tests are 

utilized to distinguish viral antigens; these tests depend on explicit 
monoclonal antibodies to give an instrument to catch viral antigens from 
a logical example [168]. These investigations are not restricted to a 
particular configuration [169]. 

4.8.5. Paper-based detection 
An elective paper-based strategy that utilizes wastewater as tests 

have been proposed by Kang [170]. Paper-put-together unit-based 
concerning the coordination of different applicable territories, for 
example, extraction, elution, sanitization, fortification and identifica-
tion, all in a tiny, modest expendable paper and printed with wax on a 
superficial level as zones. It is very conceivable to finish the whole test 

process with no force source or force just by collapsing the paper in 
various modes, so it is more practical than the costly and messy 
multi-step procedures. These systematic gadgets give a top-notch, quick 
yet exceptionally exact microorganism recognition strategy, just as low 
assembling expenses and easy to use nature [171]. 

This strategy can fill in as an elective discovery instrument to rapidly 
distinguish the source or nearness of causative specialists, for example, 
COVID-19, in any pandemic territory. The dung and pee of transporters 
of Community sicknesses entering the sewage framework can contain 
numerous biomarkers for the infection. Another investigation affirmed 
the equivalent, demonstrating that these irresistible operators could stay 
dynamic. For a few days, considerably after they have been released 
from patients on the off chance that they locate a reasonable domain 
[171,172]. This paper machine can follow the transmission of COVID-19 
in network wastewater by dissecting SARS-CoV-2 in defecation, pee and 
other human dung. 

4.8.6. Digital PCR 
The currently used RT-PCR techniques have been technologically 

improved by digital PCR [173]. Digital PCR is recently employed for 
several purposes, including detecting viral loads, mutational analysis, 
research, analysing liquid biopsy samples, single cell analysis, and 
identifying low-expression targets [174]. Various businesses have 
developed unique digital PCR systems. Droplet digital PCR (ddPCR) is 
the best method for determining individuals’ viral infections. The 
ddPCR was designed for scientific work, particularly in the case of vi-
ruses, when assessing a patient’s viral load is essential to assess patho-
genicity [175]. Several disorders, including COVID-19 infection, can 
now be diagnosed using ddPCR, which was applied to other clinical 
domains [176]. It has become one of the most precise and sensitive 
methods available. 

It should be noted that digital PCR uses DNA ultra-dilutions along 
with micro-sample divisions conducted on solid supports or with the 
reaction medium’s emulsifier. The target nucleic acid, specific Taq po-
lymerase, probes and primers, and the PCR amplification buffer are all 
included in the ddPCRnano-partitions of the PCR mixture into >20,000 
oil-water droplets. Identical to RT-PCR, sample preparation is followed 
by the extraction of viral RNA using either custom or commercial 

Fig. 10. Detection of SARS-CoV-2 and its varients with Gold Nanoparticle Aptasensors: A Process Diagram.  

Q. Rafique et al.                                                                                                                                                                                                                                



Computers in Biology and Medicine 163 (2023) 107191

14

techniques. Consequently, viral RNA may be captured automatically in 
ddPCR utilizing one-step techniques or analysed after an RT step to 
generate cDNA [177]. The creation of the reaction mixture is the first 
step in the ddPCRmethod. Next, emulsifier oil-water droplets are created 
by employing a droplet generator and specialized cartridges. The 
resulting droplets are replicated using a conventional RT-PCR amplifi-
cation method, amplifying the target DNA of the droplet and producing 
a variety of amplification responses in a single experiment. The 
magnified droplets are then scanned using a droplet reader that uses 
capillary tubes that ensure that each droplet flows separately and is 
triggered by a laser. If the droplet reader detects a positive result, the 
fluorescence emission signal it produces is recorded by a CCD camera 
[178]. 

4.8.7. Next-generation sequencing 
The role of next-generation sequencing (NGS) has been significant in 

identifying the SARS-CoV-2 sequence, ofidentifying the SARS-CoV-2 
sequence, and improving the vast majority of current early diagnostic 
methods. NGS was used to characterize the whole genome of SARS-CoV- 
2, demonstrating its classification in the coronavirus family [179]. Using 
just a single, sequence-independent primer for amplification and nano-
pore technology, SARS CoV-2 was sequenced from scratch [180]. NGS is 
now used for identifying novel genetic variants and molecular tech-
niques but never for diagnostic purposes. Its clinical use is reduced based 
on the high analysis cost, expensive equipment, and the requirement for 
highly educated bioinformaticians [181]. Although the substantial cost 
of the technique, several firms have produced commercial kits for 
SARS-CoV-2 sequencing utilizing NGS methodologies. In particular, 
most commercially available kits depend on NGS and mixed collection 
methods such as quick tests [182]. 

In addition, other sophisticated NGS approaches have been devel-
oped to discover mutations in the sequencing of the SARS-CoV- 2 
genome, therefore; detecting fast-evolving strains that are significant for 
vaccine development and epidemiology. Among these methods, 
Amplicon-based metagenomic sequencing provides the most efficient 
method for rapidly detecting and analyzing SARS CoV-2 and specific 
other pathogens. For example, metagenomic sequencing detects a pa-
tient’s microbial community, and SARS-CoV-2 virus RNA can be repli-
cated and found using amplicon-based sequencing [46]. 

Consequently, metagenomic analysis and amplicon-based 
sequencing may correctly detect COVID-19 infection, thereby detect-
ing secondary infection caused by other viruses that negatively impact 
patient health [183]. MinION and IDbyDNA are examples of these 
sequencing techniques [183,184]. With a 75-bp average length and 
complete coverage, the IDbyDNA technique offers >13 million readings, 
of which >8 million are unique. Shotgun sequencing promotes the dis-
covery of SARS CoV- 2 sequence variants by enabling a high library 
score and Q score [185]. Furthermore, MinION technology gathers 
incredibly short and lengthy reads (4,000 bp), providing 30 Gb of output 
data. This portable approach allows low-cost, real-time clinical sample 
testing [186]. 

This method was used on the SARS CoV-2 genome, including primers 
targeting 16 conserved coronavirus binding sites [187], enabling 
reconstruction of the complete genome overlapped sections of 1,000 bp 
readings. Next-generation sequencing is the most powerful tool for the 
molecular investigation of SARS CoV-2, the discovery of novel muta-
tions during genomic testing, and the creation of genome-based thera-
peutic alternatives [188]. 

Besides, in microbiology labs, NGS technology has grown to be 
generally regarded as a means for monitoring outbreaks and genetic 
epidemiology. Finding novel mutations in SARS-CoV-2 enables re-
searchers to reconstruct previously unrecognized infection paths and 
provides a genetic foundation for SARS-CoV-2 medication discovery, 
vaccine design, and diagnostic development [189]. Monitoring the 
SARS-CoV-2 genome enables quick turnaround on patients with un-
known origins of infection and a more efficient COVID-19 management 

approach [127,141]. 
There are several techniques used for the diagnosis of COVID-19, 

each with its advantages and disadvantages. CT scans are used for 
screening but require expensive equipment and technical expertise. RT- 
PCR is the gold standard for identifying active infections but requires a 
specialized laboratory setup and qualified personnel. Immune assays 
and ELISA tests are more sensitive and specific but require complex 
processes and culture mediums. Serological tests can identify previous 
infections and determine the stage of infection but have the problem of 
providing false-negative results in the early stages. CRISPR-based tests 
are easy to use and cost-effective but may lack sensitivity. Electro-
chemical biosensors quickly and precisely detect COVID-19 and its 
variants, but some lack sensitivity, selectivity, and electrode 
manufacturing. Comparative knowledge of different diagnostic tech-
niques for COVID-19 and their advantages and disadvantages, are 
mentioned in Table 1. 

5. Synergistic medicine combinations for COVID-19 treatment 

Synergistic combinations may increase therapeutic efficacy and po-
tency by generating higher therapeutic benefits or lowering the needed 
dosage, minimizing adverse impacts. Identifying acceptable combina-
tions of licensed chemicals to counter the COVID-19 outbreak and 
subsequent pandemics are considered more advantageous to discovering 
and developing a completely novel single-agent therapy: a faster time to 
clinical application. Numerous studies have debated the advantages of 
identifying novel synergistic medication combinations for treating 
COVID-19 and its variants (Alpha, beta, gamma, omicron) [72]. 

5.1. Databases retrieval and available resources for synergistic drug 
detection 

In response to the outbreak, several identified research institutions 
have established particular COVID-19 datasets, publishing libraries, and 
various new tools have evolved. Among highlights a few, PubMed, the 
world’s largest scientific and biosciences resource repository, has 
created a SARS-CoV-2 Data, which includes links to indexed publica-
tions in both Pubmed and Pubmed Central for indication of clinical 
trials. The ChEMBL database, one of the essential general databases of 
pharmacological outputs, has released a special edition with COVID-19- 
associated diagnostic data for about 20 000 molecules. The European 
Bioinformatics Institute (EBI), which maintains ChEMBL, has developed 
a comprehensive COVID-19 research gateway that includes data on viral 
and host protein-coding genes, viral-host protein associations, and 
several other sources. The NIH’s National Center for Advancing Trans-
lational Studies (NCATS) has established a significant biochemical and 
functional genomics library, providing information on the therapeutic 
potential of pharmacological pools in SARS-CoV-2 target-specific and 
phenomenological studies. 

In pharmacological research, the Diamond Synchrotron source has 
made accessible a library of 1500 resolved microstructures of lower 
mass segments bound to SARS-CoV-2 Mpro and their realistically esti-
mated target proteins. As a result of these and similar endeavours, nearly 
1100 protein structures spanning the bulk of SARS-CoV-2 RNA encodes 
were deposited into the Protein Data Bank (PDB). PostEra also used the 
Diamond incommensurate dataset as a starting point for crowdsourcing, 
community-sourced de novo ligand synthesis. As a result, over 1800 
internal consistency dependability molecules have already been created, 
synthesised, and tested, and results have been released publicly. 

Non-structured datasets are another significant source of informa-
tion on the virus and the disease. As a result, most medical journals 
chose to make all COVID-19-related articles open to the public. Kaggle 
has made available the COVID-19 Open Research Dataset (CORD-19), 
which comprises over 200,00 research publications on new and related 
coronaviruses in over 100 000 full-text entries. Meanwhile, Elsevier 
developed the Coronavirus Information Center, a free resource with over 
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30 000 publications and chapters. 
As in Fig. 11, we show the process of identification of synergistic 

effects using DL database retrieval techniques. These approaches eval-
uated numerous plant compounds from available resources to collect 
many phytochemical compounds used for target-disease association and 
disease-target interaction. The combination may have an antiviral effect 
that can be evaluated using its molecular representation to develop 
novel drugs and vaccines to treat COVID-19 infection and its variants 
(Alpha, beta, gamma, omicron) [190]. 

Due to the massive number of different chemical combinations, it is 
prohibitive to investigate the vast array of possibilities by high- 
throughput screening of even relatively large chemical libraries. 
Consequently, in silico screening employing various computational ap-
proaches is a desirable choice [191]. Chushak and Stone [191] 
employed knowledge-based methodologies to build potential medicine 
combinations and verified synergies for the SARS-COV2. Liu et al. [192] 
established a biological network proximity metric to evaluate the syn-
ergy between anti-cancer drugs and hypertension. Synergy has been 

predicted using machine learning techniques, particularly DL ap-
proaches [193,194]. In contrast, Goh et al. [195], constructed on a large 
screen deep neural network [196] and showed that deep learning is 
better than standard machine learning models such as SVMs and RFs 
[197]. 

A significant development in the DL approach is the construction of 
ComboNet [198]. ComboNetis a DL architecture that models biological 
targets and chemical structures to anticipate synergistic drug combina-
tions. By precisely simulating interactions between medications and 
biological targets, the reliance on combination synergy data may be 
significantly reduced. Indeed, unlike prior methods [199], ComboNet 
learns to model drug-target interaction (DTI) based on molecular 
structures, which is advantageous compared to methods that utilize 
drug-target contact (DTI) as static characteristics [200]. 

The architecture of ComboNet comprises two major parts. The first 
part is a convolutional graph network (GCN) which generates a 
continuous molecule representation [201]. This depiction includes the 
structural characteristics of the molecule and expected targets (the 

Table 1 
Comparative analysis of diverse diagnostic approaches for COVID-19: Unveiling the power of detection methods.  

Techniques Procedure Advantages Disadvantages 

CT scan  • CT scans have proved to be an effective screening 
technique for COVID-19, particularly in regions 
of high incidence or during pandemics.  

• CT scans are non-confirmatory and suggestive 
techniques for pathogen identification in diag-
nosing COVID-19. 

A chest CT scan is more sensitive thanRT-PCR, 
particularly in the early stages.  

• It takes costly equipment and technical 
expertise to operate.  

• Since the chest anomalies are similar to other 
viral pneumonia, it cannot identify COVID- 
19 precisely. 

RT-PCR • RT-PCR measures for COVID-19 ordinarily uti-
lize upper respiratory tract tests utilizing spreads  

• The molecular diagnostic technique RT-PCR is 
the gold standard for identifying Active In-
fections/viruses.  

• The procedure is minimally invasive and yields 
highly accurate findings.  

• RT-PCR test requires a costly, specialized 
laboratory setup with equipment and 
biosafety infrastructure.  

• In addition, qualified personnel is required 
to execute the test method. 

Immune essay  • Virus inactivated and immobilized on a slide  
• Addition of test sera with fluorescent antibody 

binding detection  

• Can be performed at PC2 facilities after slide 
preparation  

• Less complex technically than neutralisation 
assays  

• Preparing slides needs PC3 capabilities  
• Unspecific compared to neutralisation  
• Technically difficult  
• Subjective endpoint 

CRISPR-Based 
Tests  

• CRISPR refers to a set of bacterial nucleic 
corrosive successions. 

• Cas9, Cas12, and Cas13 are CRISPR-related pro-
teins that can cleave these combinations. Cas12 
and Cas13 compounds may be changed to cleave 
viral RNA.  

• Possibly the most significant benefits of 
CRISPR/Cas9 over other genome editing 
methods are its ease of use and effectiveness.  

• CRISPR-based approaches do not need 
complicated apparatus and may be used with 
paper strips to detect the proximity of SARS- 
CoV-2 infection without sacrificing sensitivity or 
specificity.  

• These examinations are inexpensive and should 
take no more than 60 min.  

• CRISPR detection is likely only as sensitive 
as an RTK (105–106 copies/ml). 

ELISA  • ELISA (Enzyme-linked immunosorbent assay) is 
a screening test used to determine the presence of 
antigens and antibodies against a pathogen in 
Serum/Plasma from an inpatient.  

• Labs using an ELISA Reader and washer 
processing 90+ samples on a 96-microwell plate 
in 2–3 h. One ELISA Reader can run many tests 
concurrently, including infectious, biochemical, 
cardiac, and cancer markers, making it cost- 
effective and offering reliable and accurate test 
results.  

• ELISA tests are more sensitive and specific 
because they employ enzyme-substrate re-
actions and cleaning procedures to eliminate 
non-specific antibodies.  

• It can identify current and prior infections and 
has been used worldwide for over two decades.  

• Complex processes and costly culture 
mediums are needed.  

• Probability of erroneous positive and 
negative results  

• Insufficient immobilisation of antigens leads 
to erroneous findings. 

Serological test  • Serological tests study blood plasma or serum to 
detect immunoglobulin M (IgM) antibodies in 
sputum, spit and other body fluids.  

• Serology tests can identify those who have been 
previously infected and those who are now 
unwell; therefore, they would provide a clearer 
picture of the population’s real COVID-19 
infection rate.  

• Serology tests may be used to assess the phase of 
infection depending on the concentration of 
various antibodies in a patient’s sample.  

• Serology tests do not reveal the virus but the 
antibodies against it.  

• Consequently, they have the problem of 
providing false-negative findings in the early 
stages of an infection, which is the primary 
limitation of PCR-based techniques. 

Electrochemical 
biosensors ‘  

• Electrochemical sensors or biosensors give 
analytical information through a chemical or 
biochemical receptor as they can be connected 
directly to an electrical transducer element.  

• Electrochemical techniques may help diagnose 
coronavirus faster because of their cost- 
effectiveness, ease of use, point-of-care detec-
tion, and shortened sample analysis time.  

• Quick and precise COVID-19 and its variants 
(Alpha, beta, gamma, omicron) infection 
detection.  

• SERS and electrochemical biosensors are the 
most popular point-of-care platforms due to 
their compact size, ease of use, and low cost.  

• Most SARS-CoV-2 sensors are effective; 
however, some lack sensitivity, selectivity, 
sampling rate, and electrode manufacturing.  
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molecule interacts with the biological target). The second component of 
ComboNet simulates the relationship between the target and the disease. 
It is a linear function that determines the relationship between biolog-
ical targets, structural characteristics of compounds, synergy, and anti-
viral activity [202]. 

5.2. Implications of deep learning methods to target proteins and drug 
sites for COVID-19 therapeutics 

Even though no quantum computing initiatives still have resulted in 
verified medicinal compounds, the mega combinatorial libraries have 
the potential to provide innovative suggestions for COVID-19 drug 
development. DL approaches were employed in a computational effort 
on the protein surface to resolve the discrepancy between the number of 
accessible database searches and traditional docking capabilities. The 
Deep Docking framework created Quantitative structure-activity re-
lationships (QSAR) algorithms for molecular docking. Unlike traditional 
docking, which does an entire screening run and picks just a limited 
number of successfully docked molecules, this technique incorporates 
all docking data. Deep Docking predicted docking scores for 1.36 billion 
molecules from the ZINC15 database versus 12 primary protein targets 
in the initial stage. It demonstrates a 100-fold improvement in compu-
tational system performance and a 6000-fold boost in sensitivity for top- 
scoring compounds. When used for virtual screening against protein, 
Deep Docking may reduce >1.4B compounds (from the ZINC15 library) 
to 1000 potential hits in just one week. It used 640 CPU and 40 GPU 
units (GLIDE docking and DL computations, respectively). Surprisingly, 
conventional docking methods would need years of continuous work on 
this technology without DL improvement. 

5.3. Knowledge-based AI tools for the discovery of synergistic drug 
combinations for COVID-19 

The seriousness of coronaviral outbreaks encouraged scientists, in-
stitutions, publishers, organizations, and authorities to invest heavily in 
studies and data collection to better understand the illness and find an 
effective treatment as quickly as possible. Several structured and un-
structured COVID-19 datasets have been made public, allowing for 
broader use of information extraction approaches and Intelligence 
technologies for COVID-19 drug development, with some notable in-
stances mentioned in the following sections [203]. 

Medical Data Sets are intended to provide a high-level view of the 
links between diseases (symptomatology, taxonomies, etc.), biological 
entities (genomics, protein production, related proteins, poly-
nucleotides), and natural chemicals (clinical and investigational drugs, 
tool compounds, etc.).These correlations can be inferred directly from 
hierarchical datasets, such as medical and pharmaceutical archives, or 
massive volumes of data, such as a corpus of academic research and 
inventions, using information retrieval techniques aided by machine 
learning algorithms. Natural language processing (NLP) approaches for 
entity recognition can generate a KG from unstructured data [204]. This 
establishes whether artefacts in the text correspond to the same under-
pinning enterprises; similarity excavation, which recognizes significant 
subject triplets in the text; and resemblance priority, which analyses the 
believability of the data collected programmatically or manually). 

The synergistic effect of medications creates several significant 
therapeutic potentials. The significant efficacy of anti-HIV medication 
combinations and the synergism of multiple other medicines un-
derscores the need to investigate COVID-19 treatment methods. Modern 
AI technologies can be employed as practical optimization algorithms to 
investigate medication combinations with synergistic activity against 
SARS-CoV2 [205]. 

The review-based findings [74,206] emphasize the need for 

Fig. 11. Unveiling the power of deep Learning database retrieval techniques for unlocking the synergistic effects in COVID-19 treatment.  
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biological models in antiretroviral medicine combinations and the use of 
data and text mining technologies in determining the mechanisms of 
action behind synergism/antagonism in COVID-19. These data also 
imply that a lack of biological models on pharmaceutical combinations 
before patient use may increase the probability of undesired side effects 
and poor outcomes. Furthermore, the well-established matrix diagnostic 
test provides a simple, data-driven way to identify synergistic COVID-19 
treatment combinations and emphasize unfavourable medicine combi-
nations [207]. 

6. Recommending medications to COVID patients using AI 

COVID-19 could lead to cardiovascular complications, and inter-
vening with COVID-19’s vulnerable groups is a significant concern. 
ANN-based techniques could achieve better outcomes parallel to tradi-
tional techniques. Keeping patients’ COVID-19 records showing clinical 
factors and cardiac complications would enable recognizing patterns to 
build cardiovascular complications’ risk models forecasting therapeutic 
responses. Fig. 12 shows an Extreme Learning Machine (ELM) model 
suggesting proper medications for patients’ cardiac complications 
[208]. ELM-ANN could apply prior model inputs to forecast required 
outputs where the training of the supervised model occurs via actual 
network data. Hence, regarding different viral infections for past pa-
tients, ELM would recommend potential medications for cardiovascular 
complications [34]. Compared to the traditional feed-forward network, 
ELM algorithms, such as back-propagation (BP), learn faster with 
improved generalization functionality [209]. Frequently, traditional 
tuning-based algorithms need fewer hidden neurons than ELM [210]. 
After the learning procedure, forecasting new data is done via the 
validation process. The proposed model applies data to forecast how 
COVID-19 affects the cardiovascular system and various therapeutic 
responses, thus lowering the risk of potential cardiac complications 
[211]. 

COVID-19 may cause cardiac arrest in the elderly, necessitating the 
interference of cardiologists; thus, experts are involved in developing a 
structured technique capable of providing early investigations or clinical 
trials worldwide that could deepen understanding of the disease’s final 

stages [212]. Biomarkers should be used carefully, particularly in 
vulnerable elderly patients with comorbid structural heart diseases 
[213]. 

The level of COVID-19 infection, electrocardiography, and history of 
chronic diseases could be inputted to train the model. Adopting multi-
plicative gates would deal with the ongoing stream of flaws via the in-
ward conditions of the unique entities of memory cells [214]. Long 
Short-Term Memory (LSTM)neural networks could address losing gra-
dients in Recurrent Neural Networks (RNNs) [215]. Lately, LSTM-NN is 
standard and highly applied in controlling robotics, human handwriting, 
speech, speed, and other activities recognition and text classification 
[216,217]. 

7. Discussion 

This review discusses the numerous COVID-19 variants (Alpha, beta, 
gamma, omicron) diagnosis approaches used in various clinical settings. 
Numerous kits and tools are currently available on the market; however, 
the absence of relevant qualities such as cost, run time and complexity of 
a particular method, thus; making it necessary to build robust point-of- 
care tools. Researchers have swiftly adapted available diagnostic tools to 
the COVID-19 virus and its variants (Alpha, beta, gamma, omicron) due 
to the availability of these technologies [218]. The lessons learned 
during the SARS epidemic 2002 have influenced the development of 
COVID-19 techniques. The SARS-CoV-2 genetic sequence was deduced 
in just three weeks after transmission electron microscopy virus detec-
tion, while SARS-CoV19 was identified after five months [219]. This is a 
result of the scientific community’s swift reaction and advancements in 
diagnostic capability between 2002 and 2020, such as the availability of 
NGS (Next-Generation Sequencing)for speedy sequence Identification. 
However, the growing number of testing techniques needs constant 
optimization and regulation. In addition, various techniques require 
additional validation to assure precision, usability, accuracy, and 
widespread deployment. Additional investigation on these diagnostics 
for zoonotic monitoring might aid in preventing future outbreaks [220]. 

The gold standard RT-PCR is utilized to compare other detecting 
methods based on sensitivity, precision, measurement principle and 

Fig. 12. Illuminating the path: Harnessing LSTM-ANN networks to anticipate optimal therapy for COVID-19 through Long-term pattern sequence.  
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cost. RT-PCR measures nucleic acids to diagnose an infection, while 
most detection procedures depend on serological testing. Serological 
assays detect both the antigen and the antibody. LFIA can be an effective 
point-of-care diagnostic tool to rapidly detect the blood antigen. Several 
rapid diagnostic tests (RDTs) were produced with less accuracy, and 
additional advancements in this sector can be employed to create point- 
of-care testing devices that are very sensitive and accurate [221]. 

Among the recently discovered diagnostic techniques for COVID-19 
nucleic acid identification, LAMP (Loop-mediated isothermal amplifi-
cation) yields more convincing findings than RT-PCR [222]. A lateral 
Flow-based test for detecting nucleic acid based on isothermal amplifi-
cation is a new method for developing diagnostic instruments. In the 
COVID-19 diagnosis, lateral flow assay (LFA), which is paper-based, has 
gained people’s assurance and acceptance [223]. Literature has 
demonstrated that less sensitivity is the critical concern linked with 
immune-related LFA. Several solutions exist, including utilizing Analyte 
pre-concentration, colloidal gold particles and Ion concentration 
polarisation techniques. Another novel method for enhancing the 
specificity, sensitivity, and speed of diagnostic testing is the proximity 
ligation assay, in which aptamers and antibodies are utilized to target 
the viral genome [224]. 

Serology tests have garnered significant interest since they are 
simpler to administer and give more insight into all infected persons 
than NAATs (Nucleic Acid Amplification Tests). The latest methods and 
techniques used for COVID-19 and its variants (Alpha, beta, gamma, 
omicron) detection are evaluated in terms of their operational princi-
ples, their worth for viral detection and potential limitations. Since 
diagnostic procedures are vital to managing outbreaks, it is essential to 
recognize the limitations of present methods, create more effective 
methods, and discover all infected persons, including asymptomatic 
COVID-19 carriers, swiftly and correctly in the early stages. With this 
objective in mind, Paper-based processes, LFAs (Lateral flow assays), 
and the application of AI approaches are a few of the suitable techniques 
that might be utilized to avoid and manage the future spread of COVID- 
19 and other possible pandemic breakouts [225]. 

During the pandemic, several additional biosensors were developed, 
most of which were dependent on probe-based technology, aptamer- 
based technology, nanotechnology, Barcoding, and CRISPR- Cas; all of 
these have relatively more straightforward usage and provide rapid 
screening for the SARS-CoV-2 virus. Biosensors are devices with organic 
and inorganic constituents that assess and deliver quantitative and 
qualitative information on a particular analyte in the samples. During 
pandemics, these biosensors are considered potential diagnostic and 
decision-making tools that might save millions of lives.COVID-19 may 
also be detected with DNA microarray-based methods [226]. Biosensors 
must simplify the basic concept to minimize costs and increase demand 
[227,228]. Biosensors have several options to increase sensitivity and 
effectiveness. 

In addition, technologies in the research stage, including developing 
electrochemical biosensors and artificial intelligence to deliver data- 
driven insights, may be valuable for rapid and precise detection [229]. 
The development of nanotechnology and microfluidics is paving the way 
for the creation of biosensors having varied characteristics [230]. This 
benefits the miniaturization of biosensors and increases their availabil-
ity during a pandemic. These biosensors are based on the microarray, 
CRISPR technology, and microfluidics, potential early-stage disease 
diagnosis techniques [231]. 

Similarly, using NGS technology in microbiology laboratories for 
epidemic monitoring has acquired general recognition. Detecting SARS- 
CoV-2 novel mutations has allowed researchers to rebuild undiscovered 
infection pathways and offers a genetic basis for developing SARS-CoV-2 
vaccines, diagnostics, and therapeutics, and is an essential method in 
genomic epidemiology [232]. SARS-CoV-2 genome monitoring facili-
tates an efficient COVID-19 management approach and expedites the 
investigation of patients with unknown infection sources [233,234]. 

Additionally, during the COVID-19 pandemic, vaccine development 

or antiviral medicine took a long time. Therefore, drug combinations 
emerged to be significant in managing viral infections owing to their 
efficacy in significantly decreasing the danger of developing drug 
resistance. They have been very effective against several viral illnesses 
in the past [235]. According to the literature, antiviral drug combina-
tions target various phases of the virus life cycle, have a variety of 
mechanisms of action, and are composed of different classes of antiviral 
drugs that have synergistic effects [236,237]. 

For drug designing, DL methods have shown efficacy [237]. It is 
standard practice for deep neural network training to c, toonduct virtual 
screenings of chemical databases in-silico, and suggest chemicals for 
laboratory testing. For these models to anticipate biological activities, a 
considerable number of training data is required. To generate correct 
recommendations, such information is often unavailable for developing 
drugs against pathogens like SARS-CoV-2. Therefore, the literature ar-
gues that complementing the limited task-specific data with a new 
biological understanding of these diseases is essential. 

The fast improvement of GCNs in estimating molecular characteris-
tics spurred the development of ComboNet [238]. Most of these ap-
proaches find molecular representations based chiefly on chemical 
structures, and it is argued that it does not imitate biological interaction 
directly [239]. While prior cheminformatics techniques have modelled 
DTI for properties prediction, most of these methods do not use molec-
ular compounds such as GCNs. ComboNet suggests combining the ad-
vantages of the two approaches into a single deep-learning model. 
Therefore, deep learning approaches Are practical for predicting syn-
ergistic drug combinations. 

8. Future direction and perspective 

Even after distinct coronavirus mutations (Alpha, beta, gamma, 
omicron, Kappa, Zeta, Lambda, Epsilon, Lambda, Delta, Zeta and Theta 
etc.), RT-PCR detecting numerous targets delivers accurate results (with 
decreased sensitivity) to novel variants. Nonetheless, Limitations of RT- 
PCR include the need for laboratory tools and the complexities of its 
setup and diagnostic processes. Further nucleic acid approaches, 
including microarray, may be employed to overcome these limitations 
and develop an affordable, quick, and efficient detection approach. 
Extensive research is being conducted to create correct procedures. 
However, more thorough research is required to translate laboratory 
approaches into clinical trials. Point-of-care diagnostics that are efficient 
and more accessible with fewer sample collection stages and faster 
detection rates may be developed via efforts with the proper attention 
and the provision of required research resources. 

The techniques and progressions in nanotechnology and micro-
fluidics can aid in employing a multifaceted approach to tackle many 
pandemic issues creating varied biosensors that will enable more quick 
diagnosis with high sensitivity and specificity at the point of treatment. 
It has been found that this virus mutates rapidly; hence, it is more likely 
to resurface from several mutant strains. In diagnostics, biosensors are in 
high demand and will be particularly useful for the early diagnosis of 
viruses. The biosensor-based instrument may fulfil the demand for 
earlier detection cheaply, even in distant places, allowing worldwide 
screening with effective results [17]. Even with RT-PCR, CT scans, and 
sequencing, user-friendly rapid diagnostic kits are needed for global 
viral screening and control. Given the benefits and shortcomings of 
existing COVID-19 screening methods, more methods, such as bio-
sensors, are needed to manage and prevent the disease [240]. 

Epidemic control requires comprehensive monitoring and swift 
dissemination of epidemiological data [241]. Smartphones, whose use 
has expanded dramatically, may be used for this purpose since they have 
the connection, hardware and processing capacity, which may promote 
electronic reporting, epidemiology databasing, and Point-of-care di-
agnostics [242]. Integrating diagnostic technologies with a smartphone 
can improve care, prevent the spread of illness, and decrease mortality 
[221]. 
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The safety of laboratory personnel doing COVID-19 and its variants 
(Alpha, beta, gamma, omicron, Kappa, Zeta, Lambda, Epsilon, Lambda, 
Delta, Zeta and Theta etc.) testing is also crucial [243–245]. When 
systems are overworked, it is more likely that shortcomings in inefficient 
microbiological processes and worse sanitation procedures may occur 
[246]. Optimizing laboratory worker protection procedures should 
proceed with the optimization of COVID-19 diagnosis. Also, more 
technological advancements are warranted because of future pandemic 
risks. 

9. Advantages 

Deep learning methods offer several advantages in diagnosing 
COVID-19, its variants and identifying synergistic medicine combina-
tions. They enhance diagnostic accuracy by analyzing various modal-
ities and detecting subtle abnormalities. Deep learning enables rapid 
screening and early detection, aiding in timely interventions and 
containment strategies. Automation and efficiency are improved as deep 
learning models quickly process large volumes of data. They contribute 
to identifying and characterising variant strains, facilitating targeted 
control measures. Deep learning algorithms predict effective medicine 
combinations, optimizing treatment strategies. These models can adapt 
and evolve, future-proofing their relevance. By complementing tradi-
tional diagnostic approaches, deep learning provides an additional layer 
of analysis, enhancing accuracy and comprehensive assessments. 

9.1. Limitations 

Despite the promise of deep learning methods in diagnosing COVID- 
19, its variants, and identifying synergistic medicine combinations, 
several limitations exist. Firstly, data availability and quality pose 
challenges, as obtaining well-annotated datasets for specific variants or 
medicine combinations can be difficult. Interpretability is another lim-
itation, as deep learning models often operate as black boxes, making it 
hard to understand their decision-making processes. Generalizability is a 
concern, as models trained on specific datasets may struggle to perform 
well on diverse populations or settings. Ethical considerations, valida-
tion for clinical implementation, limited understanding of complex in-
teractions, and resource requirements further add to the challenges. 
Overcoming these limitations will require collaborative efforts to ensure 
the responsible and effective use of deep learning in combating COVID- 
19. 

9.2. Summary 

The relentless impact of the COVID-19 pandemic necessitates novel 
approaches to tackle its challenges. This comprehensive review focuses 
on exploring and evaluating the potential of deep learning methods in 
diagnosing COVID-19, its variants and identifying synergistic medicine 
combinations. We begin by providing an overview of the challenges and 
limitations faced in diagnosing COVID-19 and its variants, emphasizing 
the urgent need for improved diagnostic accuracy. Deep learning, a 
subset of machine learning, holds great promise, offering innovative 
solutions to enhance disease diagnosis and treatment optimization.This 
review delves into the fundamental concepts and techniques of deep 
learning, tailored explicitly for COVID-19 diagnosis, variant detection, 
and medicine combination analysis. We shed light on the prevalent deep 
learning architectures employed in medical image analysis, sequence 
analysis, and data integration. By utilizing various modalities such as 
chest X-rays, CT scans, and molecular data, deep learning algorithms can 
significantly contribute to diagnosing COVID-19 with improved sensi-
tivity, specificity, and interpretability. Moreover, we explore the po-
tential of deep learning techniques in identifying and characterizing 
emerging variants of SARS-CoV-2. Leveraging genomic sequencing data, 
phylogenetic analysis, and relevant information, deep learning algo-
rithms offer a promising avenue for accurate variant detection and 

classification. 
Furthermore, we investigate how deep learning can revolutionize the 

prediction of effective drug combinations for treating COVID-19 and its 
variants. Through an extensive analysis of existing literature and 
studies, we highlight the role of deep learning algorithms in identifying 
synergistic drug combinations and optimizing treatment strategies. 
Addressing the current limitations of data availability, interpretability, 
and generalizability, we emphasize the need for further advancements 
in applying deep learning for COVID-19 diagnosis and medicine com-
bination analysis. We discuss potential future developments, including 
integrating multimodal data, transfer learning, and explainable AI, 
which hold tremendous potential in enhancing the performance and 
robustness of deep learning models in COVID-19 research. 

10. Conclusion 

In conclusion, the COVID-19 pandemic has highlighted the impor-
tance of accurate diagnosis and effective treatment in managing the 
global health crisis. While RT-PCR-based tests remain the standard for 
COVID-19 and its variants (Alpha, beta, gamma, omicron, Kappa, Zeta, 
Lambda, Epsilon, Lambda, Delta, Zeta and Theta etc.) diagnosis, they 
have limitations in detecting infections with low viral loads. They are 
not easily accessible in low-income regions. Alternative methods such as 
CRISPR/CAS-based assays, isothermal amplification, ddPCR, bio-
sensors, rapid antigen tests, and antibody tests have been developed to 
overcome these drawbacks and provide more sensitive and cost-effective 
diagnostic options. Additionally, next-generation and whole-genome 
sequencing are crucial in evaluating novel SARS-CoV-2 genetic muta-
tions. Deep learning (DL) approaches have emerged as powerful tools for 
screening, prediction, contact tracing, drug development, and treatment 
management for COVID-19 and its variants. DL advancements have 
significantly improved various aspects of the pandemic response, 
reducing human intervention and enhancing clinical practices. 
Furthermore, DL has shown promise in identifying synergistic medicine 
combinations for COVID-19 treatment. DL and other innovative diag-
nostic and therapeutic approaches offer hope for effectively combating 
the COVID-19 pandemic and its variants. 
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