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ABSTRACT Surveillance helps us identify and monitor strains with zoonotic potential. A
tracheal swab from a pelican on a Peruvian beach was H5N1 positive (clade 2.3.4.4b)
using Oxford Nanopore’s MinION platform. The near-complete genome sequence of strain
VFAR-140 will aid us in understanding avian influenza epidemiology and spread.

Highly pathogenic avian influenza (HPAI) caused by the H5N1 virus, a member of
the family Orthomyxoviridae and genus Influenza, is an epidemic disease that

causes significant economic losses (1). Seabird colonies, with their high population
density, are particularly vulnerable to HPAI (2).

Tracheal swabs were collected from a dead pelican displaying respiratory symptoms
consistent with avian influenza virus (AIV) in December 2022 in Tambo de Mora District
(Chincha Province, Ica, Peru). The bird exhibited gasping, sneezing, and neurological
symptoms such as opisthotonus. The swabs were analyzed at FARVET’s biosecurity
level III (BSL-3) laboratory. A reverse transcription-quantitative PCR (qRT-PCR) assay tar-
geting the M gene (3) was used to confirm the presence of AIV, while also screening
for other respiratory viruses (4–6).

To isolate AIV H5N1 (VFAR-140), one positive tracheal swab sample was centrifuged
(4,500 rpm); the supernatant was filtered (0.22mm) and inoculated into 10-day-old specific
pathogen-free (SPF) embryonated eggs. The allantoic fluid (AF) was collected, and the M
(3), HA (7), and NA (8) genes were amplified for typing. A hemagglutination assay (9) was
performed on the AF, and a titer of 1:512 was obtained. VFAR-140 was concentrated and
purified from 200 mL of infected AF using ultracentrifugation (18,000 rpm for 16 h at 4°C),
followed by 25% sucrose gradient ultracentrifugation (27,000 rpm for 6 h). VFAR-140 was
then resuspended in 200 mL of 1� Dulbecco’s phosphate buffered saline (DPBS), and the
RNA was extracted using the RNeasy Plus microkit (Qiagen). A cDNA library was generated
using the direct cDNA sequencing kit (SQK-DCS109; Oxford Nanopore Technologies) and
sequenced on the MinION Mk1b instrument (Oxford Nanopore Technologies) using the
FLO-MIN106 flow cell (Oxford Nanopore Technologies).

Default parameters were used for all software unless otherwise specified. Base calling
was performed using Guppy v.6.3.7 (HAC model) (10). Fastq files were taxonomically
assigned using the Fastq WIMP pipeline (11) with Kraken2 using the k2_standard_20210517
database (Galaxy v.2.0.8_beta1galaxy0) (12, 13) and visualized using Krona (Galaxy v.2.6.1.1)
(12, 14). Adapters were trimmed using Porechop (Galaxy v.0.2.41galaxy0) (12, 15). De novo
assembly of all reads was performed using Raven (Galaxy v.1.8.01galaxy0) (12, 16). A BLAST
(17) analysis was used to identify four segments of AIV (segments 1, 2, 4, 5), and we selected
a genome with complete coding sequences (A/gray gull/Chile/C61947/2022[H5N1]) as the
reference genome. We subsequently mapped all reads against the reference sequence
using BWA-MEM (Galaxy v.0.7.17.2) (12, 18) to obtain the final VFAR-140 genome sequences.
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The depth and coverage were determined using SAMtools (Galaxy v.1.15.11galaxy0) (12,
19) and visualized using weeSAM v.1.6 (20). The identified positions were confirmed using
BLASTn (17) analysis (Table 1). We obtained a total of 10,136 reads (N50, 3,353 bp; .Q5,
6,586 reads) from the isolate and successfully recovered eight segments of the VFAR-140 ge-
nome. Phylogenetic analysis of HA gene segment 4 was performed using MEGA v.11 (21)
(Fig. 1).

The viral isolate VFAR-140 belongs to clade 2.3.4.4b H5N1 AIV, with the HPAI patho-
type confirmed by the PLREKRRKRGLF cleavage site in HA (22). Molecular markers asso-
ciated with increased polymerase activity in mice (23) were found in PB2 (L89V, G309D,
T339K), and those associated with increased virulence in birds and mammals were
found in PA (A515T) (24) and NS1 (P42S, V149A) (25, 26). However, no markers associ-
ated with mammalian adaptation were detected.

Data availability. The eight obtained segments were deposited in GenBank (acces-
sion numbers OQ565625–OQ565632). The raw sequence reads were deposited under
SRA accession number SRR23852495. The sequences were also deposited in EpiFlu at
GISAID (EPI_ISL_17099964: EPI2441726 to EPI2441733).

TABLE 1 BLAST comparison results of nucleotide sequences of all segments of isolate VFAR-140 with those of closely related strains

Segment
(gene[s])

Length
(bp) %GC

Depth of
coverage (×) Most closely related strain

Identity
(%)

Reference sequence
GenBank accession no.

1 (PB2) 2,338 45 71.96 A/pelican/CHL/226958-1/2022(H5N1) 99.23 OQ455420.1
2 (PB1; PB1-F2) 2,341 43 108.75 A/gray gull/Chile/C61947/2022(H5N1) 99.62 OQ352554.1
3 (PA; PA-X) 2,231 44 357.49 A/gray gull/Chile/C61947/2022(H5N1) 99.86 OQ352555.1
4 (HA) 1,754 41 63.23 A/gray gull/Chile/C61947/2022(H5N1) 99.66 OQ352556.1
5 (NP) 1,552 47 85.25 A/pelican/CHL/227023-1/2022(H5N1) 98.65 OQ455407.1
6 (NAa) 1,411 44 136.43 A/gull/CHL/227023-3/2022(H5N1) 99.72 OQ455402.1
7 (M2 and M1) 1,006 49 50.28 A/pelican/CHL/226955-1/2022(H5N1) 99.70 OQ455399.1
8 (NEPa; NS1) 814 46 62.51 A/Peruvian pelican/Chile/C61740/2022(H5N1) 99.75 OQ352544.1
a Partial coding sequence; all others listed are complete coding sequences.

FIG 1 Phylogenetic tree based on coding-complete sequences (CDS) of the HA gene. The tree was obtained using the
neighbor-joining method (TN931G), with 1,000 bootstrap replicates (complete deletion). The analysis included 22
nucleotide sequences. Isolate VFAR-140 is marked with a red dot.
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