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Pleiotropic effects of vitamin D on the cardiovascular system. Sunlight exposure, exogenous dietary, and pharmacological supply primarily determine 
vitamin D levels. Vitamin D is then stored within the adipose tissue which influences its systemic availability. Pleiotropic vitamin D effects on the 
cardiovascular system are mediated by intracellular vitamin D receptor or other transmembrane receptors and include beneficial modulation of 
senescence, inflamm-ageing, and adiposopathy. Clinical translation of such findings still requires more complete preclinical evidence, especially on 
newly defined mechanisms such as epigenetic senescence, and also better standardization among clinical studies (e.g. definition of deficiency, distinc-
tions between fortified food and pharmacologic supplementation).
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Abstract

Both experimental and clinical findings linking vitamin D to cardiovascular (CV) risk have prompted consideration of its supplementation to improve 
overall health. Yet several meta-analyses do not provide support for the clinical effectiveness of this strategy. Meanwhile, the understanding of the 
roles of vitamin D in the pathophysiology of CV diseases has evolved. Specifically, recent work has revealed some non-classical pleiotropic effects of 
vitamin D, increasing the complexity of vitamin D signalling. Within particular microenvironments (e.g. dysfunctional adipose tissue and atheroscler-
otic plaque), vitamin D can act locally at cellular level through intracrine/autocrine/paracrine feedforward and feedback circuits. Within atheroscler-
otic tissues, ‘local’ vitamin D levels may influence relevant systemic consequences independently of its circulating pool. Moreover, vitamin D links 
closely to other signalling pathways of CV relevance including those driving cellular senescence, ageing, and age-related diseases—among them CV 
conditions. This review updates knowledge on vitamin D biology aiming to clarify the widening gap between experimental and clinical evidence. It 
highlights the potential reverse causation confounding correlation between vitamin D status and CV health, and the need to consider novel patho-
physiological concepts in the design of future clinical trials that explore the effects of vitamin D on atherosclerosis and risk of CV events.
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Introduction
The role of vitamin D in cardiovascular (CV) health remains an elusive 
aspect of contemporary cardiology. A plethora of publications over the 
last decade have prompted a critical reappraisal of the evidence regard-
ing the health benefits of vitamin D supplementation. Epidemiological 
observations have consistently linked low circulating levels of vitamin 
D to CV risk, but randomized clinical trials and meta-analyses have 
not shown a benefit of supplementation.1 Such a dichotomy raises 
many questions about potential confounders (e.g. limited outdoor 
physical activity, exogenous vitamin D supplementation, and calcium 
supplementation regimens).2 Furthermore, enlarging the gamut of CV 
risk factors beyond the traditional, e.g. including inflammation, might 
shed light on the role of this vitamin and help to understand its thera-
peutic potential. Obesity has long been considered a target for vitamin 
D supplementation,3,4 and qualitative fat abnormalities (i.e. adiposopa-
thy) with different distributions of obesity have gained increasing recog-
nition.5,6 This evolution has prompted a focus on the tissue 
microenvironment, a concept that may extend from visceral adipose 
tissue to ectopic fat depots, to the atherosclerotic plaque, the myocar-
dium, and the brain.7 Beyond the recognition of its ‘non-classical’ ef-
fects, we now know that circulating concentrations of vitamins may 
not reflect their activity in tissues. Also, locally produced and stored 
vitamin D may have systemic functional consequences. This 
state-of-the-art review summarizes the evolving scientific knowledge 
regarding local and systemic effects of vitamin D in primary and second-
ary CV prevention. Furthermore, we propose that categorizing patients 
according to vitamin D levels might aid risk stratification and allocation 
of supplementation. Lastly, we provide a critical assessment of CV con-
ditions proposed to derive benefit from vitamin D supplementation.

Vitamin D axis: systemic and local 
contribution to cardiovascular risk
Vitamin D biology and interaction with 
other cardiovascular relevant pathways
The substantial controversy surrounding vitamin D results from its 
complex biology (Figure 1). Sunlight exposure accounts for ∼80% of 
vitamin D synthesis (i.e. cholecalciferol). Exogenous dietary supply 

(i.e. cholecalciferol or ergocalciferol) has rather limited relevance under 
physiological conditions. The degree of endogenous production and ex-
ogenous intake depends on several factors. Indeed, the conversion 
from 7-dehydrocholesterol—the endogenous cholecalciferol precur-
sor—to the active 1,25(OH)2D (i.e. calcitriol) requires multiple steps. 
The rate-limiting enzyme of this pathway, CYP27B1, is tightly regulated 
by feedback control mechanisms involving parathyroid hormone, calci-
tonin, the vitamin D catabolic enzyme CYP24A1, and activated vitamin 
D itself. Ageing and sequestration within adipose tissue add further 
layers to the complex vitamin D balance (Table 1). In particular, such 
sequestration critically determines vitamin D availability which relates 
to adipose tissue function/dysfunction rather than to its quantity.8

Ergocalciferol and cholecalciferol then require a two-step hydroxyl-
ation to become biologically active and reach target organs. Within 
the bloodstream, vitamin D mainly circulates as 25-hydroxyvitamin D 
combined with its carrier protein, vitamin D binding protein (VDBP). 
Under physiological conditions, circulating serum 25-hydroxyvitamin 
D level ranges between 20 and 50 ng/mL.9

No longer considered a mere vitamin but rather a lipophilic ‘steroid- 
like’ hormone, vitamin D exerts its biological response through the bind-
ing with the vitamin D receptor (VDR). The heterodimeric form of VDR 
—composed of the active vitamin D (1,25(OH)2D) and the retinoid × re-
ceptor (RXR α, β, or γ)—acts as transcription factor targeting specific 
vitamin D response elements (VDRE) located in the promoter region 
of target genes. VDR was initially detected in tissues involved in cal-
cium/phosphate balance including bone, kidney, intestine, and parathyroid 
glands. The evidence of additional vitamin D effects prompted the recog-
nition of VDR expression in cellular components of different organs such 
as the skin, immune, and CV systems. Within the CV system, VDR is ex-
pressed by endothelial cells (ECs), vascular smooth muscle cells (VSMCs), 
immune cells, and cardiomyocytes.10 Genomic actions of activated VDR 
then depend on allosteric modulation, VDRE location, and epigenetic 
modifications in different cell types.11 After the completion of the human 
genome, RNA sequencing and then microarrays have become the assays 
of choice for describing the vitamin D-transcriptome. The VDR affects 
the transcription of up to 5% of the whole human genome: some 20  
000 target genes. However, primary target genes should be discriminated 
from delayed-reacting ‘secondary’ targets for which vitamin D encodes 
transcription factors, co-factors, and/or chromatin modifiers.12 Thus, 
the number of VDR target genes in a single cell type might be restricted 
to a few hundreds. Common target genes include those involved in 
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calcium/phosphate homoeostasis (e.g. osteocalcin) and inflammation (e.g. 
cathelicidin antimicrobial peptide). Rapid non-genomic VDR effects de-
pend on membrane receptors such as PDIA3 (protein disulphide isomer-
ase family A member 3). PDIA3 is an endoplasmic reticulum chaperone 
located in cell membrane, cytoplasm, mitochondria, and nucleus that re-
quires the interaction with caveolin 1 to trigger the rapid response to vita-
min D. PDIA3 but not VDR is essential for the activation of protein kinase 
C-phospholipase A2 cascade and MAPK and WNT/NOTCH pathways. 
Disrupting the PDIA3 gene results in bone abnormalities and loss of pro-
tection against UV-induced DNA damage.13

Far from operating in isolation, vitamin D intertwines closely with 
other pathways pivotal in the CV system. Several experimental studies 
confirmed the inhibitory role of vitamin D on the renin–angiotensin–al-
dosterone system (RAAS) with effects on blood pressure and cardiac 
hypertrophy in mice.14,15 In turn, RAAS activation suppresses the renal 
expression of Klotho, essential for effective FGF23 signalling. These in-
teractions comprise a complex feedback loop in which high FGF23 le-
vels suppress vitamin D signal—by targeting both CYP27B1 and 
CYP24A1—eventually leading to RAAS activation16 (Figure 1).

Role of vitamin D in cellular senescence 
and ageing
New intriguing hypotheses link vitamin D deficiency—in conjunction 
with autophagy and Klotho-Nrf2 signalling—with cellular senescence, 

ageing, and age-related diseases17 (Figure 2). Cellular senescence devel-
ops as a cumulative effect of cell stressors eventually leading to a per-
manent cell growth arrest and the development of the 
senescence-associated secretory pattern (SASP). This programme con-
tributes importantly to ‘inflamm-ageing’ the chronic low-grade inflam-
matory status that develops with ageing and participates in the 
pathophysiology of most CV diseases.18,19 Vitamin D can preserve 
mitochondrial function and limit oxidative stress by facilitating mito-
chondrial biogenesis, the electron transport chain, and autop-
hagy.20,21 Specifically, vitamin D activates pro-survival autophagy as 
a protective mechanism to inhibit oxidative stress and apoptosis 
with critical effects on bone and CV health. Through autophagy, 
vitamin D mediates osteoclastogenesis and thus the risk of osteo-
porosis.21 Within the vessel wall, vitamin D restores oxidized low- 
density lipoprotein-impaired autophagy22 and prevents endothelial 
dysfunction.23 Furthermore, vitamin D-mediated autophagy also ex-
erts beneficial effects on failing/ageing heart.24,25 With ageing, autop-
hagy and vitamin D share the same trajectory, being characterized by 
inactivation and deficiency, respectively. Vitamin D deficiency may 
also accelerate ageing and ageing-related disease. Vitamin D may in-
fluence the ageing determinants NAD+-dependent protein acety-
lases sirtuins, calcium signalling homoeostasis, mitochondrial 
function, and oxidative stress regulation.17 By augmenting 
Klotho-Nrf2 signalling, vitamin D can limit oxidative stress by pre-
venting the rise in intracellular Ca++. At the nuclear level, vitamin 

Figure 1 Vitamin D axis is a complex system regulated at several levels and connected with many signals of cardiovascular relevance. Beyond the renal 
control (under parathyroid hormone), local vitamin D axes involve intracrine/autocrine/paracrine feedforward and feedback circuits. Furthermore, vita-
min D system intertwines closely with other pathways of cardiovascular relevance: renin–angiotensin–aldosterone system and Klotho-FGF23.
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D reduces the rate of telomere shortening26 and controls the epi-
genetic landscape of its promoters by stimulating key DNA de-
methylases that alter epigenetic aspects of ageing.27 This effect 
likely involves the hypermethylation of Klotho’s promoter region 
causing a reduced level of this mediator and the progression of 
age-related phenomena.28 In addition to those mechanisms, vitamin 
D directly modulates inflammatory cell activation again blunting 
inflamm-ageing.29

The wide anti-inflammatory effects of vitamin D arise locally 
through intracrine, autocrine, and paracrine feedforward and feed-
back circuits.30 The stimulation of toll-like receptors (TLRs) ampli-
fies CYP27B1 and VDR expression in macrophages in an autocrine 
manner, whereas interferon-γ produced by the Th1 lymphocyte 
subset determines the same effect through a paracrine pathway. 
In turn, when macrophages release 1,25(OH)2D, it drives 
VDR-dependent inhibitory feedback on lymphocyte activation.31

Such findings underscore the importance of 25(OH)D in macro-
phages, as it exerts direct effects on both innate and adaptive im-
munity. The co-existent expression of CYP27B1 and VDR 
characterizes many cell types and indicates the intracrine metabol-
ism of vitamin D as a potential candidate to modulate their effects 
in different diseases.32 However, this plethora of experimental evi-
dence about senolytic effect of vitamin D requires clinical translation 
in randomized trials.33

Vitamin D insufficiency/deficiency: 
definition and dispute
Defining reference ranges for vitamin D has long presented chal-
lenges. The preferential use of blood 25(OH)D levels reflects its 
relative abundance (1000-fold higher than 1,25(OH)2D) and stability 
(half-life: 15 days vs. 15 h for 1,25(OH)2D). 25(OH)D circulates 
both in its free form and bound to carrier proteins, mainly 
VDBP. Specifically, VDBP affinity is greater for the inactivated 
[24,25(OH)2D] and the depot [25(OH)D] forms of vitamin D rather 
than the active 1,25(OH)2D. VDBP deletion in mice does not lead to 
skeletal abnormalities or calcium imbalance so that a direct patho-
physiological role for VDBP is unlikely.32 On the other hand, the 
measurement of the free, unbound form of 25(OH)D has been 
proved challenging, because of its low levels and the need for radio-
active tracers. Yet, enzyme-linked immunosorbent assays for detect-
ing free 25(OH)D are currently under development. Beyond 
analytical variability, 25(OH)D concentrations show seasonal varia-
tions due to their mechanisms of synthesis with higher levels during 
sunny seasons. Given such complexity, proposed vitamin D range 
calculators take into account different confounders, although their 
use still needs further validation.34

As a result, the thresholds defining vitamin D deficiency significantly 
differ across health organizations ranging from serum levels of 30– 
10 ng/mL. However, there is general agreement with those proposed 
by the former US Institute of Medicine now known as the Academy 
of Medicine9 (Table 2). The US population has a substantial prevalence 
of vitamin D insufficiency (41.4%) or deficiency (28.9%).38 These esti-
mates increase substantially with the application of more stringent 
thresholds.39,40 Eastern European countries report lower levels of vita-
min D than northern ones.37 Vitamin D status is also suboptimal in 
Western Europe, and especially in the UK. Finally, non-Western immi-
grants in European countries showed a very poor vitamin D status, with 
a mean 25(OH)D levels lower than locally born and people living in 
their countries of origin.37

Vitamin D and cardio-metabolic 
risk
Vitamin D activity on adipose tissue 
microenvironment
Visceral adipose tissue stores about three-quarters of the total chole-
calciferol and one-third of 25(OH)D. But vitamin D depots within the 
adipose tissue depend little on circulating levels. Indeed, adipocytes ex-
press all key enzymes required for vitamin D hydroxylation. Within the 
adipose tissue, vitamin D signals in paracrine and autocrine manners. In 
its active form, 1,25(OH)2D improves glut4 expression and transloca-
tion, suppresses fatty acid synthesis from glucose, augments lipolytic en-
zymes, and inhibits adipokines and inflammatory signalling41 (Figure 3). 
Nevertheless, VDR knockout mice are lean and resist diet-induced 
obesity. Even adipose-specific VDR deletion did not resolve this appar-
ent paradox.42 Less is known about the role of vitamin D in adipocyte 
hypertrophy, the hallmark of adiposopathy and associated dysfunction. 
Hypertrophic adipocytes show necrotic-like abnormalities as the vascu-
lar tree becomes deficient and hypoxia ensues. Lipolysis and insulin re-
sistance characterize this microenvironment with effects on other 
tissues (e.g. liver and skeletal muscle) through free fatty acids and 
pro-inflammatory mediators released in the portal vein.43 More recent 
studies have further characterized the hypertrophic adipocyte as a sen-
escent cell showing the typical pro-inflammatory SASP44 (Figure 3). As 
mentioned above, the vitamin D axis can influence several pathways in-
volved in adipocyte senescence: mitochondrial respiration,45 autop-
hagy,46 intracellular Ca++ concentration,47 and epigenetic clocks (i.e. 
methylation/acetylation of both DNA and histone and the expression 
of micro-RNAs).48,49 Vitamin D generally exerts anti-inflammatory ef-
fects on adipocytes. 1,25(OH)2D indeed prevents and even reverses 
monocyte chemotaxis.50 Nevertheless, dysfunctional hypertrophic adi-
pocytes have blunting of the entire vitamin D axis and an associated 
feedback transcriptional response characterized by augmentation of 
CYP27A1 and VDR, and suppression of CYP27B1.51,52 Microarray ap-
proaches are deciphering the target cytokines and the role of miRNAs 
as components of adipocyte SASP.53

Vitamin D deficiency and adiposopathy: 
clinical evidence
Visceral adiposity links consistently with vitamin D deficiency/insuffi-
ciency, as originally reported by the Framingham Heart Study.54

Furthermore, recent studies also showed an association with the un-
healthy obesity pattern.55 A tight interplay exists between vitamin D 
axis and visceral adiposity. Not only do concentrations of 25(OH)D 
critically determine the VDR gene expression in adipocytes, but sun ex-
posure and skin reflectance also associate with visceral adiposity.56,57

25(OH)D levels increase linearly as a function of visceral adiposity re-
duction during lifestyle modification programmes, with dynamic local 
changes in vitamin D metabolism.58–60 This effect is even more evident 
with massive weight loss achieved through a very low-calorie ketogenic 
diet61 or bariatric surgery.62 The expression of CYP27B1 indeed rises 
after weight loss and decreases during overweight along with vitamin D 
sequestration.63 As a result, obese subjects have a muted response to 
vitamin D supplementation.64 Further supporting a causative role in adi-
posopathy, vitamin D deficiency is associated with ectopic fat depos-
ition. Few studies have so far focused on the association between 
vitamin D and epicardial adipose tissue (EAT), reporting an association 
with both thickness and dysfunction while resisting regression after 
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Table 1 Determinants of circulating vitamin D levels

Figure 2 Vitamin D system might participate in senescence-ageing processes. Through a wide range of cellular and nuclear mechanisms, vitamin D can 
modulate many aspects of cellular senescence: mitochondrial survival and activity, intracellular calcium concentrations, and direct/epigenetic control on 
gene transcription. Those mechanisms may further explain the tight pathophysiological link between vitamin D axis and age-related diseases, including 
cardiovascular diseases.
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replacement therapy.65,66 Similarly, preliminary data indicate an associ-
ation between vitamin D deficiency, fatty degeneration of skeletal mus-
cle,67 and the osteosarcopenic obese pattern.68 Although limited 
to association studies such evidence deserves further investigation. 
Recent evidence suggests a role for EAT in inflammation by hosting 
tertiary lymphoid organs (TLOs). In consideration of the role of 
TLOs as the regulator of B cell response with relevant effect on 
atherogenesis and recovery after myocardial infarction69–71 and in 
keeping with the immunomodulatory function of vitamin D, whether 
CV effects of such mediators may depend in part on local immune 
responses within ectopic fat is an intriguing question for future 
investigations.

Vitamin D deficiency and cardio-metabolic 
profile: clinical evidence
Extensive literature supports the association between vitamin D defi-
ciency and non-alcoholic fatty liver disease (NAFLD). In this context, 
vitamin D may blunt the activation of hepatic stellate cells and have a 
broad immunomodulatory role for resident immune cells.72 Of import-
ance, vitamin D deficiency might promote NAFLD progression inde-
pendently of other risk factors (e.g. hypertriglyceridaemia and insulin 
resistance). In patients, analyses of polymorphisms in genes from the 
vitamin D axis further strengthened this association, whereas recent 
studies are deepening the effects on liver senescence mechanisms.73–75

Low serum 25(OH)D levels indeed correlate with the severity of stea-
tosis and necro-inflammatory injury. This histopathological pattern is 
consistent with the suppression of TLRs by vitamin D and the increase 
of VDR expression in non-parenchymal liver cells including hepatic stel-
late cells, Kupffer cells, natural killer T cells, and sinusoidal ECs. 
Furthermore, vitamin D may protect against a high-fat diet by inducing 
autophagy. Yet, the causality of vitamin D deficiency in NAFLD is hard 
to prove. Indeed, the lack of vitamin D can be a consequence of its low-
er synthesis by the dysfunctional liver. This may explain why clinical 
trials of vitamin D supplementation generally reported a metabolic im-
provement without a significant effect on liver injury.76–81 Similarly, the 
notion that insulin resistance itself may account for vitamin D deficiency 
—rather than being its consequence—is gaining attention. Insulin re-
sistance can suppress the expression of CYP2R1 in the liver and 
CYP27B1 in the kidney.82 Although vitamin D deficiency and insulin re-
sistance can both be treated, beneficial effects derive only from in-
creased insulin sensitivity. Whether improving insulin sensitivity may 
increase vitamin D levels and/or the effectiveness of supplementation 
strategies in CV prevention remains unresolved. Epidemiological data 
indicate that chronic deficit of vitamin D parallels with the clinical man-
ifestations of insulin resistance. Vitamin D deficiency very frequently ac-
companies diabetes and associates with a higher risk of developing 
diabetes.83 The most recent meta-analysis and Mendelian randomiza-
tion studies have evaluated more deeply the role of vitamin D status 
in the development and progression of diabetes. A significant, yet non- 
causal, association links the risk of developing diabetes with vitamin D 
deficiency in ∼300 000 participants.84 Yet, the same meta-analysis indi-
cates adiposopathy and unhealthy lifestyles as risk factors for diabetes, 
confounding conclusions regarding the causality of vitamin D levels. 
Furthermore, clinical studies and meta-analyses agree on the close 
link of vitamin D deficiency with hypertension and dyslipidaemia as re-
viewed elsewhere.85,86 The pooled relative risk of incident hyperten-
sion in more than 300 000 participants has been estimated at 0.88 
(0.81–0.97) per 10 ng/mL increment in 25(OH)D levels,87 whereas in 
25 000 children and adolescents vitamin D associated with a favourable 
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Figure 3 Dysfunctional hypertrophic adipocytes show blunted vitamin D signalling. Vitamin D receptor and the hydroxylase CYP27B1 are blunted in 
dysfunctional hypertrophic adipocyte. Alongside the sequestration of 25(OH)D within visceral adipose tissue, suppression of vitamin D signalling sus-
tains metabolic disturbances not only in adipose tissue but also systemically.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Summary of the main studies addressing the association between vitamin D deficiency and coronary artery 
calcium score and biomarkers of atherosclerotic plaque vulnerability

Authors Year Study design 
(patient number)

Outcome(s) Results

Martín-Reyes 
et al.106

2016 Cross-sectional (270) Categorized 
CAC

Sung et al.107 2016 Cross-sectional 
(180,918)

CAC

Lee et al.108 2016 Cross-sectional (195)

Diederichsen 
et al.109

2017 Prospective (1227) Incident CAC 
CAC 
progression

Sajjadieh 
et al.111

2020 Cross-sectional (67) CAC There was no correlation between CAC and vitamin D levels (r = −0.03)

Anis et al.112 2020 RCT (48w FU) (44) CAC CAC progression did not differ between treatment arms  
(calcitriol vs. paricalcitol; P = 0.76)

Rodrigues 
et al.113

2021 Cross-sectional (140) CAC Excess visceral fat (OR 4.0 [1.4–11.7]) but not vitamin D is associated with subclinical 
atherosclerosis

CAC, coronary artery calcification; OR, odds ratio; CI, confidence Interval; FU, follow-up.
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lipid profile.88 Yet, the effects of vitamin D supplementation on blood 
pressure and serum lipids remain unproven.89,90

The ‘intraplaque’ vitamin D system
Vitamin D activity in the atherosclerotic 
plaque microenvironment
Intimal inflammation drives many aspects of atherogenesis.91 The 
atherosclerotic plaque microenvironment represents the prototyp-
ical milieu in which the vitamin D axis locally exerts its ‘non-classical’ 
effects via paracrine and autocrine processes.92 The first recognition 
of VDR expression within the plaque dates to 2012.93 Our research 
group first localized VDR in human samples and observed how its 
expression was proportional to the infiltrate of pro-inflammatory 
M1 macrophages and the likelihood of future adverse CV events.94

As exposure to 1,25(OH)2D limited the expression of TLR-4 on 
M1 macrophages in vitro, we hypothesized that VDR expression in 
pro-inflammatory macrophages constituted a negative feedback 
loop. Intraplaque macrophages participate critically in the local intra-
plaque vitamin D system: they express all the enzymes for its synthe-
sis as well as VDR thereby potentially regulating the axis in an 
intracrine, autocrine, and paracrine manner. The genome/epigen-
ome of human monocytes shows regulation by vitamin D at multiple 
levels.95 The result is an extensive control on macrophage function, 
not limited to phenotype polarization and anti-inflammatory 
activity.30,96

Vitamin D prevents the formation of foam cells by intraplaque 
macrophages by inhibiting endoplasmic reticulum stress, the expression 
of scavenger receptors,97 and autophagy, triggered via the PTPN6/ 
SHP-1 pathway.22 As with monocytes, the vitamin D axis may exert 
autocrine feedback on neutrophils as these granulocytes themselves 
express CYP27B1 and VDR. This point still lacks experimental 
demonstration.

Dendritic cells (DCs) provide another source of 1,25(OH)2D. 
Transplantation of apoptosis-resistant DCs into LDLR−/− recipient 
mice indeed slows atherosclerotic progression.98 This finding likely 
arises from an autocrine loop that results in DC regression to a 
less mature stage characterized by impaired chemotaxis and sup-
pression of pro-inflammatory cytokines and costimulatory mole-
cules (i.e. CD40, CD80, and CD86).99 T lymphocytes may have a 
further role, especially the regulatory (Treg) subtype, as the VDR 
direct controls their signature transcription factor FOXP3 under.100

Beyond the immune system, the pleiotropic activity of vitamin 
D involves different cell types of relevance in atherosclerosis. 
1,25(OH)2D influences VSMCs directly via VDR. 1,25(OH)2D stimu-
lates the expression of vascular endothelial growth factor by VSMC 
and regulates their proliferation, migration, calcification, and tissue 
factor expression. Furthermore, vitamin D signalling could prevent 
senescence in VSMCs, likely through the inhibition of local 
angiotensin-II signalling.101

Vitamin D and atherosclerotic burden: 
clinical evidence
Experiments with LDLR- and/or VDR-deficient mice demonstrated 
beneficial effects of vitamin D signalling on atherosclerosis progression. 
Likewise, clinical studies generally agree on the relationship between 
25(OH)D and subclinical atherosclerosis. A recent pooled analysis of 
21 studies matching ∼2000 vitamin D deficiency/insufficiency patients 

with controls reported a significant difference in carotid intima-media 
thickness and prevalence of carotid plaques.102 Two subsequent 
meta-analyses confirmed these findings and support the beneficial ef-
fects of vitamin D supplementation on this biomarker.103,104 The asso-
ciation between vitamin D levels and coronary atherosclerotic burden 
or composition remains less clear. A single systematic review dating 
2014 did not find consistent evidence for the association with coronary 
artery calcification (CAC) and highlighted the relevant differences 
across studies.105 The heterogeneity in the definition of vitamin D de-
ficiency/insufficiency and CAC criteria precluded a quantitative 
meta-analysis. Later studies did not solve this issue even when consid-
ering other biomarkers of plaque vulnerability106–113 (Table 3). 
Polymorphisms in the VDR gene were suggested as determinants of 
such a variability.114–116 A recent Mendelian randomization analysis 
supported a causal role for vitamin D deficiency as well as the beneficial 
effects of its supplementation on CV health. Of interest, this analysis 
found a non-linear L-shaped relationship, a feature formerly over-
looked in randomized clinical trials and Mendelian randomization 
studies.117

From vulnerable plaque to 
vulnerable patients: the role of 
vitamin D on blood and 
myocardium/brain vulnerability
Vitamin D deficiency and thrombogenicity
The evolution of an atherosclerotic plaque to produce a clinical throm-
botic event requires a ‘perfect storm’ in which a pro-thrombotic milieu 
in the fluid phase of blood meets the ‘solid state’ of a culprit pla-
que91,118,119 (Figure 3). Endothelial functions contribute to the crosstalk 
between the atheroma and circulation and influence critically the vul-
nerability of the plaque and that of the patient. ECs express VDR con-
stitutively, whereas in stress conditions (e.g. disturbed flow, 
pro-oxidant environment, hyperglycaemia) CYP27B1 may induce this 
receptor. Impaired vitamin D signalling in ECs enhances the interaction 
of leucocytes with the endothelium (i.e. rolling, adhesion, and migra-
tion).120 Furthermore, VDR silencing/vitamin D supplementation re-
vealed the multifaceted actions of the vitamin D axis in ECs that 
involve: apoptosis, oxidative stress and nitric oxide generation, lipid me-
tabolism, and interaction with platelets.121,122 The effect on platelets 
depends in part on the reduction of adhesion molecules on the EC sur-
face and EC-derived microparticles and with integrin activation on the 
platelet surface. These broad effects of vitamin D on endothelial func-
tion can influence arterial stiffness (assessed by brachial artery flow- 
mediated dilation or by pulse wave velocity), as is common in patients 
with vitamin D deficiency. Conversely, the effects of vitamin D supple-
mentation on markers of vascular function remain controversial, often 
showing only slight or insignificant alterations.123,124

Along with the aforementioned factors (i.e. chronic low-grade in-
flammatory status, chemokines/adhesion molecules, and EC dysfunc-
tion), the pro-thrombotic milieu depends on tissue factor expression, 
coagulation factors, and platelet activation. As these features do not 
yet clearly associate with vitamin D biology, this topic has become an 
intriguing research problem.125 The anti-thrombogenic effect of vitamin 
D was first documented in venous thromboembolism, whereas studies 
on VDR-deleted mice found increased platelet aggregation and imbal-
ance between antithrombin/thrombomodulin and tissue factor expres-
sion.126–128 Accordingly, preliminary clinical studies reported an inverse 
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association between vitamin D deficiency and mean platelet volume, a 
biomarker of platelet reactivity.129,130 A recent randomized clinical trial 
testing a weekly dose of 60 000 IU of 25(OH)D in diabetic patients re-
ported an anti-inflammatory inhibitory effect on platelet activation and 
immune cell aggregate in the intervention arm.131

Vitamin D and its effects on myocardium 
and brain vulnerability and remodelling
Reperfusion strategies now comprise the cornerstone of the manage-
ment of many acute ischaemic complications of atherosclerosis (i.e. 
ST-segment elevation myocardial infarction and many ischaemic 
strokes). Yet, the benefit of reperfusion comes at the cost of massive 
inflammatory and oxidative responses, potentially exacerbating damage 
to the hypoxic tissues, as well as bleeding risks following thrombolytic 
therapy or anti-platelet treatment in those undergoing percutaneous 
intervention. Optimal healing requires a timely orchestration of mul-
tiple processes.132,133 Cytokines and growth factors dynamically modu-
late resolution and repair, as well as local angiogenic responses. Also, 
the no-reflow phenomenon can impair the microcirculation in ischae-
mically injured tissues. Vitamin D deficiency may associate indirectly 
with impaired microvascular function as highlighted by the association 
of low coronary flow reserve.134,135

Moreover, given its immunomodulatory properties and the wide-
spread expression of VDR in myocardial tissue, vitamin D may influence 
post-infarction cardiac remodelling. VDR deletion causes myocardial 
hypertrophy independently of RAAS activation and calcium abnormal-
ities, while vitamin D supplementation may reverse cardiac steatosis 
and interstitial fibrosis.15,136,137 Although few experimental studies spe-
cifically focused on post-ischaemic injury, some suggest a beneficial ef-
fect of vitamin D on left ventricular remodelling.137–139 Animal 
experiments have supported population-based studies140,141 and the 
EVITA trial seemed to exclude a link between vitamin D and 
RAAS.142,143 The VINDICATE trial suggested a beneficial effect of vita-
min D supplementation on the left ventricular structure and function144

but meta-analyses generally failed to show significant benefits145–149

(Table 4). Mechanistic studies on vitamin D in myocardial remodelling 
are lacking. It is, therefore, difficult to establish whether any clinical as-
sociation reflects causality.152

In distinction with the myocardium, the blood–brain barrier (BBB) 
tightly regulates the accessibility of immune cells to the parenchyma. 
Protection of BBB integrity153,154 and antioxidant activity155,156 are 
key effects of vitamin D in the early phases of ischaemic brain injury. 
Vitamin D might also contribute to late neuroprotection by preventing 
neuronal apoptosis157 and promoting angiogenesis.158 Experimental 
evidence agrees with clinical studies in which vitamin D levels correlate 
with the radiological estimation of ischaemic volume159–161 and with 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 Summary of randomized clinical trials investigating the effects of vitamin D supplementation on stroke 
outcome

Authors Year Intervention 
(patient number)

Outcome(s) Results

Narasimhan et al.163 2017 Cholecalciferol 6 lac IU i.m.  
(n = 30 per group)

• 3 month SSS Stroke outcome significantly improved in vitamin D deficient— 
but not insufficient—patients once supplemented (mean 6.39 ±  

4.56 vs. 2.50 ± 2.20; P < 0.001)

Sari et al.164 2018 Cholecalciferol 300 000 IU i.m.  
(n = 36 per group)

• BRS
• FAS
• MBI
• BBT

(all at 3 months)

3.09 ± 0.99 vs. 3.34 ± 5.28; P = 0.794 
2.34 ± 1.31 vs. 1.60 ± 1.16; P = 0.018 

59.18 ± 22.15 vs. 41.87 ± 20.42; P = 0.002 
38.72 ± 14.14 vs. 24.75 ± 14.76; P < 0.001

Momosaki et al.165 2019 Cholecalciferol 2 000 IU/die i.m.  
(n = 49/48)

• Barthel Index
• Hand grip strength 

improved (right/left)
• Calf circumference 

improved (right/left)
(all at Week 8)

19 ± 15 vs. 20 ± 13; P = 0.480 
27%–20% vs. 25%–18%; P = 0.770;0.740 
19%–20% vs. 23%–20%; P = 0.770;0.600

Rist et al.166 from 
the VITAL study

2021 Cholecalciferol 2 000 IU/die i.m. 
in primary prevention  
(n = 104/93 per group)

Nagi scale 
Rosow-Breslau scale 

Katz AD scale

OR 1.01 [95% CI 0.52–1.97] 
OR 0.92 [95% CI 0.59–1.67] 
OR 1.03 [95% CI 0.31–3.42]

Torrisi et al.167 2021 Cholecalciferol 2 000 IU/die i.m.  
(n = 15/14) per group)

MADRS 
FIM 
GSE 

(all at 12 weeks)

Both groups improved mood and functional recovery 
independently of vitamin D supplementation

Wang et al.168 2021 Cholecalciferol 600 IU/die i.m.  
(n = 72/51 per group)

mRS 
FSS 

(both at 3 months)

FSS and mRS significanlty lowered in the supplementation group 
(P < 0.01 for both)

CI, confidence interval; OR, odds ratio; SSS, Scandinavian Stroke Scale; BRS, Brunnstrom recovery staging; FAS, functional ambulation scale; MBI, modified Barthel index; BBS, Berg balance 
scale; MADRS, Montgomery Aasberg depression rating scale; FIM, functional independent measures; GSE, general self-efficacy; mRS, modified Rankin score; FSS, fatigue severity scale.
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functional outcome.162 Yet, few studies have so far investigated the ef-
fects of vitamin D supplementation on stroke outcomes. Such studies 
have yielded inconsistent results, although they differed greatly in design 
and outcomes assessed163–168 (Table 5).

Global cardiovascular risk related 
to vitamin D deficiency and 
supplementation: clinical evidence
Considerable observational evidence links vitamin D deficiency with 
poor CV prognosis. In the ARIC study, the risk of incident heart failure 
during 21 years of follow-up was two-fold higher in the lowest quintile 
(≤17 ng/mL) of 25(OH)D.169 A large body of observational studies has 
further characterized the CV risk associated with vitamin D deficiency. 
The data consistently associate vitamin D deficiency with increased in-
cidence and prevalence of subclinical and clinical atherosclerotic dis-
ease, myocardial infarction, ischaemic stroke, and peripheral artery 
disease.2 However, the poor prognosis associated with vitamin D defi-
ciency is not CV-specific, as NHANES III reported a 26% higher overall 
mortality in those with lower levels of vitamin D.170 Indeed, a critical 
reappraisal of observational studies raises issues of reverse causation. 
Vitamin sufficiency may reflect good health in subjects engaged in phys-
ical activity and healthy diet. Whereas the Cooper Center Longitudinal 
Study recently confirmed a benefit of physical activity of vitamin D suf-
ficiency,171 the negative effect on %fat would further contribute to the 
rise of circulating 25(OH)D in the EpiFloripa Aging Cohort Study.172

Similarly, unhealthy dietary patterns associate not only directly with 
vitamin D deficiency but also promote other aspects of dysmetabolism 
further reducing 25(OH)D levels.173

We thus possess a plethora of observational and experimental stud-
ies relating to the health effects of vitamin D. Yet, from a practical clin-
ical perspective, what matters most is whether screening for vitamin D 
status, and supplementation in those found to be vitamin D deficient, 
can improve patient outcomes. In line with this ‘D-lemma’—as repeat-
edly quoted by Holick—substantial evidence now shows that vitamin D 
supplementation does not confer CV benefit.

The origins of tailored randomized clinical trials date back to 2008, 
when the first conflicting data emerged from interventional stud-
ies.174–176 Vitamin D Assessment (ViDA) study and VITamin D and 
OmegA-3 TriaL (VITAL) were registered almost simultaneously. 
They both reassuringly reported similar results despite different vitamin 
D dosing schedules, monthly for ViDA and daily for VITAL. Despite a 
significant rise in serum 25(OH)D concentrations, the interventions 
had no effect on the cumulative incidence of CV events (11.8% vs. 
11.5% and 6.5% vs. 6.4% for ViDA and VITAL, respectively). 
Accumulating evidence that vitamin D supplementation benefits pri-
marily deficient people initially rose questions regarding the ViDA 
and VITAL trials, due to the broad range of serum 25(OH)D levels in 
the enrolled cohorts, although it now seems established that their find-
ings do not depend on the baseline 25(OH)D levels or CV history.177

Furthermore, evidence from Mendelian randomization studies con-
verges in supporting vitamin D’s inefficacy in reducing CV risk.178,179

An extensive meta-analysis of 21 randomized clinical trials enrolling 
83 291 participants reported no benefit of vitamin D supplementation 
on major adverse CV events, myocardial infarction, stroke, CV, or over-
all mortality.1 Two other contemporary meta-analyses have provided 
similar results.180,181 Similarly, recent randomized clinical trials failed 
to prove a benefit of vitamin D supplementation on diabetes risk 

(D2d study)182 and associated renal impairment (ancillary study to 
the VITAL),183 hypertension,184 or CV mortality (D-Health and 
Finnish vitamin D trials)185,186 (Table 6). On the contrary, most recent 
trials showed beneficial effects of vitamin D supplementation on body 
composition and cardio-metabolic/inflammatory biomarkers.187–189

Such results were not unexpected as vitamin D supplementation re-
cently showed favourable effects on atherosclerotic CV disease score 
without reducing major adverse CV event incidence.190

Shortcomings and outlook
Vitamin D deficiency affects populations worldwide. It appears preva-
lent in Western countries which show a strong relationship of vitamin 
D deficiency with CV disease risk and prevalence. Yet, such associations 
do not establish a causal relationship. During the past decade, experi-
mental evidence on the vitamin D axis and CV health generated import-
ant advances, but a wide gap still exists between the research realm and 
practical clinical measures. Many mechanisms may link vitamin D defi-
ciency with cardio-metabolic risk, atherosclerosis, and its complications 
(Graphical Abstract). Experimental studies require more rigour. For ex-
ample, VDR deletion does not address the rapid actions of vitamin D 
that do not require altered gene transcription. Molecular and epigenetic 
senescence are newly appreciated mechanisms likely regulated by the 
vitamin D axis worthy of further investigation. Very recent studies in-
deed support a potential senolytic activity of vitamin D supplementa-
tion, mainly targeting epigenetic ageing and telomerase activity.27,191

The epigenetic clocks might then furnish the intermediate link between 
vitamin D and CV outcome. Such a change of view—interpreting vita-
min D as senolytic—may then help to design future experimental clin-
ical studies.

Ultimately, the field needs to address the inconsistencies in clinical 
translation. Determinants of vitamin D synthesis, intake, and body dis-
tribution require standardization in the design of future clinical trials. 
Distinctions between fortified food and pharmacologic supplementa-
tion is another critical point, compounded by the widespread use of cal-
cium supplements.2 The available data do not justify the screening for 
vitamin D deficiency in asymptomatic adults.172,192 Vitamin D supple-
mentation has no proven CV benefit with the exception of end-stage 
renal disease, and even the current thresholds for vitamin D deficiency 
are still bone-driven. Framing ‘non-classical’—often local—effects of 
the vitamin D axis with traditional categories will not allow to clarify 
the extent to which vitamin D status influences cardio-metabolic risk 
or serves as an independent biomarker of good health. The putative 
link between vitamin D and cardio-metabolic risk is likely complex 
and future studies should take reverse causation into account 
rigorously.
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