Skip to main content
. Author manuscript; available in PMC: 2024 Jun 1.
Published in final edited form as: Can J Stat. 2022 Apr 15;51(2):355–374. doi: 10.1002/cjs.11701

Table 4:

Prostate cancer study analysis results based on logistic regression (n = 1014).

Without calculators With PBCG calculator With PBCG-2 calculator With both calculators
est s.e. p est s.e. p est s.e. p est s.e. p
Intercept −7.421 0.769 < 0.001 −6.802 0.227 < 0.001 −7.276 0.315 < 0.001 −6.826 0.229 < 0.001
log2(PSA) 0.595 0.119 < 0.001 0.756 0.033 < 0.001 0.774 0.051 < 0.001 0.751 0.033 < 0.001
age 0.037 0.011 0.001 0.027 0.004 < 0.001 0.036 0.005 < 0.001 0.028 0.004 < 0.001
DRE 0.635 0.210 0.003 0.769 0.057 < 0.001 0.631 0.199 0.001 0.762 0.057 < 0.001
biopsy −0.895 0.245 < 0.001 −0.938 0.058 < 0.001 −0.901 0.216 < 0.001 −0.943 0.058 < 0.001
race 0.090 0.341 0.793 0.192 0.103 0.062 −0.050 0.120 0.675 0.181 0.103 0.079
history 0.248 0.209 0.235 0.413 0.049 < 0.001 0.249 0.191 0.193 0.414 0.049 < 0.001
PCA3 0.347 0.062 < 0.001 0.347 0.057 < 0.001 0.347 0.056 < 0.001 0.345 0.057 < 0.001
T2ERG 0.565 0.183 0.002 0.567 0.166 0.001 0.568 0.165 0.001 0.582 0.166 < 0.001

est: estimated value. s.e.: standard error. p: p-value. DRE: a binary indicator of an abnormal digital rectal exam. biopsy: a binary indicator of prior negative biopsy. race: a binary indicator of African Ancestry. history: a binary indicator of first-degree family history of prostate cancer. PCA3: log2(PCA3 + 1). T2ERG: dichotomized TMPRSS2:ERG split at the median