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Abstract

The Vector AutoRegressive Moving Average (VARMA) model is fundamental to the theory of 

multivariate time series; however, identifiability issues have led practitioners to abandon it in 

favor of the simpler but more restrictive Vector AutoRegressive (VAR) model. We narrow this 

gap with a new optimization-based approach to VARMA identification built upon the principle of 

parsimony. Among all equivalent data-generating models, we use convex optimization to seek the 

parameterization that is simplest in a certain sense. A user-specified strongly convex penalty is 

used to measure model simplicity, and that same penalty is then used to define an estimator that 

can be efficiently computed. We establish consistency of our estimators in a double-asymptotic 

regime. Our non-asymptotic error bound analysis accommodates both model specification and 

parameter estimation steps, a feature that is crucial for studying large-scale VARMA algorithms. 

Our analysis also provides new results on penalized estimation of infinite-order VAR, and elastic 

net regression under a singular covariance structure of regressors, which may be of independent 

interest. We illustrate the advantage of our method over VAR alternatives on three real data 

examples.
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1 Introduction

Learning regulatory dynamics and forecasting are two canonical problems in the analysis 

of multivariate time series, with widespread applications in economics, signal processing 

and biostatistics amongst others. In recent years, there has been increasing focus in 

networks or graphical models of time series to describe how a multivariate time series’ 

components interact with each other. Vector AutoRegressions (VAR) estimated using 

parsimony-inducing regularization (penalties or priors) have become a popular alternative [8, 

14, 29, 18] to factor modeling of high-dimensional time series, e.g., [7]. In the classical time 
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series and signal processing literatures, Vector AutoRegressive Moving Average (VARMA) 

models are known to provide a more parsimonious description of a linear time invariant 

system than VAR. However, in practice, their use has been limited due to identification and 

estimation issues. The goal of this work is to overcome these challenges by theoretically and 

empirically investigating the large-scale VARMA as a competitive alternative to the VAR.

In a VARMAd(p, q) model, a stationary d-dimensional mean-zero vector time series yt is 

modeled as a function of its own p past values and q lagged error terms. More precisely,

yt = ∑
ℓ = 1

p
Φℓyt − ℓ + ∑

m = 1

q
Θmat − m + at, (1)

where Φℓ ∈ ℝd × d
ℓ = 1

p
 are autoregressive parameter matrices, Θm ∈ ℝd × d

m = 1

q
 are moving 

average parameter matrices, and at denotes a d-dimensional mean-zero white noise vector 

time series with d × d nonsingular contemporaneous covariance matrix Σa. The primary 

focus of this work is to consider VARMA models where d is moderate or large. A VAR 

is a special case of the VARMA without moving average coefficients (Θm = 0d×d, for m = 

1,…,q).

Although VARs are more intensively investigated (e.g., [13, 37] for computational 

contributions; [10, 30, 51, 9] for theoretical contributions, and [36, 23] for applications), 

several reasons exist for preferring the more general VARMA class. Unlike VAR, the 

class of VARMA is closed under marginaliztion and linear transformation [33]. In 

macroeconomics, VARMA is popular for its close link with linearized dynamic stochastic 

general equilibrium (DSGE) models [28, 21]. A parsimonious finite order VARMA can 

capture the dynamics of a potentially infinite-order VAR, leading to improved estimation 

and forecasting accuracy. Empirically, VARMAs have been shown to outperform VARs 

in terms of estimation and forecasting accuracy [28, 4]. Our empirical analysis also 

demonstrates such improvements (see Section 5). Importantly, we see that VARMA achieves 

this improved forecast accuracy using a more parsimonious description of the data than 

VAR.

Despite its advantages over VAR, VARMA has not been very popular among practitioners 

due to its computational and theoretical challenges in model identification and specification. 

The model (1) is not identifiable in general (see Section 2.1), i.e. there can be different 

combinations of AR and MA matrices {Θℓ} and {Θm} that lead to the same data generating 

process. The problem of model identification refers to finding a “simple” element in this 

equivalence set ℰ of all such AR-MA matrices (see Section 2 for formal definition), 

usually by specifying a number of restrictions on model parameters. The problem of model 
specification refers to finding these restrictions along with the model orders p, q in a 

data-driven fashion.

Arguably the most popular identification procedure is the Echelon form identification [25, 

40, 12], which amounts to selecting a basis for the row space of a block Hankel matrix 

(see Section 4 of [15]). Specifying an Echelon form involves selecting Kronecker orders 
(related to indices of rows that form the above basis) from a O((p + q)d)-dimensional set, by 
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comparing an equally large number of models. Data-driven strategies, involving a series of 

canonical correlation tests, or regressions based on model selection criteria (e.g., AIC, BIC, 

information theoretic criterion) were proposed [2, 3, 39]. However, all of these methods are 

computationally intensive and lack a formal asymptotic theory that combines specification 

and estimation. Assuming d is fixed, [39] proved asymptotic theory for the specification 

step. Then, assuming Kronecker orders are known, consistency of parameter estimation 

was established. This procedure has been tested only on very small d, and finite sample 

performances are not clear (Section 3.4, [34]).

Other popular identification and specification methods include scalar component models 

[44, 6, 5] and final equations form [53, 24, 48]. While these and other existing identification 

procedures [25, 40, 12] require different sets of assumptions—sometimes more relaxed 

ones than we will consider—on the structure of the process, they inherently face the same 

limitations for large-scale models. The uncertainty and error in the data-driven specification 

stage is not accounted for in the analysis of the model parameter estimation stage.

These computational and theoretical challenges of aggregating the model selection and 

parameter estimation are akin to the variable selection challenges in linear regression, where 

shrinkage methods (e.g., ridge, lasso, elastic net) have been successfully used in combining 

selection and parameter estimation. A key advantage of these approaches is that they allow 

formal asymptotic analysis of the complete specification-plus-estimation procedure.

In this work, we show that these convex optimization based techniques of regularization 

and dimension reduction, by now ubiquitous in the field of high-dimensional statistics, 

provide new perspectives and solutions to large-scale VARMA identification and estimation 

problems with several attractive properties.

I. Automatic identification of parsimonious VARMA models.

We show that by devising a suitable convex penalty, we can identify a 

parsimonious element in the equivalence class ℰ in an intuitive yet objective 

fashion (Section 2). More formally, we can define the class of AR-MA matrices 

with minimum ℓ1-norm as a partially identified class of “sparse” VARMA models 

ℛℰ = argmin(Φ, Θ) ∈ ℰ{∑ℓ = 1
p Φℓ 1 + ∑m = 1

q Θm 1}. We could also use a modified, strongly 

convex penalty argmin(Φ, Θ) ∈ ℰ{∑ℓ = 1
p ( Φℓ 1 + α Φℓ F

2 ) + ∑m = 1
q ( Θm 1 + α Θm F

2 )} with a very 

small α ≈ 0 to identify a parsimonious element in ℛℰ, viz. the unique AR-MA matrices 

with minimum Frobenius norm (Proposition 2.1).

II. Computationally efficient estimation of VARMA models.

Our identification strategy explicitly links the search for a unique, parsimonious model 

throughout the identification, specification and estimation stages. The same penalty used 

in our identification is used as a regularizer to define a natural VARMA estimator 

corresponding to this identified target (Section 3). We show on real and simulated data 

examples (Section 5 and Appendix G) that such parsimonious VARMA models lead to 

important gains in forecast accuracy compared to parsimoniously estimated VARs. An 
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implementation of our fully-automated VARMA identification and estimation procedure is 

available in the R package bigtime [49].

III. Non-asymptotic theory for sparse VARMA.

We also provide a non-asymptotic theoretical analysis of our proposed sparse VARMA 

estimator (Section 4). Our analysis explicitly captures the complexity of model selection, 

and does not assume the identification restrictions are known a priori as in existing 

asymptotic analysis of VARMA [16, 19]. While to the best of our knowledge, consistency of 

VARMA estimators has been studied only in the low-dimensional, fixed d asymptotic regime 

[28, 20], our error bound analysis shows consistent estimation is possible in a double-

asymptotic regime d, T → ∞. We provide two main results on consistency (Proposition 

4.1). Our first result in the spirit of partial identification [35, 43] states that under suitable 

sparsity assumptions our algorithm provides a parsimonious VARMA estimator (small ℓ1-

norm) whose distance from the equivalence class ℰ asymptotically vanishes as long as log 

d / T → 0. Our second result on point identification states that our estimator converges in 

probability to our identified target in ℰ as long as d4 log d / T → 0.

2 Identification of the VARMA

We revisit the VARMA identification problem in Section 2.1, then introduce an 

optimization-based, parsimonious identification strategy for VARMA in Sections 2.2 and 

2.3.

2.1 Identification Problem

Consider the VARMAd(p, q) of Equation (1) with fixed autoregressive order p and moving 

average order q. The model can be written using compact lag operators as Φ(L)yt = Θ(L)at, 

where the AR and MA operators are respectively given by

Φ(L) = I − Φ1L − Φ2L2 − … − ΦpLp and Θ(L) = I + Θ1L + Θ2L2 + … + ΘqLq,

with the lag operator Lℓ defined as Lℓyt = yt−ℓ. We assume the model is stable and invertible 

meaning respectively that det{Φ(z)} ≠ 0 and det{Θ(z)} ≠ 0 for all |z | ≤ 1(z ∈ ℂ). The process 

{yt} then has an infinite-order VAR representation Π(L)yt = at, where Π(L) = Θ−1(L)Φ(L) 

= I – Π1L – Π2L2−···, with det{Π(z)}≠ 0 for all |z|≤1. The Π-matrices can be computed 

recursively from the AR matrices {Φℓ} and MA matrices {Θm} (e.g., [11], Chapter 11). The 

VARMA is uniquely defined in terms of the operator Π(L), but not in terms of the AR and 

MA operators Φ(L) and Θ(L), in general. That is, for a given Π(L), p, and q, one can define 

an equivalence class of AR and MA matrix pairs,

ℰp, q(Π(L)) = (Φ, Θ):Φ(L) = Θ(L)Π(L) ,

where Φ = [Φ1···Φp] and Θ = [Θ1···Θq]. This class can, in general, consist of more than one 

such pair, implying that further identification restrictions on the AR and MA matrices are 

needed for meaningful estimation.
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In order to connect identification to estimation, we first provide an alternate characterization 

of the equivalence class ℰp, q(Π(L)) in terms of a Yule-Walker type equation.

Proposition 2.1—(Yule-Walker type equation for VARMA). Consider a white noise 
process at t ∈ ℤ with mean zero and variance Σa. For a stable, invertible linear filter Π(L) 

that allows a VARMAd(p, q) representation Π(L) = Θ−1(L)Φ(L), consider the process yt = 

Π−1(L)at and define zt = yt − 1
⊤ :⋯:yt − p

⊤ :at − 1
⊤ :⋯:at − q

⊤ ⊤. Then, (Φ, Θ) ∈ ℰp, q(Π(L)) if and only if 

βd(p + q) × d: = Φ1:…:Φp:Θ1:…:Θq
⊤ is a solution to the system of equations ρzy = Σzβ, where 

ρzy = E ztyt
⊤  and Σz = E ztzt

⊤ . That is,

ℰp, q(Π(L)) = (Φ, Θ):ρzy = Σzβ . (2)

A proof of this proposition is provided in Appendix A.1. Note that both ρzy and Σz can be 

expressed as functions of Π and Σa alone (i.e. they do not depend on Θ and Φ), and hence are 

uniquely defined for the underlying process yt. While the AR(∞) representation given by Π 
in Proposition 2.1 is unique, it allows an equivalent characterization in terms of many (Φ, Θ) 

combinations. Each of these combinations is a solution to the (potentially) underdetermined 

system of equations in Proposition 2.1.

A key consequence of this proposition is that our identification target can be defined 

by optimizing over the solution set of this Yule-Walker type equation. Further, we can 

use sample analogues of ρzy and Σz in our estimation step to search for this target in a 

data-driven fashion.

2.2 Optimization-based Identification

We rely on strongly convex optimization to establish identification for VARMA models. 

Among all feasible AR and MA matrix pairs, we look for the one that gives the most 

parsimonious VARMA representation. We measure parsimony through a pair of convex 

regularizers, PAR(Φ)and PMA(Θ). Our identification results apply equally well to any convex 

function: one may consider, amongst others, the ℓ1-norm, the ℓ2-norm, the nuclear norm, and 

combinations thereof. Our methodology also allows for a different choice of convex function 

for the AR and MA matrices if prior knowledge would allow a more informed modeling 

approach. This might be particularly useful in economics, for instance, where one may be 

interested in a parsimonious AR structure for interpretability, but can allow for a non-sparse 

MA polynomial to increase forecast accuracy.

We now define the regularized equivalence class of VARMA representations as

ℛℰp, q(Π(L)) = argmin
Φ,Θ

PAR(Φ) + PMA(Θ) s.t. Φ(L) = Θ(L)Π(L) . (3)

This regularized equivalence class is a subclass of the equivalence class ℰp, q(Π(L)), 
containing the regularized VARMA representations. If the objective function in (3) is 

strongly convex, then the regularized equivalence class consists of one unique AR-MA 

matrix pair, in which case identification is established. However, for the ℓ1-norm, for 
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instance, the objective function is convex but not strongly convex. Hence, to ensure 

identification for this case, we add two extra terms to the objective function and consider

(Φ(α), Θ(α)) = argmin
Φ,Θ

{PAR(Φ) + PMA(Θ) + α
2 ‖Φ‖F

2 + α
2‖Θ‖F

2 s.t. Φ(L) = Θ(L)Π

(L)} .
(4)

Problem (4) is strongly convex and thus has a unique solution pair (Φ(α), Θ(α)) for each α > 

0. For any stable, invertible VARMA, we then define its unique regularized representation in 

terms of the AR-MA matrices as

(Φ(0), Θ(0)) = lim
α 0+

(Φ(α), Θ(α)) .
(5)

The following proposition, proved in Appendix A.2, establishes that (Φ(0), Θ(0)) is in 

the regularized equivalence class ℛℰp, q(Π(L)) and furthermore is the unique pair of 

autoregressive and moving average matrices in this set having the smallest Frobenius norm. 

This result is similar to a result in the regression context, which states that the LARS-lasso 

solution has the minimum ℓ2-norm over all lasso solutions (see [45], Lemma 7).

Proposition 2.2.—The limit in (5) exists and is the unique pair in the set ℛℰp, q(Π(L))
whose Frobenius norm squared is smallest:

(Φ(0), Θ(0)) = argmin
Φ,Θ

Φ F
2 + Θ F

2 s.t. (Φ, Θ) ∈ ℛℰp, q(Π(L)) .

2.3 Sparse Identification

While our identification results apply equally well to any convex function, we give special 

attention to sparsity-inducing convex regularizers. In this case, the regularized equivalence 

class in (3) is a sparse equivalence class, meaning that, in general, we would expect many of 

the elements of the AR and/or MA matrices to be exactly equal to zero.

To guarantee the sparsest VARMA representation, one might consider taking PAR(Φ) = Φ 0

and PMA(Θ) = Θ 0. However, since the ℓ0-penalty is non-convex, a unique solution cannot 

be guaranteed. One can construct examples in which there exist multiple equivalent, sparsest 

VARMAs, see [46] and Appendix A.3.1. Strong convexity in (4) is key to guaranteeing 

uniqueness of (Φ(α), Θ(α)). For sparsity, we may therefore add to the ℓ2-norm in (4) the 

ℓ1-norm PAR(Φ) = Φ 1 and PMA(Θ) = Θ 1 as a sparsity-inducing convex heuristic.

While our theory will focus on the ℓ1-norm, in the empirical sections we also investigate a 

time-series specific alternative penalty, the hierarchical lag (hereafter “HLag”) penalty [38, 

50]: PAR(Φ) = ∑i = 1
d ∑j = 1

d ∑ℓ = 1
p Φ(ℓ: p), ij , and PMA(Θ) = ∑i = 1

d ∑j = 1
d ∑m = 1

q Θ(m:q), ij , 

with Φ(ℓ: p), ij = Φℓ, ij…Φp, ij ∈ ℝ(p − ℓ + 1) and Θ(m:q), ij = Θm, ij…Θq, ij ∈ ℝ(q − m + 1). This penalty 

involves a lag-based hierarchical group lasso penalty (e.g., [52]) on the AR (or MA) 

parameters. It allows for automatic lag selection by forcing lower lags of a time series 
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in one of the VARMA equations to be selected before its higher order lags and is thus built 

on the intuition of encouraging increased sparsity in Φℓ and Θℓ as the lag increases.

3 Sparse Estimation of the VARMA

We estimate and determine the degree of parsimony of VARMA parameters by the use of 

convex regularizers. Since the VARMAd(p, q) of Equation (1) cannot be directly estimated 

as it contains the unobservable (latent) lagged errors, we proceed in two phases, in the spirit 

of [41, 19], and references therein. In Phase-I, we approximate these unobservable errors. In 

Phase-II, we estimate the VARMA with the approximated lagged errors.

3.1 Phase-I: Approximating the unobservable errors

The VARMA of Equation (1) has a pure VAR(∞) representation if it is invertible (Section 

2.1). We therefore approximate the errors at by the residuals of a VAR(p) given by

yt = ∑
τ = 1

p
∏τ

yt − τ + εt, (6)

for (p + 1) ≤ t ≤ T , with p a finite number, Πτ ∈ ℝd × d
τ = 1

p
 the AR parameter matrices, and εt 

a vector error series. Denote the estimates by Πτ and residuals by εt = yt − ∑τ = 1
p Πτyt − τ.

Estimating the VAR(p) of Equation (6) is challenging since p needs to be sufficiently 

large such that the residuals εt accurately approximate the errors at. Since, a large number 

of parameters pd2 , relative to the time series length T, needs to be estimated, we use 

regularized estimation. For ease of notation, first rewrite model (6) in compact matrix 

notation Y = ΠZ + E, where Y = yp + 1…yT ∈ ℝd × (T − p), Z = zp + 1…zT ∈ ℝdp × (T − p), 

with zt = yt − 1
⊤ …yt − p

⊤ ⊤ ∈ ℝ(dp × 1), E = εp + 1…εT ∈ ℝd × (T − p), and Π = Π1…Πp ∈ ℝd × dp. 

The regularized autoregressive estimates Π are obtained as

Π = argmin
Π

1
2 Y − ΠZ

F

2

+ λΠP(Π) , (7)

where we use the squared Frobenius norm as loss function and P(Π) is any convex 

regularizer. In our simulations and applications, we focus on sparsity-inducing regularizers 

(ℓ1-norm or HLag penalty). The penalty parameter λΠ > 0 then regulates the degree of 

sparsity in Π: the larger λΠ, the sparser Π. Problem (7) can be efficiently solved using 

Algorithm 1 in [38].

3.2 Phase-II: Estimating the VARMA

We continue with the approximated lagged errors εt−1,…,εt−q instead of the true errors 

at−1,…,at−q in Equation (1). The resulting model
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yt = ∑
ℓ = 1

p
Φℓyt − ℓ + ∑

m = 1

q
Θmεt − m + ut, (8)

is a regression of yt on yt−1,…,yt−p, εt−1,…,εt−q with vector error series ut. To tackle 

the VARMA overparameterization problem and establish identification simultaneously with 

estimation, we again use regularization.

Rewrite the lagged regression (8) in compact matrix notation Y = ΦZ + ΘX + U, where 

Y = yo + 1…yT ∈ ℝd × (T − o), Z = zo + 1…zT ∈ ℝdp × (T − o), with zt = yt − 1
⊤ …yt − p

⊤ ⊤ ∈ ℝ(dp × 1), 

X = xo + 1…xT ∈ ℝdq × (T − o) with xt = εt − 1
⊤ …εt − q

⊤ ⊤ ∈ ℝ(dq × 1), with o = max(p, q), for 

specified order p, q, U = uo + 1…uT ∈ ℝd × (T − o), Φ = Φ1…Φp ∈ ℝd × dp, and 

Θ = Θ1…Θq ∈ ℝd × dq. The regularized VARMA estimates are obtained as:

(Φ(α), Θ(α)) = argmin
Φ,Θ

{1
2‖Y − ΦZ − ΘX‖F

2 + λΦPAR(Φ) + λΘPMA(Θ)

+ α
2 (λΦ‖Φ‖F

2 + λΘ‖Θ‖F
2 )},

(9)

where λΦ, λΘ, > 0 are two penalty parameters. By adding the regularizers PAR(Φ) and 

PAR(Φ) to the objective function, estimation of large-scale VARMAs is feasible. The addition 

of the squared Frobenius norms makes the problem strongly convex, ensuring a unique 

solution in the same way as was done in the identification scheme (4). Optimization problem 

(9) can be solved via the proximal gradient algorithm in Appendix F. We investigate the 

forecast accuracy of the proposed VARMA on simulated data in Appendix G.

3.3 Choosing Tuning Parameters

The estimation procedure involves three sets of user-defined choices: (i) the maximum lag 

orders p, p, q; (ii) the penalty parameters λΠ, λΦ, λΘ; and (iii) the parameter α to ensure 

uniqueness. We choose these in either a data-driven or computationally inexpensive manner. 

Below we motivate our choices and address implications of misspecification.

The maximal lag orders p, p, and q .—We take p = 1.5 T  and p = q = 0.75 T . Our 

theoretical analysis suggests that p ≍ T
1
2 − ϵ (Proposition 4.2), and for larger d, overselecting 

AR/MA orders only affects the estimation and prediction performance at a rate of log d 
(Proposition 4.4). To simplify practical implementation, we therefore set these values at a 

slightly larger order O( T).

We perform a simulation study (Appendix G.4) to investigate misspecification of the 

maximal lag orders. We find that, in general, overselecting is less severe than underselecting. 

The price to pay for overselection is smaller for the HLag penalty than for the ℓ1-penalty 

since the former performs automatic lag selection. As such, it can reduce the effective 

maximal order of each series in each equation of the VAR (Phase-I) and VARMA (Phase-II).
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The penalty parameters λΠ, λΦ, and λΘ.—We select the penalty parameters using 

cross-validation. Below, we describe the selection of λΠ in Phase-I; in Phase-II, we proceed 

similarly but using a two-dimensional grid search for the penalty parameters (λΦ, λΘ).

Following [22], we use a grid of ten penalty parameters starting from λΠ,max, an estimate 

of the smallest value for which all parameters are zero, and then decreasing in log linear 

increments. We then use the following time series cross-validation approach: For each time 

point t = S,…,T – h, with S = ⎣0.9·T⎦ and forecast horizon h, we estimate the model and 

obtain parameter estimates. This results in ten different parameter estimates, one for each 

value of the penalty parameter in the grid. From these estimates, we compute h-step ahead 

forecasts yt + ℎ
(λ)  obtained with penalty parameter λ. We select the value of λΠ that gives the 

most regularized model whose Mean Squared Forecast Error

MSFEℎ
(λ) = 1

T − ℎ − S + 1 ∑
t = S

T − ℎ 1
d‖yt + ℎ − yt + ℎ

(λ) ‖2,

is within one standard error (see [26]; Chapter 7) of the minimal MSFE. In simulations, we 

take h = 1; in the forecast applications, we also consider other forecast horizons.

The parameter α.—We will sometimes refer to Equation (9) as an “elastic net” problem, 

although, unlike λΦ and λΘ, the parameter α is not treated as a statistical tuning parameter; 

rather, as a small positive value simply used to ensure uniqueness. Our simulation study 

in Appendix A.3.2 reveals that the addition of a small non-zero α indeed produces sparse 

VARMA estimates close to the unique (Φ(0), Θ(0)) pair defined in Equation (5). For α = 

0, we still retrieve sparse VARMA estimates that are close to an element in the sparse 

equivalence class. The resulting estimates are typically sparser (i.e. they have fewer non-zero 

components) than the estimates obtained with a small non-zero α since the target (Φ(0), Θ(0)) 

corresponds to the pair with minimum Frobenius norm among all minimum-ℓ1 VARMA 

representations. Since our main objectives are to produce VARMA estimates that are close 

to the sparse equivalent class and have good out-of-sample forecast performance, we prefer 

to work with the sparser estimates and thus take α = 0 in practice, as we have done in our 

forecast applications (Section 5) and simulations (Appendix G).

4 Theoretical Properties

We establish consistency of our VARMA estimator with the lasso penalty in Phase-I and 

elastic net penalty in Phase-II under a double asymptotic regime where dimension d grows 

with the sample size. Our Phase-II estimator is essentially an elastic net regression, but 

introduces additional complexities compared to i.i.d. or stochastic regression that need to be 

dealt with in the asymptotic analysis. The rows of the design matrix consist of consecutive 

observations from an approximate version of the time series zt = yt − 1
⊤ :…:yt − p

⊤ :at − 1
⊤ :…:at − q

⊤ ⊤, 

with at approximated by Phase-I residuals ε t. The error term in the regression involves 

ε t which do not have an analytically tractable distribution. In addition, since Φ(L)yt = 

Θ(L)at, the population covariance matrix of the predictors Σz is potentially singular. It is not 
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clear whether a restricted eigenvalue (RE) assumption, commonly used in high-dimensional 

regression [32], holds in Phase-II regression.

We start by establishing in Section 4.1 deterministic upper bounds on the estimation error 

of a generic elastic net regression under some sufficient conditions. A crucial step to 

verify these sufficient conditions is to derive upper bounds to control the approximation 

error of at by ε t in Phase-I. We do this in Section 4.2. Finally, in Section 4.3 we show 

that these sufficient conditions for Phase-II elastic net regression are satisfied with high 

probability for random realizations from the VARMA model, and present estimation error 

bounds. To maintain analytical tractability when tackling the VARMA specific complexities, 

we consider two modifications in Phase-II. First, we use y t: = yt − ε t, the fitted values 

from Phase-I, instead of yt, as response in Phase-II. The analysis can be modified in a 

straightforward fashion to use yt as response, although the resulting upper bounds become 

larger. Second, we consider a constrained version of the penalized Phase-II estimator with 

an additional side constraint on the ℓ1-norm of the regression coefficient. Equivalence of 

the constrained and penalized versions follows from duality of the convex programs. The 

additional side constraint on the regression coefficient is easy to implement in practice 

[1], and has been used for technical convenience in earlier literature on high-dimensional 

statistics [32].

We assume Gaussianity in our analysis, primarily to apply some concentration inequalities 

for Gaussian processes in our non-asymptotic error bound analysis. The results can be 

extended to non-Gaussian VARMA using recent concentration bounds for non-Gaussian 

linear processes [42] with potentially slower convergence rate for processes with heavier 

tails than Gaussian, although the technical exposition becomes more cumbersome.

Notation.

We denote the sets of integers, real, and complex numbers by ℤ, ℝ, and ℂ, respectively. 

We use ∥.∥ to denote the Euclidean norm of a vector and the operator norm of a matrix. 

We reserve ∥.∥0, ∥.∥1 and ∥.∥∞ to denote the number of nonzero elements, ℓ1 and ℓ∞ norms 

of a vector or the vectorized version of a matrix, respectively, and ∥.∥F to denote the 

Frobenius norm of a matrix. For a matrix-valued, possibly infinite-order lag polynomial 

A(L) = ∑ℓ ≥ 0AℓLℓ, we define ‖|A|‖: = maxθ ∈ [ − π, π]‖A eiθ ‖, and use A[k](L) and A−[k](L) to 

denote the truncated version ∑ℓ = 0
k AℓLℓ and the tail series ∑ℓ > kAℓLℓ, respectively. We 

also use A 2, 1 to denote the sum of the operator norms of its coefficients, ∑ℓ ≥ 0‖Aℓ‖. 

More generally, for any complex matrix-valued function f (θ) of frequencies θ ∈[−π, π] 

to ℂp × p, we define ||| f |||:= maxθ∈[−π,π] || f(θ) ||. In our theoretical analyses, we use ci, i 
= 0,1,2,…, to denote universal positive constants whose values do not rely on the model 

dimensions and parameters. For two model dependent positive quantities A and B, we also 

use A ≿ B to mean that for any universal constant c > 0, we have A ≥ cB for sufficiently 

large sample size. Finally, A ≍ B means A ≿ B and A ≾ B.

Remark 4.1 (Measures of Dependence).—We adopt the spectral density based 

measures of dependence introduced in [10] to capture the role of temporal dependence 
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in our non-asymptotic error bounds. For a d-dimensional centered stationary time series 

xt t ∈ ℤ with autocovariance function Γx(ℎ) = Cov xt, xt + ℎ = E xtxt + ℎ
⊤ , ℎ ∈ ℤ, we define the 

spectral density function fx(θ): = 1
2π ∑ℓ = − ∞

∞ Γx( ℓ )e−iℓθ, θ ∈[−π, π]. The quantity ||| fx ||| 

is taken as a measure of temporal and cross-sectional dependence in the time series {xt}. 

For a stable, invertible VARMA process yt in (1) with Λmin (Σa) > 0, it is known that 

fy is non-singular on [−π, π] and there exist two model dependent quantities C > 0 and 

ρ ∈ [0, 1) such that Πτ ≤ Cρτ, for all integers τ ≥ 1 [20]. This implies for any p ≥ 1, we 

have Π−[p] 2, 1 ≤ Cρp/(1 − ρ). The quantities ||| fy |||, ‖|fy
−1|‖ and ‖Π−[p]‖2, 1 appear in our error 

bounds, and capture the effects of temporal dependence on the convergence rates.

4.1 Elastic Net with Singular Gram Matrix

Consider an elastic net penalized regression problem where the population covariance matrix 

of the predictors is singular. The problem is non-identifiable in the sense that there is 

no “true” coefficient vector. Rather, the elastic net penalty itself is used to specify an 

identified target among all equivalent data-generating models. The following proposition 

provides deterministic upper bounds on estimation and in-sample prediction errors under 

some sufficient conditions. The proof is in Appendix C.

Proposition 4.1.—Let Σ ∈ ℝD × D be a non-negative definite matrix with Λmin (Σ) = 0 

and let ρ ∈ ℝD be in the column space of Σ. For some α ≥ 0, y, ℰ ∈ ℝN and X ∈ ℝN × D, 

consider the linear regression model y = Xβ*(α) + ε with identified target

β * (α): = argmin
β

Pα(β)s.t. Σβ = ρ ,

where Pα(β): = β 1 + (α/2) β 2, and define the estimator

β(α): = argmin
β:‖β‖1 ≤ M

1
n‖y − Xβ‖2 + λPα(β),

for some n and M, where M ≥∥β*(α)∥1. Then for any choice of λ ≥ 2 ∥X⟙ ε / n∥∞ and qn ≥ 

∥X⟙ X / n − Σ∥∞, the following holds:

a. In - Sample Prediction: 1
n‖Xβ (α) − Xβ * (α)‖

2
≤ λ 2M + αM2/2 ,

b.
Partially - Identified Estimation: min

β:Σβ = p
‖β (α) − β‖

2
≤

4qnM2 + λ 2M + αM2/2
Λmin+(Σ) , 

where Λmin+(Σ) is the smallest non-zero eigenvalue of Σ.

In addition, define the constrained version of the estimator

β [C]
(α) : = argmin

β
Pα(β)s.t. 1

n‖y − Xβ‖2 ≤ An, ‖β‖1 ≤ M .
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Then, for any rn ≥ 1
n X⊤ε ∞, and Sn ≥ 1

n‖ε‖2 − σ2 , An = σ2 + sn and M ≥∥β*(α)∥1, 

we have

c. Point - Identified Estimation: β [C]
(α) − β * (α) 2 ≤ 2vn + 2( D/α + M)vn

1/2, where 

vn: = 4Mrn + 2sn + 4M2qn
Λmin+(Σ) .

The VARMA estimator from Phase-II can be expressed in the above regression format (see 

Equation (14)) with n = T − q, N = nd, Σ = Σz and D = d2(p + q). We will show that modulo 

some terms capturing the effect of temporal dependence, λ, qn, rn can be chosen in the order 

of at most O( logD/n) with high probability.

Under this setting, part (a) will imply in-sample prediction consistency in the high-

dimensional regime log D / n → 0 as long as the identification target β*(α) is weakly 
sparse, i.e. its ℓ1-norm grows sufficiently slowly. Consequently, our VARMA forecasts will 

asymptotically converge to the optimal forecasts.

Part (b) will ensure that the Euclidean distance of our VARMA estimator from the set of 

data-generating vectors {β : Σzβ = ρzy} converges to zero in the asymptotic regime log D / n 
→ 0, assuming weak sparsity of β*(α). The rate of convergence also relies on the curvature 

of the population loss captured by Λmin+(Σ).

Error bound for the point identification part (c) will imply that with an appropriate choice 

of sn, consistent estimation of our identification target is possible in the double-asymptotic 

regime D2 log(D) / n → 0, as long as β*(α) is weakly sparse in the sense of small ℓ1-norm. 

This error bound also increases linearly with the inverse of α, the parameter capturing 

curvature of the penalty function Pα(β).

Remark 4.2.—We focus on prediction and estimation instead of model selection 

consistency for two reasons. First, model selection consistency in penalized regression 

holds only under incoherence or irrepresentable conditions [54], which are stringent even 

for i.i.d. data, and are not known to hold with high probability for multivariate stationary 

time series data. Second, since we work with an equivalence class of models potentially 

having different sparsity patterns, it is not obvious how to define sparsity of a true model, in 

general. However, we have conducted a simulation experiment (Appendix A.3.2) to assess 

model selection properties of our estimator in finite samples, which shows promising results.

4.2 Approximation Error in Phase-I

Our main interest in this section is in approximating the errors at by the Phase-I residuals ℰt

for use in Phase-II. As a by-product, we also provide estimation error bounds for VAR(∞) 

coefficients (see Proposition D.1).

Suppose we re-index data in the form y−(p − 1), y−(p − 2), …, y−1, y0, y1, …, yT . In Phase-I, we regress 

yt on its most recent p lags:
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yt = ∑
τ = 1

p
Πτyt − τ + εt, where εt = at + ∑

τ = p + 1

∞
Πτyt − τ . (10)

The autoregressive design takes the form YT × d = XT × dpBdp × d + ET × d, where 

Y = yT :yT − 1:…:y1
⊤, X = yT − i − j + 1 1 ≤ i ≤ T, 1 ≤ j ≤ p, B = Π1:…:Πp

⊤ and E = [εT : εT−1 :…: 

ε1]⟙. Vectorizing this regression design with T samples and d2p parameters, we have Y = 

Zβ* + vec(E), where Y = vec(Y), Z = I ⊗ X, and β* = vec(B). In Phase-I, we consider a 

lasso estimator

β = argmin
β ∈ ℝd2p

1
T ‖Y − Zβ‖2 + λ‖β‖1, (11)

where β = vec(B) and B = [Π1:…:Πp]
⊤. We denote the residuals of the Phase-I regression as 

ε t = yt − ∑τ = 1
p Πτyt − τ.

Our next proposition provides upper bounds on the approximation error of at by ε t for a 

random realization of (T + p) data points from the VARMA model (1). A complete proof is 

given in Appendix D.

Proposition 4.2.—Consider any solution β  of (11) using a random realization of yt t = 1 − p
T

from the VARMA model (1). Choose p ≍ T
1
2 − ϵ for some ϵ ∈(0, 1 / 2), and λ ≥ λ0, where

λ0: = 2π‖|fy|‖ 3Amax ‖|Π[p]|‖2, 1 log d2p /T + Π−[p] 2, 1 , for some A > 1.

Then, for T ≿ log d2p, there exist universal constants ci > 0 such that with probability at least 

1 − c0exp − c1A2 − 2 log d2p ,

1
T ∑

t = 1

T
‖ε t − εt‖2 ≤ Δε

2: = 2λ ∑
τ = 1

p
Πτ 1,

max
1 ≤ j ≤ d

1
T ∑

t = 1

T
(ε tj − atj)2 ≤ Δa

2: = 4max Δε
2, 4π Π− p 2, 1

2 fy ‖ ,

1
T ∑

t = 1

T
ε t − at

2 ≤ 4max Δε
2, 4πd Π− p 2, 1

2 ‖ fy ‖ .

If, in addition, Π1, …, Πp  are sparse so that k: = ∑τ = 1
p Πτ 0 ≾ T , then for any choice of λ 

≥ 2λ0 and T ≿ max{p2‖ fy ‖2‖|fy
−1|‖2, 1}k(log d + logp), we can use a potentially tighter upper 

bound Δε
2: = (128/π)‖|fy

−1|‖kλ2.

Remark 4.3 (Convergence Rate & Truncation Bias).—The error bounds Δε
2 and Δa

2

scale with λ0, which has two terms. The first term decays polynomially with T. The second 
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term Π−[p] 2, 1 captures the truncation bias arising from using a VAR(p) approximation to a 

VAR(∞) process. When p ≍ T
1
2 − ϵ, this term decays exponentially with T

1
2 − ϵ since

Π−[p] 2, 1 ≤ C
1 − ρρp = C

1 − ρexp −T
1
2 − ϵlog(1/ρ) , (12)

where C, ρ are as defined in Remark 4.1. This bias also appears in our Phase-II analysis.

Remark 4.4 (Choice of [INEQ-START).—p, Slow & Fast Rates, and RE Condition] As 

long as p increases polynomially fast with T, the truncation bias vanishes as T → ∞ and the 

approximation errors Δε and Δa decay with T at a rate O( logd/T). However, under sparsity 

of Π and choosing p ≍ T 1/2 − ϵ, a suitable Restricted Eigenvalue (RE) condition holds with 

high probability (see Appendix D for details), and these approximation errors decay at a 

faster rate O(log d / T). The choice of (1 / 2− ϵ) in the exponent ensures that T ≿ p2 holds 

asymptotically. This choice of p matches with low-dimensional VARMA analysis presented 

in [20].

4.3 Prediction and Estimation Error in Phase-II

For simplicity of exposition, we assume that p and q are known and p > p + q. It will be 

evident from our analysis that similar conclusions hold as long as we replace these with 

any upper bounds of p and q. Without loss of generality, we also assume that the Phase-II 

regressions are run with the following re-indexing of observations:

yt = ∑
ℓ = 1

p
Φℓyt − ℓ + ∑

m = 0

q
Θmε t − m + ut, for t = 1, 2, …, n, n = T − q, (13)

where ut = Θ(L) at − ε t , and Θ0 = I. As mentioned earlier, we consider a variant of the 

Phase-II regression where the fitted values from Phase-I, y t = yt − ε t, are used as response 

instead of yt. The autoregressive moving average design then takes the form

yn
⊤

yn − 1
⊤

⋮
y1

⊤

Yn × d

=

yn − 1
⊤ ⋯ yn − p

⊤ εn − 1
⊤ ⋯ εn − q

⊤

yn − 2
⊤ … yn − 1 − p

⊤ εn − 2
⊤ … εn − 1 − q

⊤

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
y0

⊤ ⋯ y1 − p
⊤ ε0

⊤ ⋯ ε1 − q
⊤

Zn × d(p + q)

Φ⊤

Θ⊤
Bd(p + q) × d

+
un

⊤

⋮
u1

⊤

Un × d

,

where Φ = [Φ1 :…: Φp], and Θ = [Θ1 :…: Θq]. Vectorizing the above regression problem 

with n samples and d2(p + q) parameters, we have

vec(Y)
Y

= I ⊗ Z
Z

vec(B)
β*

+ vec(U)
U

.
(14)

In order to apply Proposition 4.1 on this regression problem with N = nd and D = d2(p + q), 

we first provide suitable choices of qn, sn and rn (same as choice of λ) that hold with high 
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probability for a random realization of (T + p) consecutive observations from the VARMA 

process. To this end, note that

(I ⊗ Z)⊤ I ⊗ Z /n − I ⊗ Σz
∞

= Z⊤Z/n − Σz ∞ .

In Section 4.2, we have discussed how the approximation errors Δa, Δε and the truncation 

bias term ‖Π−[p]‖2, 1 decay with the sample size. In this proposition, we show that qn, rn and 

sn / d can be chosen to be a linear combination of the above terms and logd2(p + q)/n, where 

the coefficients of this linear combination depend on model parameters and capture the role 

of temporal dependence in these convergence rates.

Proposition 4.3.—Consider the Phase-II regression (14) with design matrix I ⊗ Z and 
error vector vec(U). Set σj

2 = ej
⊤Var Θ(L)Π−[p](L)yt ej, for j = 1,…,d. Then there exist universal 

constants ci > 0 such that the event

ℰ: = Z⊤Z/n − Σz ∞ ≤ qn,
1
n Z⊤U ∞ ≤ rn, 1

n‖vec(U)‖2 − ∑
j = 1

d
σj

2 ≤ sn (15)

holds with probability at least 1−c0 exp(−(c1A2 − 2)log d2(p + q)], where

qn = φq, 1
logd2(p + q)

n + φq, 2 Δa + Δa
2 ,

rn = φr, 1
logd2(p + q)

n + φr, 2 Δε + Δε
2 + Π−[p] 2, 1 ,

sn/d = φs, 1
logd2(p + q)

n + φs, 2 Δε + Δε
2 ,

and φq,1, φq,2, φr,1, φr,2, φs,1, φs,2, are functions of the model parameters

φq, 1 = 2π‖ fy|‖ p + q‖|Π[p]|‖2 2,

φq, 2 = max 2q, 2 2πq‖|fy|‖1/2 p + q‖|Π[p]|‖2 1/2 ,

φs, 1 = 2π‖|Θ ‖ Π−[p] 2, 1
2 ‖ fy|‖,

φs, 2 = max 2‖Θ‖2, 1
2 , 4 2π‖ Θ ‖1/2 Π−[p] 2, 1‖ fy ‖1/2 Θ 2, 1 ,

φr, 1 = c1 ‖fy‖ Amax 1, ‖ Θ ‖2 Π−[p] 2, 1
2 , ‖|Π[p]|‖2 ,

φr, 2 = c2‖ fy ‖ Θ 2, 1max{1, Π[p] 2, 1} .

Using Proposition 2.1, the identification target in (4) with an elastic net penalty becomes

(Φ(α), Θ(α)) = argmin
Φ,Θ

{‖[Φ:Θ]‖1 + α
2‖[Φ:Θ]‖F

2 s.t. vec ρzy = I ⊗ Σz vec(β)}, (16)

where ρzy, Σz and β are as defined in Proposition 2.1. We consider the penalized and 

constrained versions of the estimator
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vec [Φ(α):Θ(α)]
⊤

= argmin
β 1 ≤ M

1
n vec(Y) − (I ⊗ Z)β

2
+ λPα(β)

vec [Φ[C]
(α) :Θ[C]

(α) ]⊤ = argmin
β 1 ≤ M

Pα(β) s.t. 1
n vec(Y) − (I ⊗ Z)β

2
≤ An .

A direct application of Proposition 4.1 with the choices of qnrn, sn in Proposition 4.3 then 

leads to the following upper bounds on the prediction and estimation error of the penalized 

and constrained versions of our two-phase VARMA estimator.

Proposition 4.4 (VARMA Estimation and Prediction Errors).—Consider a random 
realization of T + p consecutive observations y1, …, yT + p  from a stable, invertible Gaussian 

VARMA model (1), and let n = T − q denote the sample size in Phase-II. Denote 

Ky: = max ‖ fy , Π 2, 1, Θ(α)
2, 1 .

(a) Forecast Error:  Let yt
* = ∑ℓ = 1

p Φℓyt − ℓ + ∑m = 1
q Θmat − m and 

yt = ∑ℓ = 1
p Φℓyt − ℓ + ∑m = 1

q Θmε t − m denote the optimal and the penalized VARMA forecasts 

respectively. Then, for a choice of λ ≍ Ky
3max logd2(p + q)/n, Δε , and M ≥∥Φ(α)∥1 + ∥Θ(α)∥1 

for some α ≥ 0,

1
n ∑

t = 1

n
‖yt − yt

*‖2 = Oℙ Ky
3M2max log d2(p + q)

n , ‖Π−[p]‖2, 1, Δε .

(b) Partially-identified Estimation:  With the same choice of λ, M and α in (a), the 

penalized estimator is partially identified and satisfies

min
(Φ, Θ) ∈ εp, q(Π(L))

Φ(α), Θ(α) − (Φ, Θ)
F

2
= Oℙ

Ky
3M2

Λmin+ Γz(0) max log d2(p + q)
n , ‖Π−[p]‖2, 1, Δε .

(c) Point-identified Estimation:  For a choice of 

An ≍ Ky
3‖Π−[p]‖2, 1

2 max{d log d2(p + q)/n, Δε} and any α > 0, the constrained version of the 

estimator is point identified and satisfies

Φ[C]
(α) , Θ[C]

(α) − Φ(α), Θ(α)
F

2
= Oℙ

Ky
3M2

α Λmin+ Γz(0) max d3 log d2(p + q)
n , ‖Π−[p]‖2, 1, Δε

1/2
.

Part (a) of this proposition ensures that as long as the identification target is parsimonious in 

the sense of small ℓ1-norm and the penalty parameter is chosen appropriately, the VARMA 

forecasts converge to the optimal forecasts (which uses any element from the equivalence 

class ℰp, q(Π)) in the asymptotic regime log d / n → 0. The truncation bias term ‖Π−[p]‖2, 1 and 

the approximation error from Phase-I Δε also converges to zero in this asymptotic regime, as 
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shown in Section 4.2. The convergence rates are further affected by the strength of temporal 

dependence in the VARMA process, as captured by the term Ky.

In addition, part (b) ensures that the distance of our penalized estimator from the equivalence 

class also asymptotically vanishes in this high-dimensional regime. Further, the convergence 

rates are affected by the minimum positive eigenvalue of the variance-covariance matrix of 

the process zt, which captures the curvature of the loss function.

Part (c) shows that our constrained estimator converges in probability to our identification 

target, but in a low-dimensional regime d3 log d/n 0. This slow rate is a consequence of 

the fact that we did not assume sparsity on the entire equivalence class ℰp, q(Π), so searching 

for the correct identification target within this equivalence class still has a complexity of the 

order of d2. The tuning parameter α also affects the convergence rate, since this captures the 

degree of curvature of the term Pα( . ) in the loss function. However, taking a sequence of αn 

that converges to 0 at a rate slower than d3 log d2(p + q)/n, we can still guarantee consistent 

estimation of the target (Φ(0), Θ(0)) with the minimum Frobenius norm.

5 Forecast Applications

We present three forecast applications:

(i) Demand forecasting.

Weekly sales data (in dollars) are collected for d = 16 product categories of Dominick’s 

Finer Foods from January 1993 to July 1994 (T = 76). Data are taken from https://

research.chicagobooth.edu/kilts/marketing-databases/dominicks. To ensure stationarity, we 

take each series in log differences and consider sales growth. Augmented Dickey-Fuller tests 

help support that the sales growth series are stationary.

(ii) Volatility forecasting.

We collect monthly realized variances for d = 17 stock market indices, from January 

2009 to December 2016 (T = 96). Realized variances, computed from five minute returns, 

are obtained from http://realized.oxford-man.ox.ac.uk/data/download and log-transformed 

following standard practice. Augmented Dickey-Fuller tests help support that the log-

realized variances are stationary.

(iii) Macro-economic forecasting.

We consider d = 168 quarterly macro-economic series of length T = 60 ending in 2008, 

Quarter 4. Data are taken from the Journal of Applied Econometrics Data Archive, a full list 

of the series is available in [31] (Data Appendix), along with the transformations to make 

them approximately stationary.

In all considered cases, the number of time series d is large relative to the time series length 

T. First, we discuss the model parsimony of the estimated VARMA and VAR with HLag 

penalties. Secondly, we compare their forecast accuracy for different forecast horizons.

Wilms et al. Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://research.chicagobooth.edu/kilts/marketing-databases/dominicks
https://research.chicagobooth.edu/kilts/marketing-databases/dominicks
http://realized.oxford-man.ox.ac.uk/data/download


5.1 Model Parsimony

Since the sparse VARMA and VAR estimators with HLag penalties both perform automatic 

lag selection, they give information on the effective maximum AR and MA orders. Consider 

the d × d moving average lag matrix LΘ of the estimated VARMA whose elements are 

LΘ, ij = max m:Θm, ij ≠ 0 , where LΘ, ij = 0 if Θm,ij = 0 for all m = 1…, q. This lag matrix shows 

the maximal MA lag for each series j in each equation i of the corresponding estimated 

VARMA. If entry ij is zero, this means that all lagged MA coefficients of time series j on 

time series i are estimated as zero. If entry ij is, for instance, three, this means that the third 

lagged moving average term of series j on series i is estimated as non-zero, but the forth 

and higher as all zero. Similarly, one can construct the autoregressive lag matrix LΦ of the 

estimated VARMA and the autoregressive lag matrix LΠ of the estimated VAR.

Figure 1 shows the lag matrices of the estimated VARMA and VAR on the demand data. 

Similar findings are obtained for the other data sets and therefore omitted. The MA lag 

matrix of the VARMA (middle panel) is very sparse: 247 out of 256 entries are equal to 

zero. By adding just few MA terms to the model, serial correlation in the error terms is 

captured. As a result, a more parsimonious VARMA model is obtained: 107 out of the 3,072 

(around 3%) estimated VARMA parameters are non-zero. In contrast, 877 out of the 3,328 

(around 25%) estimated VAR parameters are non-zero. We find the more parsimonious 

VARMA to often give more accurate forecasts than the VAR, as discussed next.

5.2 Forecast Accuracy

We compare the forecast accuracy of VARMA to VAR through an expanding window 

forecast exercise. Let h be the forecast horizon. At each time point t = S,…,T − h, we 

sparsely estimate the VARMA and VAR. We take S such that forecasts are computed for 

the last 25% of observations. We estimate the model on the standardized series and obtain 

h-step-ahead forecasts and corresponding forecast errors ei, t + ℎ
(i) = yi, t + ℎ − y i, t + ℎ for each series 

1 ≤ i ≤ d. The overall forecast performance is measured by computing the Mean Squared 

Forecast Error for a particular forecast horizon h, as in Equation (10). For the weekly 

marketing data set, we take h = 1, 8, 13. For the monthly volatility data set, we take h = 1, 6, 

12. For the quarterly macro-economic data set, we take h = 1, 4, 8. To assess the difference 

in forecast performance between VARMA and VAR, we use a Diebold-Mariano (DM-) test 

([17]).

The MSFEs on the three data sets are given in Table 1. Across all considered data sets and 

horizons, VARMA gives either a significantly lower MSFE than the VAR estimator (in 5 out 

of 9 cases at the 5% level, in 1 case at the 10% level) or performs equally well (in 3 out 

of 9 cases). The gain in forecast accuracy over VAR is typically the largest for the longest 

forecast horizons. VARMA not only gives a lower MSFE averaged over the considered time 

points, but it also attains the lowest MSFE for the large majority of time points. For the 

demand data at horizon h = 13, for instance, it outperforms VAR for all time points except 

two. The sparse VARMA method is thus a valuable addition to the forecaster’s toolbox 

for large-scale multivariate time series models. It exploits the serial correlation between the 

error terms and, as a consequence, often gives more parsimonious forecast models with 

competitive or better forecast accuracy than a sparse VAR.
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6 Conclusion

We present sparse identification and estimation for VARMA models. Our estimator, 

available in the R package bigtime, is naturally aligned with our identified target through 

the use of sparsity-inducing convex regularizers and can be computed efficiently even 

for large-scale VARMAs. Under a double-asymptotic regime where both d, T → ∞, we 

prove consistency of our two-step sparse VARMA estimation for stable, invertible Gaussian 

VARMA processes. Simulation and real data analyses show that our sparse VARMA model 

can produce better forecasts compared to sparse VAR by fitting more parsimonious models.

There are several questions we did not address. Our two-stage procedure can be generalized 

to an iterative method, as in [16]. However, developing a double-asymptotic theory for such 

an iterative method is complex and left for future research. The convergence rates of our 

point-identified Phase-II estimator can be potentially sharpened under restricted eigenvalue 

assumptions. Identifying a class of sparse VARMAs for which such assumptions hold with 

high probability is an interesting theoretical question. Inference of model parameters can be 

pursued by adopting debiasing approaches [27, 47], and are left for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Demand data set: AR-lag matrix (left) and MA-lag matrix (middle) of the estimated 

VARMA, and AR-lag matrix of the estimated VAR (right).
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Table 1

Mean Squared Forecast Errors at different forecast horizons for the two estimators on the three data sets. 

P-values of the Diebold-Mariano tests are given in parentheses.

Estimator Weekly Monthly Quaterly

Demand Data Volatility Data Macro-economic Data

h = 1 h = 8 h = 13 h = 1 h = 6 h = 12 h = 1 h = 4 h = 8

VARMA 0.473 0.578 0.550 0.781 1.080 1.065 0.974 1.152 1.281

VAR 0.499 
(0.141)

0.703 
(0.041)

0.715 
(<0.001)

0.728 
(0.142)

1.209 
(0.050)

1.429 
(0.007)

0.977 
(0.412)

1.170 
(0.080)

1.401 
(0.003)
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