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Abstract
Motivation: While the search for associations between genetic markers and complex traits has led to the discovery of tens of thousands of
trait-related genetic variants, the vast majority of these only explain a small fraction of the observed phenotypic variation. One possible strategy
to overcome this while leveraging biological prior is to aggregate the effects of several genetic markers and to test entire genes, pathways or
(sub)networks of genes for association to a phenotype. The latter, network-based genome-wide association studies, in particular suffer from a
vast search space and an inherent multiple testing problem. As a consequence, current approaches are either based on greedy feature selection,
thereby risking that they miss relevant associations, or neglect doing a multiple testing correction, which can lead to an abundance of false posi-
tive findings.

Results: To address the shortcomings of current approaches of network-based genome-wide association studies, we propose networkGWAS, a
computationally efficient and statistically sound approach to network-based genome-wide association studies using mixed models and neighbor-
hood aggregation. It allows for population structure correction and for well-calibrated P-values, which are obtained through circular and degree-
preserving network permutations. networkGWAS successfully detects known associations on diverse synthetic phenotypes, as well as known
and novel genes in phenotypes from Saccharomyces cerevisiae and Homo sapiens. It thereby enables the systematic combination of gene-
based genome-wide association studies with biological network information.

Availability and implementation: https://github.com/BorgwardtLab/networkGWAS.git.

1 Introduction

Genome-wide association studies (GWAS) aim to identify sta-
tistical associations between genetic variants, most commonly
in the form of single nucleotide polymorphisms (SNPs), and
disease risk or other phenotypes. However, most of the phe-
notypes of interest are complex traits in the sense that they do
not follow a Mendelian pattern of inheritance since they are
controlled by multiple SNPs and genes, and are influenced by
environmental factors. With respect to such traits, traditional
GWAS face the fundamental obstacle of “missing
heritability,” i.e. single SNPs which were found to be signifi-
cantly associated often account for a small portion of the vari-
ation of heritable phenotypes. In fact, when the development
of a certain phenotype involves the interplay of multiple path-
ways, large parts of missing heritability could be due to ge-
netic interactions rather than directly corresponding to
undetected association with genetic variants (Zuk et al.

2012). Therefore, a great effort has been undertaken to de-
velop more comprehensive and powerful GWAS methodolo-
gies, aiming at understanding and incorporating biological
mechanisms underlying the genetics of complex traits. To
date, the rich knowledge about biological networks, which is
already available, such as protein–protein interaction (PPI)
and gene regulatory networks, is rarely leveraged in a statisti-
cal and rigorous way in GWAS. Including such contextual
and functional information, representing processes relevant to
the phenotype under study, constitutes a promising approach
to overcome the problem of missing heritability. This strategy,
in fact, can enable an increase in statistical power as well as
an improvement in interpretability in GWAS aimed at com-
plex traits.

The problem of limited power in GWAS is generally rooted
in both a large marker-to-sample ratio and low heritability of
complex traits. In order to mitigate that, two strategies have
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been pursued: (i) to group genetic markers and test set of
markers at once, thereby reducing the multiplicity of markers
tested (Holden et al. 2008, Li and Leal 2008, Schwender et al.
2011, Listgarten et al. 2013), or (ii) to employ biological net-
works in order to conduct a post hoc aggregation of associa-
tion (Ideker et al. 2002, Akula et al. 2011, Azencott et al.
2013, Greene et al. 2015, Shim and Lee 2015, Wang et al.
2015, Shim et al. 2017, Carlin et al. 2019). Both approaches
amplify the signal of SNPs or genes, which are collectively
phenotype-related but would not pass the significance thresh-
old on their own. However, within the set-based test strategy,
so far, SNP sets are typically chosen based on membership to
a functional unit on the genome. Hence, this strategy lacks a
principled procedure to select SNP sets that goes beyond sin-
gle genes or mere regions on the genome. The post hoc aggre-
gation strategies, on the other hand, present other limitations,
depending on the algorithm they are based upon. For exam-
ple, the methods based on greedy search risk to miss potential
associations. They, in fact, start the search for associated sub-
networks from “seed genes” on the network, and then expand
toward the most associated genes in their neighborhoods, un-
til some conditions are met. Therefore, signal located on genes
far away from the seeds can potentially be ignored.
Furthermore, multiple testing correction is generally not ap-
plicable to such methods given the dynamics in the search and
the presence of 2n hypothesis, with n being the number of
nodes. Lastly, other post hoc tools provide scores rather than
P-values, which do not allow to assess the results in a statisti-
cally rigorous way.

We propose to combine both strategies and thereby over-
come their respective weaknesses. More precisely, our ap-
proach entails testing sets of SNPs, as done e.g. by the FaST-
LMM-Set method (Listgarten et al. 2013), but we guide the
SNP selection by means of biological networks. Specifically,
we define the set of subnetworks to test for association by
means of a neighborhood aggregation-based strategy. Despite
limiting the search space a priori, this approach is efficient to
compute and results in having a clear number of hypothesis,
allowing to perform proper multiple testing correction, in
contrast to post hoc methods. Thus, we arrive at a strategy,
networkGWAS, that incorporates both a biologically mean-
ingful way to select SNP sets that goes beyond functional
units, and that yields statistically rigorous P-values for the
SNP sets tested, obtained through circular and degree-
preserving network permutations.

2 networkGWAS

In this section, we detail how we exploit the biological net-
work information, we discuss the mathematical model we use
and the details of how we obtain P-values.

2.1 Neighborhood aggregation

We test pre-defined sets of SNPs, rather than single SNPs, in
order to both reduce the number of markers tested and to ac-
count for gene interaction in addition to mere genetic vari-
ance. Multiple methods performing SNP set-based tests
already exist, including gene enrichment analysis (Holden
et al. 2008), collapsing methods (Li and Leal 2008), multivari-
ate regression (Schwender et al. 2011) and linear mixed mod-
els (LMMs) (Listgarten et al. 2013). However, none of them
incorporates biological network structure in order to guide
the SNP-set selection, thereby choosing SNP sets that are not

representative of biological mechanisms. In our approach, in-
stead, we select SNP sets to be tested based on PPI networks,
i.e. the graph representation of the interactions between pro-
teins. PPIs are essential for almost all biological mechanisms,
and are defined as the specific, non-generic, physical contact
between proteins in a particular biological context (Rivas and
Fontanillo 2010). These interactions can be both stable (e.g.
as in multi-enzyme complexes) or transient [e.g. as in interac-
tion with kinases (Junker and Schreiber 2011)]. Since we fo-
cus on complex phenotypes, we employ the entire PPI
network, including both stable and transient interactions,
thus capturing effects of molecular mechanisms taking place
in diverse cells and tissues, and of various kinetics.

More precisely, each sample i in the GWAS dataset is repre-
sented as a graph Gi ¼ ðV;EÞ, where V is the set of nodes and
E is the set of edges in the PPI network. In these graphs, the
nodes V represent genes, and edges E indicate any kind of PPI
between gene products of the two nodes they connect. Since
each sample uses the same PPI network, the topology is
shared, i.e. ðV;EÞ is the same for each sample. The node fea-
tures, however, vary depending on the sample. Each node v 2
V is attributed with a feature vector a!iðvÞ comprising the val-
ues of all SNPs overlapping with the corresponding gene.
Based on this representation, one SNP set per gene is con-
structed by means of concatenating the feature vector of the
gene itself as well as its k-hop neighbor genes according to the
PPI network. As a result, the node feature vector l

!
iðvÞ of a

node v and a sample i is now represented by the union of its
own SNPs and those from its k-hop neighborhoodN k,

l
!

iðvÞ ¼ [
v02N kðvÞ

a!iðv0Þ: (1)

This neighborhood aggregation operation is visualized in
Fig. 1a. We thereby directly test the significance of biological
subnetworks to identify pathways underlying complex pheno-
types. In summary, our neighborhood aggregation approach
is akin to the idea underlying graph kernels (Borgwardt et al.
2020) or graph convolutional networks (GCNs) (Kipf and
Welling 2017). All of these methods leverage localized first-
order approximations of subgraph structure in order to avoid
an exhaustive search of all subgraphs, which would scale ex-
ponentially in the size of the network at hand, whereas our
approach is linear in the number of nodes, even when the k-
hop neighborhood is defined to be >1. Hence, this approach
represents a good compromise between leveraging the biologi-
cal network information and enumerating all subgraphs.
Note that in all the experiments we perform, we employ
1-hop neighborhoods to define our SNP sets.

2.2 Model

Once SNP sets have been selected in the aforementioned man-
ner, we employ a FaST-LMM-Set like model (Lippert et al.
2014) to estimate the statistical associations with the pheno-
type of choice. The LMM we use,

y! ¼ Xf � b
!

f þ Vs � w!s þ �!; (2)

features one random effect Vs � w!s, which accounts for the
similarity among the SNPs of the set to be tested. The precise
form of Vs depends on the similarity measure chosen and will
be specified by means of Equations (4)–(6) below. Above, y!
contains the continuous phenotype values of the n individuals
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studied, Xf is the n� nf matrix of nf fixed effects (e.g. a col-
umn of 1 s corresponding to the intercept and other covari-
ates, see Supplementary Section S1; here and throughout the
manuscript, all section, figure and table numbers starting with
an “S” refer to the Supplementary), b

!
f denotes the vector of

the nf fixed effect weights, w!s comprises the signal, i.e. the
random effects of the ns SNPs of interest and included in the
pre-defined SNP set to be tested, and �! models residual noise.
w!s, and �! are assumed to be drawn from multivariate
Gaussian distributions, respectively Nð 0

!
; r2

s IÞ and
Nð 0
!

; r2
e IÞ, where r2

s represents the genetic variance, r2
e the

residual variance and I the identity matrix. Marginalizing
over fixed effects, the log-likelihood of the model (2) reads

LLðr2
e ; r

2
s ; b
!

fÞ ¼ logNð y!jXf b
!

f ; r
2
e Iþ r2

s KsÞ; (3)

where Ks is the covariance matrix capturing the similarities
among the SNPs in the test set. The parameter rs serves to dis-
tinguish the null model (i.e. rs ¼ 0) from alternative models
(i.e. rs > 0), and is estimated from the GWAS dataset by
means of restricted maximum likelihood. While in the original
FaST-LMM-Set, Ks measures similarity through a linear ker-
nel kðlinÞ, we additionally explore the use of a quadratic kernel
kðpolyÞ for Ks in our method:

kðlinÞð l
!

iðvÞ; l
!

jðvÞÞ ¼ h l
!

iðvÞ; l
!

jðvÞi ; (4)

kðpolyÞð l
!

iðvÞ; l
!

jðvÞÞ ¼ ð1þ h l
!

iðvÞ; l
!

jðvÞiÞ2; (5)

½Kðlin=polyÞ
s �i;j ¼ kðlin=polyÞð l

!
iðvÞ; l
!

jðvÞÞ; (6)

where l
!

iðvÞ and l
!

jðvÞ are defined according to Equation (1)
for the i-th and the j-th sample. We chose an inhomogeneous
polynomial kernel in order for it to be able to capture both
linear and non-linear similarity. In an additional deviation
from FaST-LMM-Set, we normalize the diagonal entries of
our final kernel matrix ~Ks to be 1, by means of the following
equation:

½~Ks�ij ¼ ½Ks�ij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Ks�ii½Ks�jj

q
: (7)

Note that the definition of Vs in Equation (2) varies
depending on the type of the kernel we use. If the kernel is de-
fined following Equation (4), e.g. the linear kernel, Vs corre-
sponds to the n� ns design matrix whose rows correspond to
liðvÞ; i ¼ 1; . . . ;n, normalized to be consistent with Equation
(7). When the kernel is instead calculated according to
Equation (5), Vs constitutes a higher-dimensional vector in
the reproducing kernel Hilbert space, which additionally

Figure 1. Overview of networkGWAS: (a) given a SNP matrix, a PPI network, and a mapping of SNPs onto the genes gj (color-coded), the first step, i.e.

the neighborhood aggregation, begins by representing each of the samples as a network which shares a fixed topology from the PPI network but differs

in the node feature values. Subsequently, the 1-hop neighborhood aggregation of the features is performed for each sample i, resulting in each node j

being labeled with li ðgj Þ, i.e. the concatenation of its own features and the features of its 1-hop neighbors in the PPI network. (b) Per each gene j, either

Klin or Kpoly is calculated from li ðgj Þ, 8i 2 ½1; 3�. Then, the values of Equation (2) for rs ¼ 0 and rs > 0 are estimated via restricted maximum likelihood, and,

subsequently, the likelihood-ratio test statistics tj , j 2 ½1; 6� are obtained. (c) The distribution of the test statistics under the null hypothesis of no

association signal between the neighborhoods and the phenotype is derived via a permutation procedure, which combines a circular permutation (c.1)

with a degree-preserving network permutation (c.2). Having obtained the permuted settings, steps (a) and (b) are performed to obtain a test statistic t0
l ;m

per neighborhood l and permutation m. (d) t0
l;m; 8l 2 ½1; 6� and 8m 2 ½1; np� are pooled to obtain the null distribution T 0. Afterwards, a P-value per each

neighborhood is estimated by calculating the ratio between the number of null statistics t0
l ;m that are greater than or equal to the tj , as obtained on the

non-permuted setting, divided by the total number of t0
l;m 2 T 0.
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accounts for the n� nsðns � 1Þ second-order interactions
among the SNPs in the test set.

2.3 P-value computation

networkGWAS aims to identify neighborhoods that are statis-
tically associated with a trait of interest. In the following, we
refer to the k-hop neighborhood of gene vj as N kðvjÞ, with j ¼
1; . . . ; ng and ng equal to the total number of genes. We then
define a null hypothesis Hj for each neighborhood, which sig-
nifies that N kðvjÞ does not affect the phenotype. Explicitly,
this states that the set of SNPs representing N kðvjÞ, i.e.
liðvÞ; i ¼ 1; . . . ;n, does not exhibit an association signal with
the trait under study. Note that under the null hypothesis Hj,
the patterns of linkage disequilibrium (LD) among the SNPs
and the population structure, if present, must be preserved.
LD patterns represent the non-random correlations between
the SNPs due to, e.g. spatial proximity on the genome, while
population structure refers to the complex relatedness among
the individuals, which impacts the values and structures of
both the SNPs and the phenotypes. Having defined Hj, we
further need to

1) define a measure, i.e. a test statistic, to quantify the asso-
ciation signal between each neighborhood and the
phenotype,

2) obtain the null distribution of the test statistics underly-
ing the null hypothesis,

3) estimate the P-values and
4) define a strategy to identify the statistically significantly

associated neighborhoods.

Since we rely on FaST-LMM-Set for our SNP set-based
test, the association between N kðvjÞ and the phenotype is
quantified by calculating the log-likelihood ratio between the
maximum restricted likelihood estimate of the alternative and
null models from Equation (3). The test statistic obtained in
this way for N kðvjÞ is referred to as tj. Unlike the original
FaST-LMM-Set method, which uses a parametric null distri-
bution, we adhere to a non-parametric distribution for
networkGWAS instead. The reasoning behind this choice is
detailed in Supplementary Section S3. We determine the dis-
tribution of test statistics under the null hypothesis by means
of a permutation strategy that allows to destroy the associa-
tion signal between the sets of SNPs (i.e. the neighborhoods)
and the phenotype, while simultaneously preserving LD pat-
terns and population structure. We achieve this by performing
permutations on both the SNPs and the network level, namely
a circular permutation of the SNPs and a degree-preserving
permutation of the network, both of which are detailed in the
following.

Circular permutation of the SNPs. The implementation of
the circular permutation procedure is inspired by Cabrera
et al. (2012). We consider the SNPs to be ordered according
to their genomic position in a circular way, namely that after
the last SNP on the last chromosome, one restarts from the
first SNP on the first chromosome. A single permutation is
then performed by randomly selecting a number between 1
and the total number of SNPs (which in our case would be the
total number of SNPs across all the ng neighborhoods), and
then rotating the SNPs by that value, while keeping the geno-
mic coordinates fixed. A visualization of this is reported in
Fig. 1c.1. This operation causes the SNPs to be assigned to
different genomic positions compared to their original

location on the genome (therefore positionally mapping them
to a different gene compared to the non-rotated scenario),
while conserving the same position with respect to each other,
hence preserving the LD patterns among the SNPs. This oper-
ation sufficiently preserves any confounding population struc-
ture since the relative position between SNPs is again
maintained. Furthermore, the relatedness signal is also pre-
served when constructing the null distribution since the ar-
rangement of the individuals in the SNPs to test Vs (or
interactions of SNPs to test), phenotype (y) and fixed effects
(Xf) is not varied. Note that when performing multiple circu-
lar permutations, only non-repeating rotations are
considered.

Degree-preserving network permutation. We permute the
network on top of permuting the SNPs to add a level of ran-
domization when performing the neighborhood aggregation
operation. The aim is to prevent the network structure from
creating spurious association signal. This network permuta-
tion consists of a methodology that allows us to shuffle the
edges while maintaining the degree of each node preserved,
thereby enforcing a comparable graph structure despite the
permutations. Consider a network G ¼ ðV;EÞ, where V is the
set of nodes V ¼ fvj; j ¼ 1; . . . ; ngg, and E is the set of edges.
To generate one permutation of the network, the following
steps are performed until 50% of the edges are rearranged:

1) Randomly select two pairs of connected genes, (va, vb)
and (vc, vd).

2) Check whether va or vb are connected with vc or vd; if
so, return to Point 1, otherwise proceed to Point 3.

3) Remove the edge between va and vb, and vc and vd.
4) Connect va with vc, and vb with vd.

Figure 1c.2 shows an example of this permutation tech-
nique. Note that the only parameter to set for this two-level
permutation strategy is the percentage of edges to shuffle,
which we set to 50%.

After having permuted the SNPs and the network following
the aforementioned circular and degree-preserving permuta-
tions, respectively, we can again define neighborhoods on
these permuted scenarios (as detailed in Section 2.1), and,
subsequently, we can calculate a test statistic for each of
them. Specifically, we can obtain t0

l;m for the l-th neighbor-
hood and the m-th permutation as described above. By pool-
ing these test statistics obtained from all neighborhoods under
all permutations, we obtain an empirical test-statistic distribu-
tion under the null hypothesis (Zhang et al. 2010). Note that
with this procedure, we obtain ng statistics per each permuta-
tion, decreasing the total number of permutations np required
(discussed in Supplementary Section S4).

Having determined tj and the null distribution of
these statistics under the null hypothesis, i.e.
T 0 ¼ ft0

l;m; l ¼ 1; . . . ; ng;m ¼ 1; . . . ;npg, we calculate the P-
value for N kðvjÞ as pj ¼ jtj � t0

l ; t
0
l 2 T 0j=jT 0j. Note that for

avoiding significance values of zero in case
t0
l;m < tj; 8t0

l;m 2 T 0, a pseudocount can be added. This proce-
dure allows us to obtain calibrated P-values, which measure
the significance of the statistical association of a particular
neighborhood of interacting genes and the phenotype. For
further details on the obtained P-values in the different experi-
ments and applications, the reader is referred to
Supplementary Section S3.
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In a last step, we identify the neighborhoods that are statis-
tically associated with the phenotype of interest. When study-
ing a particular organism, often multiple related phenotypes
are available. Hence, we are testing multiple hypotheses on
two levels, namely ng neighborhoods for T traits. Therefore,
to account for this aspect when correcting our significance
level for multiple testing, we employ the hierarchical testing
procedure proposed by Peterson et al. (2016) (detailed in
Supplementary Section S5), which is based on the Benjamini–
Hochberg procedure (Benjamini and Hochberg 1995) and
allows to effectively control the false-discovery rate (FDR) in
such scenarios.

Lastly, the computational cost is in the order of
Oðnpngnn2

s Þ. Supplementary Section S2 provides the details
and Supplementary Table S1 reports the running times.

3 Simulations

In this section, we detail the simulations studies we perform,
designed such to best demonstrate the robustness and limita-
tions of networkGWAS under varying conditions, and we in-
troduce the state-of-the-art methods we contrast our results
to. In particular, we apply our method and the comparison
partners on semi-simulated common variants settings and
fully synthetic rare variants settings. While the first is pre-
sented in the following, the rare variants use case is discussed
in Supplementary Section S8.

3.1 Experimental setup

In order to apply our method, one needs a GWAS dataset
consisting of genotypes and a phenotype of interest, as well as
a PPI network relevant to the phenotype chosen. In our
experiments, we employ natural genotypes and a PPI network
in combination with simulated phenotypes. This allows us to
test our method on genotypes with realistic LD and MAF pat-
terns and on a biological network with sensible structure,
while also enabling us to have a ground truth to compare our
results to. We use the genotype dataset for Arabidopsis thali-
ana from the AraGWAS Catalog (Togninalli et al. 2018) and
the PPI network from The Arabidopsis Information Resource
(TAIR) database (Lamesch et al. 2012). Supplementary
Section S6.1 provides details on the data and processing.
Note that, we chose the TAIR network for our semi-
simulated setting since its smaller size allows us to run a large
number of fast experiments.

To simulate the phenotypes, we firstly define the following
parameters: (i) the number of genes ncg that carry causal
SNPs, henceforth called causal genes, (ii) the ratio of causal
SNPs on a causal gene, rc, (iii) the mean ratio of causal neigh-
bors (RCN) of a causal gene, (iv) the signal-to-noise ratio
(SNR) and (v) the mixing ratio of linear-to-non-linear (RLN)
signal. Note that the causal genes (SNPs) are selected among
the 1327 genes (37 458 SNPs) that remain after the process-
ing. Therefore, the simulated genotype–phenotype associa-
tions are modeled within this subset of the genome. All the
above defined parameters are systematically varied in our

Figure 2. Results from simulating the phenotypes of A.thaliana. We present results from our method (networkGWAS), using either a linear (Klin) or a

polynomial (Kpoly) kernel, as well as the performance of other comparison methods. In (a), we show the AUPRC of the baseline scenario (S0). In (b–d), we

vary one variable while keeping the other four fixed: the SNR (b), the RLN (c) and the RCN (d). The AUPRC in function of the ratio of causal SNPs on a

causal gene (rc) and the number of causal genes (ncg) is shown in the Supplementary Material.
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experiments, as exemplified in Supplementary Section S7.
Thus, we investigate the robustness of our method’s and com-
parison partners’ performance as we depart from the most
amenable scenario (S0) of a purely linear signal, spread across
a single or very few causal subgraph(s) composed of a high
number of causal genes, with a high RCN, a realistic SNR
and a high ratio of causal SNPs on the causal genes.
Supplementary Table S2 summarizes the simulated scenarios,
starting from our anchor scenario S0 and moving toward
more challenging/different RCN, RLN, SNR, rc or ncg. For
each scenario, we simulate five phenotypes as:

y! ¼ cX � b
!þ ð1� cÞXð2Þ � b

!ð2Þ þ �!; (8)

where X is the n by p matrix of all SNPs across the genes con-

sidered in the analysis (i.e. 37 458 in this case), b
!

represents

the fixed effect of these SNPs, �! models the noise, Xð2Þ is the
n by pðp� 1Þ=2 second-order design matrix of all SNP inter-

actions, b
!ð2Þ

comprises the fixed effects of all SNP interac-
tions, and the coefficient c serves to tune between the RLN

signal. The choice of c and b
!

leads to the realization of the
different scenarios, as detailed in Supplementary Section S7.

3.2 Comparison partners and performance

evaluation

We compare networkGWAS’s performance to: (i) FaST-
LMM-Set approach (Listgarten et al. 2013), however, with
sets based on single genes rather than neighborhoods of inter-
acting genes as defined by the PPI network, (ii) NAGA (Carlin
et al. 2019) and (iii) dmGWAS (Wang et al. 2015). Both
NAGA and dmGWAS incorporate PPI information following
a post hoc strategy. In fact, they both commence with a classi-
cal GWAS analysis to obtain single-SNP P-values.
Subsequently, dmGWAS employs a greedy-selection based,
dense module searching, aiming to find PPI subnetworks
enriched in low P-value SNPs. NAGA, on the other hand, first
represents and scores entire genes based on their most signifi-
cant SNP and then relies on a PPI-network propagation
approach in order to spread and revise scores across gene-
neighborhoods. While networkGWAS and FaST-LMM-Set
approach return a P-value per each neighborhood or gene,
dmGWAS and NAGA provide a score for the subnetworks
and genes, respectively. Having obtained these P-value-based
and score-based rankings, we evaluate the performance of lin-
ear and non-linear networkGWAS as well as the comparison
partners by means of their respective mean area under the
precision-recall curve (AUPRC) in terms of causal genes.
Here, linear and non-linear refers to the SNP-set kernel
employed [see Equation (5)], and the mean refers to the aver-
age with respect to the different random realizations of the
various simulation settings.

3.3 Results

An overview of the results is shown in Fig. 2. The top left
panel depicts the full mean precision-recall curves for all
methods studied under the conditions of our anchor scenario
S0, which is most amenable to network-guided search for ge-
notypic–phenotypic associations (see Supplementary Table
S2). In this scenario both linear and non-linear
networkGWAS substantially outperform all comparison part-
ners by achieving an AUPRC of 76.4% 6 20.5% and

75.9% 6 20.3%, more than doubling the average AUPRC of
the strongest competitor, NAGA, which averagely reports an
AUPRC of 28.4% 6 5.2%. When dividing networkGWAS’s
AUPRC by the prevalence, 3.8% in this scenario, we obtain a
factor of about 20 for both linear and non-linear
networkGWAS, further highlighting networkGWAS’s strong
performance in our anchor scenario. Furthermore, it is worth
noting that networkGWAS presents higher recall in compari-
son to dmGWAS per each precision value, highlighting the
improvement in the identification of relevant associations
achievable by employing neighborhood aggregation instead
of greedy search-based algorithm.

As demonstrated in the top right panel of Fig. 2, this domi-
nance in performance is invariant as one departs from the
conditions of S0 by varying the SNR while keeping the other
simulation parameters fixed. Similarly, and as shown in the
bottom left panel, the performance of non-linear
networkGWAS is robust with respect to tuning the signal
from purely linear to purely non-linear, while keeping the
SNR, RCN, rc and ncg identical to those of scenario S0, again
outperforming all comparison partners across the entire range
of RLNs. Remarkably, the performance of linear
networkGWAS starts to differ from that of its non-linear
counter-part, only for signals which are dominantly non-
linear and pars the non-linear networkGWAS up until an
RLN of 37:5 : 62:5: This is in line with observations made
elsewhere: approaches designed to detect statistical signifi-
cance of single loci will miss those with modest marginal
effects and large interactions (Marchini et al. 2005). Lastly,
the strong performance of networkGWAS and its dominance
over the comparison partners breaks down as we tune the
RCN from �0:8 to 0:0, while keeping the SNR, RLN, rc and
ncg the same as in scenario S0. This is shown in the bottom
right panel of Fig. 2, and corresponds to a gradual transition
from a few, large causal subgraphs in the PPI network, via
multiple medium-sized causal subgraphs, to many isolated
causal genes. This shows that networkGWAS’ performance
decreases with the decrease in the average percentage of
causal neighbors in the neighborhoods. In the extreme sce-
nario of this percentage being 0%, the signal, by construction,
is independent of the PPI-network structure, resulting in the
fact that network-guided methods cannot exploit the network
structure to enhance performance. The reduction of the ratio
of causal SNPs on a causal gene does not decrease the perfor-
mance of any method since the SNR remains constant, as visi-
ble in Supplementary Fig. S1, left panel. Instead, when the
signal is concentrated on a fewer number of genes, i.e. when
we reduce the number of causal genes while maintaining the
SNR unvaried, the performance of networkGWAS remains
untouched, while FaST-LMM-Set and NAGA drastically im-
prove, suggesting that incorporating the biological network
structure can substantially improve the results when the signal
is spread across a high number of causal genes (e.g. 50), as it
is for complex traits. These results are reported in
Supplementary Fig. S1.

4 Applications

To illustrate networkGWAS’s ability to allow for the discov-
ery of new statistically significant genotype–phenotype associ-
ations, we apply networkGWAS to natural phenotypes from
A.thaliana, Saccharomyces cerevisiae and Homo sapiens.
Specifically, we study these phenotypes with networkGWAS
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and its comparison partners, i.e. NAGA, dmGWAS, FaST-
LMM-Set, and we additionally employ traditional univariate
GWAS (Lippert et al. 2011). To identify statistical associa-
tions in presence of P-values, we use the hierarchical proce-
dure (Peterson et al. 2016) detailed in Supplementary Section
S5, which allows to correct for multiple testing while control-
ling the FDR, whose level we set at 0.05. In the absence of a
ground truth, we evaluate the findings of our method by (i)
comparing our results to already published studies, (ii) com-
paring the gene-neighborhoods identified as significantly as-
sociated by our method with the genes identified by the
comparison partners and (iii) investigating the potential bio-
logical relevance of identified genes in processes related to the
phenotype.

4.1 Application to A.thaliana

When searching for associations with respect to natural phe-
notypes, we continue to use the A.thaliana genotype data, but
rely on the larger STRING database for the PPI network
(Szklarczyk et al. 2021). The phenotypes are selected from the
AraPheno (Seren et al. 2017) database (see Supplementary
Section S6.3 for details).

For most phenotypes, there are no statistically significant
associations found by any method. However, for phenotype
704, the univariate GWAS alone returns statistically signifi-
cant SNPs. These SNPs are located on seven genes not con-
nected through the PPI network (see Supplementary Section
S10.1). This scenario of association signal located on genes
not connected through the PPI network is reminiscent of the
simulation setting S6, where networkGWAS suffers since it
cannot exploit the biological network information. This
shows that, depending on the nature of the phenotype under
study, it might not always be beneficial to incorporate the bio-
logical network information.

4.2 Application to S.cerevisiae

In addition to A.thaliana, we test our method on S.cerevisiae.
Both the GWAS dataset and the phenotypes have been
obtained from the study by Peter et al. (2018). The PPI net-
work has been downloaded from the STRING database
(Szklarczyk et al. 2021). More details in Supplementary
Section S6.4.

Linear networkGWAS returns two statistically significant
neighborhoods on the phenotype YPGALACTOSE, which
represents the growth ratio between a stress condition and the
standard growing condition for S.cerevisiae (see
Supplementary Table S4 for details). These two identified
neighborhoods represent a connected subgraph composed of
265 genes. We analyze these findings from different perspec-
tives. As a preliminary investigation, we contrast them with
what has been surfaced by the comparison partners and with
the results presented in the original study (Peter et al. 2018).
As for P-value providing methods, FaST-LMM-Set (i.e. the
analysis of genes) reports no statistically significant findings
for any of the phenotypes, while traditional univariate GWAS
identifies statistical associations for nine of them
[Supplementary Table S5 compares these findings with what
reported by Peter et al. (2018)]. For YPGALACTOSE, how-
ever, the latter returns no associations. Since NAGA and
dmGWAS do not provide P-values, but rather scores, we
identify the associated genes and subnetworks for
YPGALACTOSE by following the strategies proposed by the
respective authors, namely selecting the first 100 top-ranked

genes for NAGA and the top 1% subnetworks for dmGWAS.
This leads us to have a collective interception of 10 genes with
networkGWAS’ findings. The comparison with the traditional
GWAS reported in Peter et al. (2018) shows no overlap be-
tween the genes surfaced by networkGWAS and the genes
reported by this study. The latter are isolated genes according
to the PPI network, hence violating the fundamental assump-
tion of network-based methods designed for finding interact-
ing genes that collectively carry association signal.

To biologically interpret networkGWAS’ results on
YPGALACTOSE, we rely on the PANTHER Classification
System (Thomas et al. 2003). Specifically, we use the
PANTHER Over-representation Test (PANTHER version
17.0), with PANTHER GO-slim Biological Process as the an-
notation dataset and Fisher’s exact test with FDR correction
as the test type. We find that the genes identified by
networkGWAS are significantly enriched (maximum P-value
4.70e-02) in processes related to (i) DNA replication, (ii) chro-
matin organization, (iii) the cell cycle and (iv) DNA transcrip-
tion. All of these categories of processes are known to be
affected when the S.cerevisiae organism undergoes a stress
condition (Pardo et al. 2016, Crawford and Pavitt 2019).
This demonstrates that networkGWAS is capable of identify-
ing neighborhoods of genes that are involved in biological
processes related to the analyzed phenotype.

We furthermore explore the identified neighborhoods by
means of a post hoc linear association. We begin with a uni-
variate association analysis on the 3549 SNPs included in the
two neighborhoods, which led to no significance. Motivated
by this result, we hypothesized the signal being of multivariate
nature, and performed a Lasso analysis. We obtained the sig-
nal coming from 32 SNPs located on 25 genes
(Supplementary Table S6). Interestingly, the locations of these
genes are distributed across 10 different chromosomes, which
highlights the benefits of including the PPI-network informa-
tion as a means to lead the creation of the sets of SNPs to test.

4.3 Application to H.sapiens

To further validate our approach, we test networkGWAS and
its comparison partners on human genetics data from the
Estonian BioBank GWAS data (Leitsalu et al. 2015). We fo-
cus on three phenotypes, i.e. type II diabetes (T2D) diagnosis,
height and body mass index (BMI). The numbers of the sam-
ples are 199 466, 148 144 and 136 772, respectively, proving
the scalability of our method. As for the PPI network, we se-
lect high-confidence PPIs for the H.sapiens protein coding
genes from the STRING database (Szklarczyk et al. 2021).
Supplementary Section S6.5 reports additional details on the
data and the preprocessing steps.

On the T2D phenotype, linear networkGWAS finds nine
significantly associated neighborhoods (FDR<0.01) com-
posed of 144 genes (see Supplementary Section S10.3), which
represent a connected subgraph on the PPI network. To assess
the biological relevance of these findings, we utilize the WEB-
based GEne SeT AnaLysis Toolkit (WEBGESTALT) (Wang
et al. 2013), since it directly allows to query diseases data-
bases. The results show that 42 genes are already known to
be involved in T2D-related processes. The remaining 102 can-
didate genes identified by networkGWAS are only partially
surfaced by the comparison partners. In fact, traditional
GWAS, NAGA and dmGWAS combined can only identify
eight of them. Instead, the analysis of genes with FaST-LMM-
Set reports no significant results, highlighting the benefit of
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adding the network information in this context. A preliminary
analysis of these candidate genes reports that many of them
are involved in the Wnt signaling, which is known to be re-
lated to T2D (Chen et al. 2021). Additional results in
Supplementary Section S9.

On height and BMI, networkGWAS reports no statistically
significant neighborhoods. The traditional GWAS analysis,
however, finds statistical associations for both phenotypes,
suggesting that the beneficial effect of incorporating the PPI-
network information might depend on the biology underlying
the phenotypes under analysis.

5 Discussion

We have defined a principled way to perform gene-based
GWAS utilizing network information as a prior in the process
of testing statistical associations, allowing us to directly and
in a statistically rigorous manner obtain P-values for entire
PPI-based gene-neighborhoods, which represent biological
pathways. This conceptually differs from the state-of-the-art
network-based GWAS methods, which use the PPI informa-
tion as a way of post-selection. We have demonstrated the su-
perior performance of our PPI-network-based SNP set-based
test, networkGWAS, compared to state-of-the-art SNP set-
based methods (Listgarten et al. 2013) and approaches that
incorporate PPIs (Wang et al. 2015, Carlin et al. 2019).
Moreover, we have done so in a wide range of simulation set-
tings for rare and common variants including very low SNRs,
i.e. very low heritability, different numbers of SNPs/genes car-
rying the association signal and various mixtures of linear
and non-linear signal. Concerning the latter, it is worth noting
that none of the comparison partners can incorporate an ex-
plicit search for SNP interactions, which our method is capa-
ble of thanks to the use of a non-linear SNP-set kernel.
networkGWAS is only outperformed if our underlying as-
sumption, that the SNPs in neighborhoods of interacting
genes are collectively related to the phenotype of interest, is
strongly violated.

We furthermore have employed networkGWAS to study
various phenotypes of A.thaliana, S.cerevisiae and H.sapiens.
On the S.cerevisiae and H.sapiens phenotypes, networkGWAS
finds collectively significantly associated genes that were almost
entirely undiscovered by its strongest competitor, NAGA, dem-
onstrating the complementarity of the methods. In addition, it
is particularly noteworthy that, in both cases, networkGWAS
is capable of finding biologically plausible associations when
the single-gene-based SNP-set method does not, highlighting
the value of incorporating the PPI-network information. When
analyzing the A.thaliana phenotypes, instead, networkGWAS
finds no statistically associated neighborhoods. Although this
might be perceived as a discouraging result, the studied pheno-
types do not necessarily present a genetic basis or association
signal in the selected searching space. Hence, the fact that
networkGWAS provides a statistically sound approach to iden-
tify the presence (if any) of significant associations is an actual
advantage in comparison to the network-based comparison
partners, which would output the top genes or subnetworks
even on a phenotype presenting noise rather than actual signal.
Furthermore, the presence of P-values allows to rigorously ac-
count for multiple testing correction.

As already pointed out, the application of networkGWAS on
S.cerevisiae and H.sapiens exemplifies the benefit of exploiting
the biological network information. However, PPIs supported

by multiple evidence, i.e. high-confidence interactions, are not
available (yet) for all the genes of a particular organism. For ex-
ample, for A.thaliana only �56% of the genes participate in
known high-confidence PPIs, while for S.cerevisiae, high-
confidence interactions are known for �92% of the genes.
This may explain the results on A.thaliana in the sense that the
current PPI network is likely incomplete and potentially associ-
ated neighborhoods of genes have not yet been identified as
forming a neighborhood due to yet undiscovered interactions.
Fortunately, as the knowledge of biological pathways and
gene–gene interaction increases, more and more evidence will
be gained and PPIs discovered, thus further approaching the
state of complete PPI networks. Another aspect to consider is
that networkGWAS can only discover the collective signal of
SNPs, which can be mapped onto genes. This drawback can be
addressed by additionally applying traditional methods, such
as univariate GWAS, to such SNPs, benefiting from increased
test power due to a reduced search space.
networkGWAS provides P-values for the association of en-

tire gene-neighborhoods, and cannot single-out precise genes
or SNPs within such neighborhoods as more or less strongly
contributing to that association signal. If one is interested in
exploring this aspect, post hoc analysis needs to be performed
and should be guided by the kernel Ks chosen in
networkGWAS. That is, when a linear kernel was applied,
one linear post hoc analysis is appropriate, as is done for the
findings obtained on YPGALACTOSE. When, instead, a
polynomial kernel was applied, the associated neighborhoods
present non-linear signal and epistasis search represents a via-
ble route for post hoc analysis.

A potential limitation of the approach presented here lies
within the choice of testing one-hop neighborhoods. While
testing only direct interactions of a given gene is meaningful
from a biological perspective, we acknowledge that the neigh-
borhood depth technically constitutes a choice of hyperpara-
meter. While the use of k-hop neighborhoods for k � 2 needs
to be investigated in the future, based on our simulations, we
are confident that at least in medium-to-high RCN scenarios,
networkGWAS is already capable of detecting signal that is
spread further than across the 1-hop neighbors of a causal
center-gene. This is supported by networkGWAS’ findings on
the S.cerevisiae phenotype YPGALACTOSE, as well as on
T2D phenotype from H.sapiens. Indeed, the statistically asso-
ciated neighborhoods are connected through the PPI network
in both cases. We note that even if k � 2, our method still
scales linearly with the number of nodes in the network.

Another area for further research is to exploit the kernel-
ized nature of networkGWAS and use more complex kernels
matrices Ks in our LMM given in Equation (2). When design-
ing such kernels, one may either (i) continue to focus on the
SNP content of genes, and experiment with the type of non-
linearity, or (ii) depart from solely using SNPs as features and
instead leverage the information in gene properties, such as
the number of minor alleles on the SNPs belonging to a gene,
in combination with graph kernels or GCNs. Lastly,
networkGWAS as presented here can be considered an in-
stance of a more fundamental framework, which can be natu-
rally extended and be used, e.g. to study the same phenotype
under different perspectives: (i) by utilizing various biological
networks (e.g. gene co-expression or multi-omics networks),
and (ii) by employing diverse ways to map the SNPs to the
genes (e.g. chromatin mapping). In this sense, networkGWAS
represents a very versatile tool.
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