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Abstract
Mechano growth factor (MGF), an isoform of insulin-like growth factor 1 (IGF-1), is recognized as a typical me-
chanically sensitive growth factor and has been shown to play an indispensable role in the skeletal system. In the
joint cavity, MGF is highly expressed in chondrocytes, especially in the damaged cartilage tissue caused by trauma
or degenerative diseases such as osteoarthritis (OA). Cartilage is an extremely important component of joints
because it functions as a shock absorber and load distributer at the weight-bearing interfaces in the joint cavity, but
it can hardly be repaired once injured due to its lack of blood vessels, lymphatic vessels, and nerves. MGF has been
proven to play an important role in chondrocyte behaviors, including cell proliferation, migration, differentiation,
inflammatory reactions and apoptosis, in and around the injury site. Moreover, under the normalized mechanical
microenvironment in the joint cavity, MGF can sense and respond to mechanical stimuli, regulate chondrocyte
activity, and maintain the homeostasis of cartilage tissue. Recent reports continue to explain its effects on various
cell types and sport-related tissues, but its role in cartilage development, homeostasis and disease occurrence is still
controversial, and its internal biological mechanism is still elusive. In this review, we summarize recent discoveries
on the role of MGF in chondrocytes and cartilage defects, including tissue repair at the macroscopic level and
chondrocyte activities at the microcosmic level, and discuss the current state of research and potential gaps in
knowledge.
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Introduction
Mechano growth factor (MGF), also known as insulin-like growth
factor 1 Ec (IGF-1Ec) in humans, is one of the splice variants of the
igf gene [1]. MGF has a different C-terminal peptide sequence and
exhibits a distinct function that is sensitive to mechanical stimuli
compared with other IGF-1 subtypes, including IGF-1Ea and IGF-
1Eb [2,3]. MGF has been found in many vertebrate tissues,
including the myocardium, skeletal muscle, brain and other tissues
[4‒7]. Among them, the function of MGF in skeletal muscle has
most extensively been investigated. MGF, as well as other IGF-1
subtypes, is upregulated during exercise and in injured/damaged
skeletal muscles [8,9], and increased MGF could activate muscle
satellite (stem) cells and recruit macrophages to enhance skeletal
muscle regeneration [10,11], which makes it attractive as a
potential therapeutic target. Overall, current reports have provided

evidence that MGF has potent repair capacity in wound healing, and
it also serves as an effector of external mechanical stimulations.
Since cartilage is prominently exposed to a series of mechanical
stresses [12], we assume that the potential role of MGF in cartilage
repair may be related to the remodelling in cartilage sport injury.

In the development of the skeletal system, bone marrow
mesenchymal stem cells (BMSCs) and growth plate chondrocytes
play a vital role. BMSCs have self-renewal capabilities and can be
differentiated into many tissue-specific lineages, including chon-
droblasts, osteoblasts, adipocytes and other types of adult cells
[13,14]. In the joint microenvironment, mechanical stimuli have a
critical impact on the differentiation of BMSCs [15]; for example,
cyclic uniaxial strain may promote the differentiation of mesench-
ymal stem cells (MSCs) into smooth muscle cells [16], and cyclic
hydrostatic pressure can enhance the chondrogenic phenotype of
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MSCs [17]. The growth plate is a cartilaginous region located at the
end of immature long bones [18] and completes endochondral
ossification to promote postnatal bone development. The morphol-
ogy and gene expression of growth plates are influenced by
biomechanics, including the frequency, amplitude and duration of
mechanical stress [19]. Recent reports have indicated that MGF is
expressed in BMSCs and growth plate chondrocytes and plays a
protective role in joint trauma by mediating cell behaviors,
including cell proliferation, migration, differentiation and apopto-
sis, in and around the injury site [20].

Because chondrocytes are exposed to continuous mechanical
stress under physiological conditions and there are no blood
vessels, nerves or lymph in cartilage tissue [21], they are difficult
to repair once damaged. In particular, even small articular cartilage
defects, if not treated, may develop into scar tissues mainly
composed of early fibrocartilage, eventually leading to osteoarthritis
(OA) [22]. OA is one of the most common joint diseases around the
world [23,24] and can further result in synovitis, lesions of the
meniscus, degeneration of the anterior cruciate ligament and so on
[25,26]. Mechanical stress is one of the key factors of cartilaginous
damage, and excess mechanical stress not only directly damages
chondrocytes and the cartilage extracellular matrix but also
activates inflammatory responses ultimately causing OA [27‒29].
High level of MGF is accompanied by the occurrence, progression
and deterioration of OA disease, and recent evidence supports that
high MGF expression is correlated with the pathogenesis of OA,
indicating its potential as a therapeutic target. However, a general
review on the recent discoveries in MGF is still lacking, and it is
necessary to summarize existing studies on MGF and discuss future
directions in MGF research. Therefore, in this review, we aim to
summarize recent discoveries on the expression, functions, and
mechanisms of MGF in cartilaginous tissues, and discuss the current
research state of potential gaps in knowledge.

Overview of IGF-1
IGF-1, together with IGF-2 and insulin, belongs to the insulin
superfamily. Growth hormone (GH) is essential for the synthesis
and release of IGF-1 [30], and this GH-mediated IGF-1 axis is well
known to promote postnatal individual growth [31,32], maintain
homeostasis of the skeleton system [33], and mediate a variety of
cellular biological processes, including cellular proliferation,
differentiation, and mitochondrial fission-fusion dynamic equili-
brium [34]. IGF-1 is mainly secreted by the liver in an endocrine
way [35], and para- and/or autocrine activity is also seen in other
tissues, including the lung, kidney, skeletal muscle, heart and white
adipose tissue [36‒39]. Reports have shown that the IGF-1 protein
and its isoforms are eventually secreted into the extracellular space
and function through several receptors, including IGF-1 type I
receptor (IGF-1R), type II (IGF-2R), insulin receptor (INSR) and
hybrid receptors (IGF-1R/INSR) [40]. However, the different
isoforms of IGF-1 have different destinations. Tan et al. [41] have
shown that the IGF-1 isoform that includes exon 5 is concentrated in
the nucleolus, which suggests that pro-IGF-1B might be an active
intracellular form of IGF-1. Mature IGF-1 protein is different from
IGF-1 isoforms because it lacks the E-peptides at the C-terminal
[42], and mature IGF-1 production is independent of but influenced
by the isoforms [37,43]. Experiments in murine cells suggest that EA
and EB have little effect on IGF-1 secretion but can promote the
entry of IGF-1 into the cells [44].

Genomic context and alternative splicing of IGF-1
The igf1 gene spans more than 90 kb of DNA [2,45], and the igf1
gene is first translated into pro-IGF-1 protein, which is the precursor
protein of mature IGF-1 and IGF-1 isoforms (IGF-1A, IGF-1B and
IGF-1C, named IGF-1Ea, IGF-1Eb and IGF-1Ec, respectively). The
gene structure contains 6 exons and 5 introns [9] (Figure 1).
Alternative splicing at the 5′ and 3′ ends of genes can produce
several different splicing forms or isoforms, which vary among
species [46]. Exons 1 and 2 have distinct promoter sequences and
are used interchangeably, giving rise to different IGF-1 isoforms
[46‒48]. Exons 3 and 4 are relatively conserved, encoding the core
IGF-1 protein, which is the mature form of the protein found in
peripheral blood [9,46]. The alternatively spliced exons 5 and 6
encode the peptide domain E which is present in IGF-1 precursor
proteins [49].

In rodents, most IGF-1 transcripts skip exon 5 and splice exon 4
directly to exon 6 and are defined as class A [46]. In the class B IGF-
1, exon 5 is included, resulting in the occurrence of a premature stop
codon within exon 6 [46]. As in rodents, human class A IGF-1
mRNAs contain exon 4 spliced to exon 6 and is designated as IGF-
1Ea [50], whereas human class B IGF-1 contains only exon 5,
resulting in a unique E peptide extension that has not been observed
in other species [46]. The third isoform detected in humans is
named IGF-1Ec or MGF (Figure 1). It is similar to rodent class B IGF-
1 which contains exon 4 spliced to exon 5 and exon 6 [51,52].
Several studies have suggested that this C-terminal peptide
(corresponding to the Ec fragment) has physiological function
which is distinct from that of IGF-1 [1,2,53]. Evidence has supported
the importance of a serine residue for hMSCs, and the serine residue
exists in MGF rather than in other IGF-1 isoforms, explaining the
different functions of IGF-1 isoforms [54]. Mature IGF-1 protein has
the same structure as IGF-1 isoforms but lacks the E-peptides at the
C-terminal [42]. Moreover, three E-peptides are produced in
humans: EA (Ea), EB (Eb), and EC (Ec), and two are produced in
rodents: EA (Ea) and EB (Eb) (Figure 1).

The role of IGF-1 isoforms
IGF-1 is found to influence the development of growth plate [55‒
58]. In rodent growth plate, it is found that the expression of IGF-
1Ea containing exon 1 (class 1Ea) is the highest in all layers of two-
and six-week rodent growth plate, and the peaks appear in the
proliferative and hypertrophic zones, respectively [59]. After 4
weeks, class 1Ea is still expressed the most, but the expression is
surpassed by IGF-1Eb containing exon 1 in the hypertrophic zone.
IGF-1Ea containing exon 2 is expressed at very low levels, and the
mRNA expression of IGF-1Eb containing exon 2 is negligible in
rodent growth plate [59]. Moreover, the highest expression of IGF-1
is detected in the upper hypertrophic layer in normal rats [60].

IGF1 isoforms are also expressed in resting muscle, and the
expression of MGF is significantly lower than that of IGF-1Ea. A
significant increase in MGF mRNA is observed after high resistance
exercise in the young rather than the elderly subjects, and IGF-1Ea
mRNA levels remain stable throughout the experiment [61].
Moreover, it has been observed that after overexpression of IGF-
1Ea in skeletal muscle, differentiation into myotubes is enhanced
and muscle hypertrophy appears [62]. It has been confirmed that
MGF inhibits the differentiation of myoblasts into myotubes and
promotes myoblast proliferation [53], but Fornaro et al. [63]
showed the opposite result: only full-length IGF-1Eb rather than
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Eb peptide (MGF) alone is able to promote anabolic effects on
muscle. Overexpression of IGF-1Ea, IGF-1Eb or mature IGF-1 in
mice through AVV demonstrates that p-ERK1/2 is increased in both
the IGF-1Ea and IGF-1Eb groups, and p-Akt is reduced in the IGF-
1Eb group compared with that in the mature IGF-1 group [64].

IGF-1 in skeletal development and repair
IGF-1 is essential in the process of embryonic and postnatal skeletal
development [53,65], and its activities are mostly mediated by IGF-
1R [66].

It has been acknowledged that IGF-1 is a regulating factor of
cartilage metabolism. In cartilage, proteoglycan is an essential
component of the extracellular matrix (ECM). An in vitro study
showed that IGF-1 can accelerate the synthesis of proteoglycans
[67], and similar results were also obtained in human synovial fluid
[68] and periosteal explants during culture [69], revealing the
critical role of IGF-1 in cartilage metabolism. Moreover, IGF-1 can
promote the differentiation of BMSCs towards chondrocytes, and
the effects are additive to and independent of the transforming
growth factor beta (TGF-β) superfamily [70,71]. When cartilage is
damaged, IGF-1 is rapidly recruited from the synovial fluid or
periosteum to the injured site, which induces the chondrogenic
differentiation of local MSCs [72]. In in vivo experiments, for
example, in mechanically induced cartilage lesions of the patellar
groove of the rat femur, cells infected with both adenoviral vectors
carrying bone morphogenetic protein 2 (BMP-2) and IGF-1 produce
matrix rich in collagen II (Col2) rather than collagen I (Col1) and
restore the smooth articular surface in most lesions, while
uninfected cells fail to repair the defects [73]. Moreover, local
application of IGF-1 and TGF-β1 accelerates early cellular processes
during fracture healing [74], and chronic GH/IGF-1 deficiency

aggravates the damage of articular cartilage lesions of OA without
bony lesions [75]. By inhibiting IκB-α kinase, IGF-1 can reduce
inflammation and alleviate cartilage degradation and chondrocyte
apoptosis [76]. Taken together, these results show the importance
of IGF-1 in the cartilage healing process.

If IGF-1 is overexpressed in osteoblasts, the osteocyte lacunae
occupancy, bone formation rate (BFR), bone volume (BV) and bone
mineral density (BMV) are all increased in vivo, with no change in
total osteoblasts or osteoclast numbers [77‒79].

The signaling pathways of IGF-1
IGF-1 promotes chondrogenic differentiation and chondrocyte
proliferation mainly via activating IGF-1R. The major downstream
molecules of IGF-1R are sulfated glycosaminoglycan (Shc) and
members of the insulin receptor-substrate (IRS) family, including
IRS-1 and IRS-2. In chondrocytes, IRS is then phosphorylated and
activates downstream signaling pathways, including the phosphoi-
nositide 3-kinase (PI3K) cascade and extracellular-signal-regulated
kinase (ERK)/mitogen-activated protein kinase (MAPK) cascade.
Zhang et al. [80] revealed that in rat endplate chondrocytes, the
PI3K pathway triggered by IGF-1 is mainly responsible for the
expression of Col2 in the cartilage matrix, while the ERK pathway
mediated by IGF-1 mainly acts on the expression of matrix
metalloproteinase (MMP)-13. Moreover, it is the PI3K rather than
the ERK/MERK pathway that plays a vital role in proteoglycan
synthesis [81,82], although inhibition of the ERK1/2 pathway can
result in a decrease in Shc production [83] (Figure 2). IGF-1 induces
the accumulation of proteoglycans and the chondrogenesis of limb
bud mesenchymal cells through the activation of PI3K and Akt, thus
activating protein kinase C (PKC)-alpha. IGF-1 also plays a role by
upregulating p38 kinase and downregulating ERK1/2 expression

Figure 1. The structure of the igf1 gene Alternative splicing of the igf1 gene in rodents and human. The rodent and human genes both have 6
exons, and their translation arises from exon 1 or 2, respectively. In rodents (left), IGF-1Ea excludes exon 5, while IGF-1Eb has a premature
termination of exon 6. In humans (right), IGF-1Ea has a similar pattern in humans and rodents; IGF-1Eb in humans excludes exon 6, and IGF-1Ec in
humans includes an internal splice site within exon 5 and a premature termination in exon 6. “Pre” indicates the presence of a signal peptide, while
“pro” indicates the presence of E-peptides.

Role of mechano growth factor in chondrocytes and cartilage defects 703

Liu et al. Acta Biochim Biophys Sin 2023



[84]. Moreover, hypoxia-inducible factor 1α (HIF-1α), a molecule
that is vital for chondrocytes to adapt to low oxygen levels, is
upregulated by a posttranscriptional mechanism involving the
PI3K/mammalian target of rapamycin (mTOR) and the ERK/MERK
pathways [85,86] (Figure 2).

However, in cartilage defects, some studies showed the opposite
results in signaling activation. For example, after IGF-1 treatment,
AKT is downregulated in rabbit articular chondrocytes, resulting in
the inhibition of MMP expression and nuclear factor kappa B (NF-
κB) activation and eventually beneficial to OA relief [76,87].
Moreover, the activation of PI3K/AKT/mTOR signaling induced
by IGF-1 could lead to an increase in the expression of inflammatory
factors, including IL-1 and IL-2, in mice with lumbar disc herniation
[88] as well as in autophagy and apoptosis of articular cartilage in
OA mice [89] (Figure 2). These results indicate that IGF-1 is vital for
the maintenance and development of normal cartilage, and it is
upregulated after cartilage defects, which further damages the
cartilage.

The Expression and Functions of MGF
The expression and functions of MGF in chondrocytes
IGF-1 mRNA is expressed in the growth plate of rats, and the
expression pattern of MGF changes from 2 to 6 weeks of age [59]
(Table 1). MGF is slightly expressed in the resting, proliferative and
hypertrophic fractions in the costochondral growth plate of two-
week-old rats, while relatively high expression of MGF is observed
in the hypertrophic fraction in four- to six-week-old rats [59]. Cyclic
mechanical stress facilitates MGF mRNA expression in growth plate
chondrocytes, which may subsequently regulate growth plate
development [90]. MGF is expressed in the growth plate and is

not associated with growth plate chondrocyte proliferation [9,90].
Transwell system and wound healing assay in vitro show that the
MGF peptide increases the mobility of MSCs [20,91,92].

In MSCs, MGF has similar expression and functions to those in
growth plate chondrocytes (Table 1). Recent studies have revealed
that the MGF peptide fails to enhance hMSC proliferation
[20,54,92]. However, it was reported that mechanical stimulation
induces osteoblast proliferation and the expression of MGF mRNA
in osteoblasts [99]. Moreover, MGF can accelerate the differentia-
tion of BMSCs to chondrocytes in the presence of TGF-β3 [20], but
MGF alone fails to induce chondrogenic differentiation of BMSCs
[20,90]. MGF promotes the growth and osteogenic differentiation of
rMSCs [100]. In addition, MGF may promote the migration of many
cell types, such as tendon cells, MSCs and chondrocytes, providing
great potency in tissue repair [40,92,93].

The expression and functions of MGF in cartilage defects
The expression of MGF gene and mRNA was observed to be
upregulated when cartilage was injured (Table 1). Through in vitro
experiments, it was found that MGF is helpful in alleviating
chondrocyte apoptosis and inflammation, either under mechanical
overload [90] or in a CoCl2-stimulated hypoxic microenvironment
[29]. Moreover, a low concentration of MGF has better effects on
preventing chondrocyte apoptosis under hypoxic circumstances
[101]. Synthesized MGF peptide could also promote focal adhesion
formation and cytoskeleton reorganization [90] and then further
promote growth plate chondrocyte migration in both microenvir-
onments of excessive stress and severe hypoxia [29,90], while no
obvious effect is observed on the viability of chondrocytes under
normoxia [29]. In chondrocytes derived from OA patients, MGF has

Figure 2. The signaling pathways of IGF-1 IGF-1 functions differently in normal or damaged chondrocytes. In normal chondrocytes (left), IGF-1
phosphorylates IRS, but only the PI3K/Akt signaling pathway plays a vital role in proteoglycan production. In damaged chondrocytes (right), the
PI3K/Akt signaling pathway is activated by IGF-1 but produces IL-1 and IL-2, aggravating inflammation.

704 Role of mechano growth factor in chondrocytes and cartilage defects

Liu et al. Acta Biochim Biophys Sin 2023



been verified to inhibit chondrocyte apoptosis and promote
chondrocyte migration and proliferation and has been demon-
strated to attenuate the progression of the physiopathology of OA
and increase the stiffness of OA chondrocytes [40].

The expression and functions of MGF in other tissues
MGF is sensitive to mechanical signals in skeletal muscle [97]
(Table 1). In the process of muscle repair, high expression of MGF
occurs first in satellite cells and in proliferating myoblasts among
the IGF family, while IGF-1a and IGF-2 are found during muscle
fibre formation [1,94]. In resting muscle, MGF is rapidly induced by
stretching or strenuous physical activity, and the basal expression of
the MGF isoform is approximately one order of magnitude lower in
females than in males [95]. In active muscle, passive stretching
increases MGF mRNA expression, and enhanced MGF expression is
observed upon treatment with electric stimuli at 10 Hz [1,2].
Increased expression of MGF has been shown in response to both
short- and long-term loading exercise [61,102], and the MGF mRNA
level increases in muscle subjected to electric stimulation [2,97].
After muscle damage, MGF in satellite cells is upregulated, resulting
in the activation, proliferation and development of satellite cells into
mononucleated myoblasts, thus repairing the muscle tissue
[40,97,98]. However, the ability of skeletal muscle to produce
MGF in response to damage or overload diminishes with age in both
humans and rats [61,103]. C2C12 cells that overexpress MGF
present signs of proliferation but remain in the mononucleated
state, suggesting that satellite cells can be activated by MGF [53].
The repair function of MGF in skeletal muscle is also attributed to
the migration of myoblasts, and migration is associated with
increased matrix metalloproteinase expression, an activated fibri-
nolytic system [96] and enhanced myoblast stem cell differentiation
[104] after MGF treatment. However, the terminal differentiation of
C2C12 cells is finally inhibited in the presence of MGF [53].

Emerging evidence has indicated that MGF can be regarded as a
cellular repair factor as well as a growth factor [105] and is
expressed in different types of tissues [106]. In the myocardium,
MGF mRNA level increases after infarction or ischemia, protecting
cardiomyocytes from hypertrophy and fibrosis in vivo [107,108],

whereas only IGF-1Ea is present in the resting heart [3]. In
osteoblasts, the expression of MGF is increased to a greater degree
after cyclic stretching than after static stretching [99]. Moreover, in
tendons, MGF and IGF-1Ea are upregulated more significantly after
eccentric training than after concentric training [109]. In addition,
endogenous MGF is overexpressed in the ischemic brain, especially
in areas resistant to damage [97,110], playing a role in neuroprotec-
tion [110]. The expression of MGF can hardly be detected in the
hippocampus of the normal brain, and very low expression of MGF
can be detected in other areas of the brain by western blot analysis
and in situ hybridization [110]. In addition, MGF can facilitate the
repair of fibroblast-like synoviocytes in OA [111] and can improve
collagen synthesis and cell proliferation of injured human anterior
cruciate ligament fibroblasts [112].

The Mechanism of MGF in Chondrocytes and Cartilage
Defects
The mechanism of MGF in cell differentiation and
proliferation
MGF promotes the production of cartilage extracellular matrix and
chondrocyte differentiation. MGF receptor is expressed at high
levels in rabbit MSCs, indicating that MSCs are sensitive to MGF
[100]. Studies have shown that MGF can significantly upregulate
the mRNA expression of Col2 and aggrecan induced by TGF-β3 in
human MSCs collected from open femur fracture patients but
downregulate the expression of Col1, indicating that MGF can
promote the differentiation to chondrocytes induced by TGF-β3
[20,113], and MGF stimulation alone can also significantly
upregulate the mRNA expression of Col2, especially from day 2 to
day 8 of in vitro culture [113]. Moreover, exogenous administration
of MGF upregulates p-ERK1/2 signaling, whose phosphorylation is
related to the differentiation of MSCs to chondrocytes [113].
However, MSCs isolated from the long bones of mice showed no
difference in the protein expression of Col2 when induced in
chondrogenic differentiation media of MGF for 7 days [90], and
another study also showed that in normal culture media, MGF alone
failed to upregulate the protein expression of Col2 after 15 days of
induction, indicating that MGF has no effect on chondrogenic

Table 1. The expression and functions of MGF in the musculoskeletal system

Cell behavior/tissue type Expression Migration Proliferation Differentiation

Growth plate chondrocyte MGF is expressed in the
costochondral growth plate
of two to six weeks old rats
[59].

MGF peptide increases the
mobility of MSCs [20,91,92].

MGF is not associated with
growth plate chondrocyte
proliferation [9,90].

–

hMSC – MGF may promote cell mi-
gration of MSCs and chon-
drocytes [40,92,93].

MGF peptide fails to en-
hance hMSC proliferation
[20,54,92].

MGF can accelerate the
differentiation of BMSCs
to chondrocytes in the
presence of TGF-β3 [20].

Cartilage with defect The expressions of MGF
gene and mRNA are ob-
served to be upregulated
when cartilage is injured.

Synthesized MGF peptide
could promote chondrocyte
migration in both excessive
stress and severe hypoxia
[29,90].

MGF promotes the prolif-
eration of chondrocytes
from OA patients [40].

–

Muscle tissue MGF expression increases
in satellite cells and in pro-
liferating myoblasts during
muscle repair [94] and after
mechanical stimulation
[95].

MGF promotes the in vitro
migration of human myo-
blasts [96].

MGF facilitates proliferation
of the satellite cells when
muscle is damaged
[40,97,98].

After muscle damage, MGF
promotes the development
into mononucleated myo-
blasts of the satellite cells
[40,97,98].
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differentiation [20] (Figure 3A). It appears that MGF can induce the
expression of Col2 in early damaged cartilage tissue rather than in
healthy tissue and is unable to promote chondrogenic differentia-
tion in both situations.

Apart from its effects on normal cartilage, MGF also has a
protective role in defective cartilage. MGF fails to promote
chondrocyte proliferation in vitro [90], but under severe hypoxia,
MGF promotes the proliferation of chondrocytes through the PI3K-
Akt and MEK-ERK1/2 pathways [29,114]. Moreover, under severe
hypoxia induced by CoCl2, MGF reduces the expressions of HIF-1α,
Col1, and MMP1/13 but facilitates the expression of Col2 in
chondrocytes, weakening the adverse effects of cartilage damage
[29]. Furthermore, in OA chondrocytes treated with MGF, the mRNA
levels of Sox9, Acan, Col2 and hyaluronan synthase (HAS) are
upregulated, while the levels of Col1 and cartilage oligomeric matrix
protein (Comp) are downregulated, resulting in the promotion of
cartilage extracellular matrix production and the prevention of

fibrocartilage formation [40]. In agreement with this evidence,
exogenous MGF protects cartilage suffering mechanical stress by
downregulating the mRNA expression of MMP3 and upregulating
the mRNA expressions of Acan and Col2 [90] (Figure 3A).

In subchondral bone, MGF was found to influence the process of
osteogenesis. After treatment with MGF in conditioned osteogenic
media, BMSCs were found to downregulate the gene expressions of
Runx2, ALP and Col1 and decrease the activity of ALP, indicating an
inhibitory role on osteogenic differentiation [92]. It has also been
found that the expressions of lipogenesis-related genes, peroxisome
proliferator activated receptor gamma (PPARγ) and fatty acid
binding protein 4 (FABP4) are increased in MGF-treated BMSCs
[92]. However, some studies presented the opposite results. For
example, Lauzon et al. [115] and Baker et al. [116] claimed that the
activation of PI3K/AKT/mTOR signaling can promote osteoblastic
differentiation in preosteoblasts and BMSCs, and MGF was proved
to promote PI3K/AKT signaling in osteogenic media under severe

Figure 3. The mechanism of MGF in cell differentiation Expression of MGF in normal cartilage and damaged cartilage. (A) In MSCs from normal
cartilage, MGF fails to upregulate COL II expression and promote chondrogenic differentiation. However, in MSCs derived from fracture marrow,
MGF enhances the differentiation of BMSCs induced by TGFβ3 and upregulates the expression of p-ERK1/2, which induces chondrogenic
differentiation. In chondrocytes from damaged tissues, MGF influences the expression of chondrocytes and facilitates the repair process. (B) In
MSCs cultured in osteogenic medium, MGF can upregulate the expressions of lipogenesis-related genes and downregulate the expressions of
osteogenesis-related genes in normal tissue but promote osteogenic differentiation through PI3K/Akt under severe hypoxia. ACAN, aggrecan; Col
II, type II collagen; Col I, type I collagen; TGFβ3, transforming growth factor β3; p-ERK1/2, phosphorylated extracellular signal-regulated kinase; HIF-
1α, hypoxia-inducible factor 1α; MMP, matrix metalloproteinase; SOX9, sex-determining region Y-type high mobility group box protein 9; HAS,
hyaluronan synthase; COMP, cartilage oligomeric matrix protein; ALP, alkaline phosphatase; PPARγ, peroxisome proliferator-activated receptor
gamma; FABP4, fatty acid binding protein 4; OCN, osteocalcin; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; mTOR, mechanistic target
of rapamycin.
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hypoxia [100,114] (Figure 3B).
Taken together, these results suggest that MGF has little effect on

normal tissue but promotes cell differentiation and proliferation
once tissue is injured or damaged.

The mechanism of MGF in inflammatory reactions and
apoptosis
Cartilage damage is often associated with the inflammatory response
and can induce various types of cell death, including apoptosis
[117]. Inflammatory reactions can be caused by intracellular
contents spilled by cell necrosis, and inflammatory reactions can
induce pyroptosis [118]. Apoptosis is a form of programmed cell
death and is characterized by the activation of caspases [119].
Moreover, reports have shown that cell death can change from
apoptosis to necrosis [117,120]. Mechanical stress can lead to
cartilage inflammatory reactions and apoptosis, although the specific
relationship and mechanism have not been clearly described.

Mechanical stress can induce inflammatory reactions, resulting in
the upregulation of IL-1β, tumor necrosis factor (TNF)-α and MMP3
expressions and the downregulation of Acan and Col2 expressions,
but the expressions of inflammatory factors can be reversed by
exogenous MGF [90]. Moreover, MGF can regulate the inflamma-
tory reaction in fibroblast-like synoviocytes of OA by decreasing the
expressions of TNF-α and IL-1β [111] (Figure 4A).

MGF could inhibit the gene and protein expressions of Bcl-2-
associated X protein (Bax) and caspase-3 but upregulate the gene
and protein expressions of Bcl-2 in chondrocytes under mechanical
stress [90,121]. Moreover, in chondrocytes from OA patients, the
expressions of caspase-3, caspase-8 and C/EBP homologous protein
(CHOP) are significantly downregulated after MGF treatment,
revealing that MGF inhibits chondrocyte apoptosis [40] (Figure 4B).

The mechanism by which MGF affects cell migration and
unfolded protein response
Furthermore, MGF can promote MSC and chondrocyte migration.

Transwell assay revealed that MGF can promote OA chondrocyte
passage through the Transwell membrane [40], and an in vitro
wound healing assay showed that the wound repair rate is increased
by both MGF and TGF-β3 [20]. The cell migration promoted by MGF
is achieved through the activation of RhoA-Yes associated protein
(YAP) signaling [90] (Figure 5). YAP can be regulated by RhoA,
transcriptionally controls focal adhesion (FA) formation and
cytoskeleton stability, and determines cell shape, migration and
differentiation [122]. RhoA is a Ras-related small GTP-binding
protein that is related to the Rho GTPase subfamily, and the
activation of RhoA stimulates the formation of the cytoskeleton
[123,124]. MGF can directly activate RhoA and its target genes,
including YAP, and stimulate the formation of focal adhesion and
the cytoskeleton, indicating the role of MGF in cytoskeleton
promotion [90]. In our lab, we also confirmed the role of MGF in
cytoskeletal reorganization in chondrocytes (Figure 6).

Additionally, OA can destroy the homeostasis of the endoplasmic
reticulum (ER), but it can be rebuilt by the unfolded protein
response (UPR), which is mainly mediated by protein kinase RNA-
like ER kinase (PERK), inositol-requiring enzyme 1α (IRE-1α) and
activating transcription factor 6 (ATF6) (Figure 5) [125‒127].
Among these pathways, both PERK and IRE-1α can regulate actin
cytoskeleton dynamics through the binding with filamin A, and
filamin A regulates the action of actin filaments and cytoskeleton
dynamics, facilitating cell migration [128]. MGF was found to
increase the expressions of glucose-regulated protein 78 (GRP78)
and PERK but decrease the expressions of TGF-β, Smad3, HIF-2α
and Chop [40], indicating that MGF can effectively induce UPR.
Furthermore, upon treatment with MGF and pERK siRNA, the
expressions of TGF-β, Smad3, HIF-2α and Chop were decreased,
whereas that of GRP78 was increased [40], suggesting that GRP78
may play a compensating role for pERK.

Conclusions and Perspectives
MGF, as one of the isoforms of IGF-I, functions differently from

Figure 4. The mechanism of MGF in inflammatory reactions and cell apoptosis (A) MGF can downregulate the expressions of inflammatory
factors, such as IL-1β, TNF-α, and MMP3, in chondrocytes and synoviocytes. (B) Excessive mechanical stress and OA induce cell apoptosis, which
can be inhibited by exogenous MGF by regulating the expressions of Bcl-2, Bax, caspase-3, caspase-8 and CHOP.
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other IGF-I subtypes. The former functions mainly in injured or
damaged cartilage, and the latter is effective in both normal and
damaged tissues. In injured or damaged cartilage, MGF shows
mechanical sensitivity and has the capacity to induce cell
proliferation, differentiation and migration, inhibit cell apoptosis
and provoke inflammatory reactions. Although many studies have
proven that MGF has an important impact on cells and their living
microenvironment, the underlying biological mechanism is still
unclear and needs to be further elucidated. Another challenge
facing MGF research is the lack of specific antibodies. Although an

antibody recognizing a sequence within the pro-IGF-1Eb (rodent)
peptide has been generated [129,130], the precise sequence of
synthetic MGF cannot be recognized, and the key protease for
producing endogenous MGF has not yet been found [2]. Although
some achievements have been made, further studies are required to
determine the precise mechanism of MGF in vivo. Many studies
have recently been conducted in vitro, while the environment in
vivo is much more complicated, and the conclusions in vitro may be
inconsistent with those in vivo. Thus, more in vivo research needs
to be done. Moreover, research has found an increase in MMPs with

Figure 5. The mechanism by which MGF affects cell migration and the unfolded protein response MGF induces cell migration via the RhoA/YAP
signaling pathway. The unfolded protein response is activated mainly via three branches in response to stress, and MGF can influence one of the
branches. GRP78 binds to unfolded or misfolded proteins and activates three ER transmembrane proteins (PERK, IRE1, and ATF6). Exogenous MGF
increases the expressions of PERK and GRP78 and decreases the expressions of TGF-β, Smad3, HIF-2α, and CHOP.

Figure 6. IGF enhances the reorganization of the cytoskeleton in chondrocytes Immunofluorescence staining of F-actin shows the
morphological changes in cytoskeleton reorganization between the normal group and MGF group. The boxed area shows that MGF significantly
orchestrates cytoskeletal components and thus might facilitate cell synaptic extension. Cytoskeleton (F-actin, FITC), green; nucleus (Dapi), blue.
These data from our lab were collected based on at least three independent experiments (n ≥ 3).
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low-dose MGF treatment but a decrease with high-dose MGF
treatment, implying that MGF may have different mechanisms
when the dose changes [40], but the mechanisms remain unknown.
Finally, signaling pathways activated by MGF seem to function
differently under different situations and their precise roles should
be further confirmed. For example, the PI3K/AKT signaling path-
way promotes ECM anabolism and chondrocyte proliferation and
inhibits chondrocyte apoptosis when activated [131,132]. In
cartilage with OA, the PI3K/AKT signaling pathway is down-
regulated [28] but can be upregulated by MGF [114]. To interpret
this contradiction, more research, both in vitro and in vivo, is
needed to disclose its regulatory mechanism.
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