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Abstract
As the coronavirus disease 2019 spread globally, emerging variants such as B.1.1.529 quickly became dominant worldwide. Sustained 
community transmission favors the proliferation of mutated sub-lineages with pandemic potential, due to cross-national mobility 
flows, which are responsible for consecutive cases surge worldwide. We show that, in the early stages of an emerging variant, 
integrating data from national genomic surveillance and global human mobility with large-scale epidemic modeling allows to 
quantify its pandemic potential, providing quantifiable indicators for pro-active policy interventions. We validate our framework on 
worldwide spreading variants and gain insights about the pandemic potential of BA.5, BA.2.75, and other sub- and lineages. We 
combine the different sources of information in a simple estimate of the pandemic delay and show that only in combination, the 
pandemic potentials of the lineages are correctly assessed relative to each other. Compared to a country-level epidemic intelligence, 
our scalable integrated approach, that is pandemic intelligence, permits to enhance global preparedness to contrast the pandemic of 
respiratory pathogens such as SARS-CoV-2.
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Significance Statement

The SARS-CoV-2 pandemic claimed during the last 2 years millions of deaths despite the mitigating effects of nonpharmaceutical in
terventions and model predictions that prepared decision makers. In fact, predictions became obsolete with emergent variants higher 
immune-escape and/or increased infectiousness. Even if their epidemic characteristics were known, their distant origin introduced 
additional uncertainty. We combine phylogenetic information from a small number of the first sequenced probes with epidemic- and 
human mobility information to provide country-specific epidemic projections and a simple estimate of the pandemic delay that al
lows an inter-lineage comparison. This global approach enables countries, especially those with low sequencing rate, to estimate 
when current mitigation measures need adaptation to stay efficient.
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Introduction
The coronavirus disease (COVID-19) outbreak, caused by the 
SARS-CoV-2 virus and first detected in China in early 2020, likely 
originated from the Huanan seafood wholesale market in 
Wuhan (1) and continues to spread worldwide. It has forced na
tional governments to pursue country-level elimination strategies 
(4, 2, 3) or mitigation policies relying on both nonpharmaceutical 
interventions (NPI)—for example, physical distancing, wearing 
masks, hand hygiene, limit large gathering of people, curfews 

and, in the worst cases, lockdowns (5)—and pharmaceutical 

ones, such as massive vaccination campaigns and antiviral ther

apies (8, 6, 7). Early strict interventions have been shown to be 

more effective than longer moderate ones in containing national 

outbreaks in curbing epidemic growth (9), for similar intermediate 

distress and infringement on individual freedom (10).
In contrast to policy during the early stages of the pandemic, 

when pharmaceutical interventions were not yet available, most 

current national efforts to control the virus rely on reactive 
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strategies which alternate enhancement and lifting of NPIs, with 
the ultimate goal of prevention, or reduction, of pressure on na
tional health systems. To achieve successful containment, such 
reactive strategies require high capacity for testing and sequen
cing to continuously monitor the potential emergence of novel vi
ral strains of SARS-CoV-2, whose mutations might be responsible 
for more severe and/or more transmissible variants with pandem
ic potential (11). We define pandemic potential as the ability of a 
variant to escape population immunity acquired by vaccination 
or previous infections and to cause quickly spreading infections 
worldwide. Note, that the acquired immunity may still confer pro
tection against severe disease and thus the definition does not in
clude the variant’s disease severity, which cannot be estimated 
from limited, early sequencing data alone. That means a variant 
with high pandemic potential does not strictly require the 
strengthening of mitigation measures but suggests to thoroughly 
re-evaluate them due to an expected fast global spread.

Although the emergence of within-host variants with immune 
escape is likely to be relatively rare (12), sustained community 
transmission might favor it. When a new variant emerges, it 
is crucial for policy and decision-making to characterize novel 
mutations (15, 13, 14), estimate the growth advantage of the 
new variant with respect to the existing ones (16), and quantify 
the effectiveness of currently available vaccines (17, 18). 
Consequently, any delay in identifying an emerging variant and 
in determining its key epidemiological parameters introduces un
certainties in the timeline of community transmissions and im
ported cases which limit, if not completely prevent, effective 
mitigation responses to take place, similarly to the cryptic trans
mission of the wild type SARS-CoV-2 which led to the first 
COVID-19 wave (19). Combined with limited testing capacity, por
ous travel screening (20)—at national and, overall, cross-national 
levels, where international travel play a significant role to amplify 
the pandemic potential (21, 22, 19)—and lifting of national NPI, 
the same delays might seriously hinder the timely detection of 
an emerging variant. The COVID-19 pandemic has been charac
terized by the regular emergence of such variants (23). Three im
portant questions arise during the early stages of such a variant, 
at which point data is missing and noisy: (i) can we reconstruct 
its geographical origin? (ii) can we estimate how long it has been 
spreading undetected in that location? and (iii) can we quantify 
the risk of importation to other locations?

This work answers these questions by three major contribu
tions. First, we derive a protocol integrating phylogenetic, epi
demiological, and behavioral analyses within a framework for 
data-driven and model-informed pandemic intelligence. Second, 
we demonstrate that with limited, early and noisy sequencing 
data, it is possible to quantify the pandemic potential of an emer
ging variant and predict the dynamics of subsequent national out
breaks with satisfactory precision. Finally, we propose a simple 
combination of the different sources of information to qualitative
ly compare the lineages according to their pandemic delay and 
find that only the combined measure can reproduce the observed 
differences.

Results
Blueprint for a pandemic intelligence framework. Reliably quantifying 
the pandemic potential of an emerging variant requires data, 
and acquiring data requires time. Between the time t0 of the first 
undetected case and the time t1 of the first reported case and its 
subsequent lineage designation at time t2, an emerging variant 
can silently spread within its country of origin and beyond. For 

example, let us consider the B.1.1.529 lineage of the Omicron vari
ant (also known as BA.1). This was first reported by genomic sur
veillance teams in South Africa and Botswana on November 25th 
2021. Priority actions have been established by the World Health 
Organization (WHO) for member states on November 26th, with 
designation as a variant of concern (VOC) (24) required to raise 
the level of international alert (t3). By December 16th 2021, there 
were several reports of an estimated reduction in both vaccine ef
fectiveness against infection and severe disease (28, 25, 27, 18, 26), 
together with characterizations of the epidemiology of the variant 
in South Africa (29), Denmark (30), and Norway (31). Early phylo
genetic analysis placed t0 during the third week of October 2021, 
about 1 month before t1. Three weeks later it had been identified 
in 87 countries (29).

Fig. 1 summarizes this timeline for B.1.1.529, while highlighting 
the main analytical steps required to define a self-consistent proto
col to characterize the pandemic potential of an emerging variant 
(see Supplementary Fig. S1 for more mechanistic scheme). Fig. 1B 
illustrates how genomic surveillance data and epidemic modeling 
can be used to infer the spatio-temporal coordinates of the var
iant’s origin, thus providing information on t0. This information is 
used to estimate the importation risk for all countries in the world 
due to cross-national human flows. Finally, imported cases are 
used as seeds for community transmission leading to country-level 
outbreaks, while accounting for the epidemiological parameters 
characterizing the new variant. Unavoidable uncertainties about 
t0 and epidemiological parameters are propagated through the 
workflow. Plausible scenarios are presented, accounting for distinct 
levels of case under-reporting in each destination country (Fig. 1C).

In the following, we describe each step of the procedure, detail
ing our pandemic intelligence framework and the underlying 
modeling assumptions.

Step 1: Reconstructing the origin of an emerging variant in space and 
time and its epidemic parameters. For all SARS-CoV-2 sequences be
longing to the B.1.1.7 (Alpha), B.1.617.2 (Delta), B.1.1.529, BA.2, 
BA.5, and BA.2.75 (Omicron) lineages from GISAID (32, 34, 33), we 
retain only those generated from cases reported during the early 
stage of the corresponding wave from the country of evolutionary 
origin, from 20 up to a total of 100 sequences per lineage. 
Where there are multiple candidate countries of origin, we estimate 
the outbreak country by a simple trait model. We then generate 
three alignments, comprised of respectively 20%, 50%, and 100% 
of the sequence set. These are subsequently cleaned by trimming 
the 5′ and 3′ untranslated regions and gap-only sites. Bayesian evo
lutionary reconstruction of the dated phylogenetic history (35) is 
used to obtain posterior distributions of the growth rate t, the pa
rameters of the molecular clock, and the time of the most recent 
common ancestor (tMRCA). See Materials and Methods for details.

In this way, we obtain an estimate of t0, the time of the first un
reported case, as well as of other epidemic parameters such as the 
growth rate. From these, we estimate the effective reproduction 
number and generation interval. Alternatively, an emergent vari
ant can be characterized by epidemic modeling: Indicating the 
number of infected individuals and number of deaths at time t 
by I(t) and D(t), respectively, we consider the time period during 
which there is co-circulation of an existing variant v and an emer
ging one ω. We approximate the epidemic evolution by

I(t0 + Δt) = Iv(t0 + Δt) + Iω(t0 + Δt)

= Iv(t0)Rv(t0)Δt/GIv + Iw(t0)Rw(t0)Δt/GIω ,
(1) 

where Ix(t) is the number of infections due to variant x at time t, 
Rx(t0) is the effective reproduction number at time t0, and GIx is 
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the generation interval. Similarly, the deaths due to the co- 
circulating variants are approximated by D(t) = Dv(t) + Dω(t), with

Dx(t0 + Δt + τx) = Ix(t0 + Δt) × IFRx, x = v, w (2) 

where IFRx denotes the infection fatality rate of variant x and τx is 
the time lag between infection and death. To fit the unknown epi
demiological parameters, that is the ones related to variant ω for 
which we obtain a joint probability distribution, we use an opti
mization procedure (see Materials and Methods section).

In the case of B.1.1.529, we obtain t0 = 29 October 2021 (95% HPD: 
October 20–November 5) and a daily growth rate estimate of 0.566 
(95% HPD: 0.117–1.035) from the phylogenetic analysis and t0 = 19 
October 2021 (95% CL: October 15–October 23) from epidemic 
modeling, with Rt = 2.56 (95% CL: 2.16–3.19) and GI = 7.36 (95% CL: 
6.12–9.17). Our results are in good agreement with the literature, 
reporting t0 = 9 October 2021 (95% HPD: September 30–October 
20), exponential growth rate of 0.137 (95% HPD: 0.099–0.175) per 
day (29) and GI = 6.84 days (95% credible intervals: 5.72–8.60) (36).

For further details, refer to Materials and Methods section and 
Supplementary Fig. S2.

Step 2: Estimating the import risk of an emerging variant by coun
try. We use monthly seat capacities of flights between airports 

from the Official Airline Guide (37), encoding how many people 
could have traveled if all seats were occupied on flights from air
port A to B in the month of the estimated t0, that is differing be
tween variants. We indicate the corresponding flow matrix by F, 
where entry Fij describes the maximal passenger flow to i from j. 
The traveling population in the catchment area of an airport is 
obtained by Ni = Fi, with Fi =

􏽐
j F ji, that is, we assume that the 

population in the catchment area of the airport is equal to the 
airports outflow. The import risk is calculated as in (38): a ran
dom walker starts at the outbreak country and explores the 
flight network with Pij = Fij/Fj as the transition probability to i 
from j. The walker has a node-specific probability to exit that 
is based on the effective distance graph (22) with the effective 
distance

Dij = d0 − log (Pij), (3) 

where d0 is a constant that is added for each connecting flight. The 
import risk cumulates the walker’s exit behavior from all paths 
and estimates how likely it is that an infected individual from 
the emergent variant’s outbreak country reaches any airport 
worldwide (see Materials and Methods section, Supplementary 
Eq. S9). To work at country level, we aggregate the import risk of 

A

B
C

Fig. 1. Schematic illustration of our pandemic intelligence workflow. A) Evolutionary dynamics of SARS-CoV-2 variants, coded by colour. The panel is 
obtained from nextstrain.org, based on GISAID data. B) For the B.1.1.529 lineage (or BA.1, Omicron, according to the WHO nomenclature), we identify four 
distinct time points in the process of characterizing the variant, from the time of the first undetected case to the designation as Variant of Concern. This 
illustrates how genomic surveillance data is used in combination with global human movement data and epidemic modeling to: (i) perform a 
spatiotemporal reconstruction of the patient zero to identify the country of origin of an emerging variant and estimate its epidemiological parameters 
and (ii) calculate the importation risk for all other countries worldwide. C) For a subset of about 50 countries worldwide (depending on sequencing data 
availability), we forecast the increase in the number of cases due to the consequent community transmission according to what-if scenarios, accounting 
for distinct levels of under-reporting. For a more mechanistic workflow scheme, see Supplementary Fig. S1.
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all airports of the outbreak country by computing the mean import 
risk weighted by the international outflux of each airport in the 
outbreak country. Note, that the effective distance Dij alone does 

not provide this information. We performed an extensive analysis 
to validate the estimated import risk against available data, such 
as the official arrival times as obtained from the WHO, for each 
emerging variant. We find considerable correlation between ar
rival time and import risk distance (Supplementary Eq. S13) for dif
ferent variants (Alpha, Beta, Delta, Gamma) with a median of 
r = 0.55 (range r ∈ [0.41, 0.56]). This median is the largest 

compared with several alternative distance measures (see 
Supplementary Figs. S3–S5). Possible reasons for the medium cor
relation are reporting-uncertainties of the official arrival times 
(e.g. low genome sequencing rate) and the probabilistic nature of 
the infected passenger distribution. To ensure that it is not due 
to an incorrect estimated outbreak location, we identify likely can
didates by recomputing the correlation for all countries as source 
(similar to (22)). For Beta, Gamma, and BA.1, the country declared 
by the WHO as the outbreak source has the greatest degree of cor
relation. For Delta and Alpha, the WHO candidate has the second 

A

C

D

E

B

Fig. 2. Quantifying the pandemic potential of the B.1.1.529 lineage. A) Phylogenetic reconstruction and estimation of the most recent common ancestor 
(MRCA), identified South Africa on October 28, 2021 (95% HPD: October 20–November 5) as the most likely MRCA. B) Import risk map: countries are colored 
by their probability to import infectious individuals carrying the B.1.1.529 (Omicron BA.1) lineage. C, D) Projected weekly incidence in Estonia and the 
United States obtained from epidemic modeling, under different Rt scenarios indicated by colored lines, where the lowest line corresponds to the lowest 
Rt scenario. Line thickness represents the range between the minimum and maximum assumed values of under-reporting in the source country (here 
South Africa). Points represent the observed incidence. E) Case counts simulated using the Rt scenario that corresponds to the mean growth rate from the 
phylogenetic analysis. For each country, the date of the first reported case is indicated with a gray circle.

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad192#supplementary-data
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and fifth best correlation respectively (see Supplementary Figs. S6 
and S7). We extend the analysis to sub-lineages of Omicron and 
previously circulating variants of interest (VOIs) by estimating 

arrival times and outbreak countries from GISAID data. For 13 of 
17 variants, the suspected outbreak location from GISAID has at 
least the third-largest correlation coefficient (of 183), and for all 
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Fig. 3. Pan-viral pandemic potential: comparing multiple lineages. A, B) tMRCA and growth rate estimates for Alpha, Delta, BA.1 (B.1.1.529), BA.2, BA.2.75, 
and BA.5 from phylogenetic analysis. C–F) Estimates of case numbers in all the considered countries for the same variants. For each lineage and country, 
the epidemic simulation starts at the time of infection t0 of the first undetected case as identified using the phylogenetic analysis. The simulation stops at 
the third date at which sequences belonging to the considered lineages are greater than zero. Results are provided in logarithmic scale and dates at which 
the first case is reported are marked with gray circles.

Table 1. Phylogenetic estimates of the time of most recent common ancestor (tMRCA) and daily growth rate.

SARS-CoV-2 lineage tMRCA [95% HPD] Growth rate [95% HPD]

B.1.1.7 (Alpha) Sep 10, 2020 [Aug 28–Sep 19, 2020] 0.091 [0.008–0.202]
B.1.617.2 (Delta) Aug 25, 2020 [Jul 5–Oct 10, 2020] 0.020 [0.008–0.033]
B.1.1.529 (Omicron) Oct 29, 2021 [Oct 20–Nov 5, 2021] 0.566 [0.117–1.035]
BA.2 (Omicron) Oct 24, 2021 [Oct 4–Nov 9, 2021] 0.136 [0.046–0.262]
BA.5 (Omicron) Jan 10, 2022 [Dec 19–Jan 29, 2022] 0.110 [0.051–0.177]
BA.2.75 (Omicron) Apr 5, 2022 [Mar 11–Apr 23, 2022] 0.092 [0.037–0.162]

The values of the SARS-CoV-2 B.1.1.7 (Alpha), B.1.617.2 (Delta), B.1.1.529 (BA.1), BA.2, BA.5, and BA.2.75 (Omicron) lineages. Values are expressed as medians and 95% 
high posterior density intervals.
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variants the GISAID candidate is at least on the 12th rank (see 
Supplementary Figs. S8–S10).

Step 3: Modeling country-level epidemic spread of an emerging variant 
under distinct scenarios. We use results from the previous step of the 
pipeline as inputs for an epidemic model in order to forecast the 
potential surge in cases due to an emerging variant in a target 
country. First, we estimate the daily number of infected people 
(seeds) traveling to the target country from the country where 
the VoC emerged (source country), based upon four elements: (i) 
results of our phylogenetic analysis, which inform both the 
growth rate and the time of emergence of the variant of concern, 
(ii) genomic surveillance in the source country, (iii) estimates of 
prevalence in the source country (incoporating under-reporting), 
and (iv) the import risk score of the target based on estimates 
from our analysis. Then, we produce short-term estimates of 
the daily incidence of the VoC in the target country by means of 
a Renewal process (40, 39, 41), in which we take into account 
both the introductions of seeds from the source country and the 
local epidemic dynamics caused by secondary cases. The renewal 
equation approach comes with three main advantages with re
spect to other models, such as SIR (42). In fact, (i) it does not re
quire to include in the dynamics the immunological status of 
the population in the target country; (ii) the VoC dynamics can 
be considered as independent from the ones of the co-circulating 
VoCs, thus avoiding the need of estimating additional parameters 
for concurring spreading processes; (iii) the model explicitly in
cludes the most relevant epidemiological observables, such as 

Rt, the serial interval distribution (43), and the immune escape 
of the VoC. For further details we refer to Materials and Methods 
section and Supplementary Figs. S11 and S12.

Step 4: Assessing the pandemic potential of emerging variants. In 
Fig. 2, we show the result of each step described above in deter
mining the genomic and epidemiological parameters of the BA.1 
lineage and, accordingly, quantify its pandemic potential. We 
refer the reader to Supplementary Figs. S13 and S14 for a more 
detailed analysis of errors in these estimates. Fig. 2A displays a 
time-resolved maximum clade credibility phylogeny of the 
lineage. Panel B is the map of import risk across the world. C, D) 
For two example countries, the simulated epidemic projections, 
plotted as weekly incidence. For each reproduction number, the 
shaded area represents the interval between the estimates de
rived using the minimum and maximum values of under- 
reporting in the source country. E) Model estimates of case counts 
in all considered countries are provided.

Fig. 3 shows the results obtained for the SARS-CoV-2 lineages 
B.1.1.7 (Alpha), B.1.617.2 (Delta), B.1.1.529, BA.2, and BA.5 
(Omicron). The date of the most recent common ancestors and 
the growth rate are shown, together with the temporal evolution 
of the number of expected cases around 50 countries (varies de
pending on available sequencing data; Alpha: 59, Delta: 55, BA.2: 
51, BA.5: 49 countries). Point estimates of the mean and 95% 
HPD regions are further provided in Table 1.

To assess the prediction error of our workflow, we compute the 
normalized root mean square error (nRMSE) between prediction 

Fig. 4. Pandemic intelligence workflow error estimation. Absolute (bars) and relative frequency (segments) of countries according to their normalized 
root-mean-square error (nRMSE) for the Alpha (B.1.1.7), Delta (B.1.617.2), BA.1 (B.1.1.529), BA.2, BA.5 (Omicron) lineages. The normalized RMSE is zero if 
the number of infected people evaluated from data is inside the range spanned by the epidemic scenarios. Otherwise, it is the RMSE between observed 
incidence and the incidence of the closest epidemic scenario, normalized to the range spanned by observed incidences in the respective country. The 
order and color of the bars and segments is identical, that is the bars serve as color legend for the segments. As orientation: the leftmost dark bar 
corresponds to the dark segment with the percentage information inside, they represents the number or percentage of countries with the smallest 
nRMSE.

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad192#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad192#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad192#supplementary-data
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scenarios and observations. The nRMSE is zero, if the observation 
lies in between the simulation scenarios. Otherwise, the nRMSE is 
the RMSE between observation and the closest prediction scen
ario, normalized to the range that is spanned by the observations 
in the respective target country (for details, see Materials and 
Methods section). Fig. 4 captures the absolute and relative fre
quency of countries according to their nRMSE. Our predictions 
are in very good agreement (nRMSE = 0) for Alpha in 81.4%, 
B.1.1.529 in 53.1%, BA.2 in 52.9%, BA.5 in 49% and for Delta in 
12.7% of all considered countries. Note that even though Delta 
has the smallest amount of countries with incidences falling with
in scenarios prediction, more than 75% of the countries have a 
nRMSE ≤ 2.5.

Alternative Step 3 and 4: The pandemic delay as a simple integrative 
measure for variant classification. Despite the simplicity of the pro
jection approach, the numerical simulation on country level 
makes it difficult to summarize an emergent variant’s pandemic 
potential in simple terms. To close this gap, we introduce the pan
demic delay ty, that combines phylogenetic, connectivity and epi
demic information in a single equation by assuming that the new 
variant has a fitness advantage Δf against the pre-existing strains 
and is competing for the infected population estimated via a sim
ple logistic growth equation (see Materials and Methods section 
for a detailed derivation). The pandemic delay ty estimates the 
time between tMRCA and when the new variant reached a frac
tion y of all sequenced probes in the target country m:

ty(m) = −
1

Δf
ln

1 − y
[1/x0(m) − 1]y

􏼒 􏼓

. (4) 

The phylogenetic information is encoded in the fitness advantage 

Δf = ln R − ln 1 with R as the phylogenetic estimate of the repro
duction number, that is we assume that the population behavior
ally and/or medically adapted to the pre-existing strains resulting 

in a R̂ = 1. The initial fraction x0(m) encodes the connectivity be
tween outbreak and target country and their epidemic state, 
that is it estimates how many cases are at tMRCA imported rela
tive to the current case number. Fig. 5A shows a qualitative agree
ment between our estimated ty and the observed pandemic delay 

t̂y (r ≈ 0.85, p ≪ 0.001) and suggests a linear relation considering 

all but the Delta lineage’s overestimated delay. Note that also 
within the lineages, the correlation between estimated and ob
served delay is in general high and significant ([r-, p-value]: 

Alpha [0.5, 0.001], Delta [0.3, 0.06], BA.1 [0.52, 0.02], BA.2 
[0.14, 0.47], BA.2.75 [0.97, 0.002], BA.5 [0.44, 0.008]), which high
lights the importance of the additional connectivity information. 
The rank correlation between median estimated ty and the phylo

genetic estimate of R (Fig. 5B) is almost perfect, with the Alpha lin
eage as an exception that has a shorter pandemic delay (rank 2) 
than expected if solely R would be considered (rank 4) because 
of the particularly high outflux per capita of its outbreak country 
(Great Britain). Again, it illustrates that the combination of all in
formation is necessary to gain a realistic estimate of an emergent 
lineage’s pandemic potential.

Discussion and conclusions
We presented an integrated framework that combines phylogen
etic analysis of genomic surveillance data with international hu
man mobility data and large-scale epidemic modeling, in order 
to characterize in nearly real time the pandemic potential of an 
emerging variant. This concept is intended to provide quantitative 
indicators about the ability of a variant to escape population im
munity acquired by previous infections and/or vaccination, and 
quickly spread at a global level through human activities.

Our framework naturally deals with missing and noisy infor
mation to infer, through a Bayesian approach, the most likely ori
gin—in space (on the country level) and time—of an emerging 
variant and its growth rate. Spatial and temporal coordinates 
are used to feed an analytical technique to estimate the probabil
ity that a given number of infectious individuals, departing from 
the country where the variant first appeared, travel to other coun
tries with no exposure to it. This crucial step is based on inter
national travel data, providing information about human 
movements between countries. Note that our approach is more 
powerful than naive estimates based only on origin–destination 
pairs: in fact, we make full use of the knowledge we have about 
the underlying international travel network and its latent geom
etry (22, 45, 44), known to play a crucial role to amplify the spread 
of an emerging pathogen (19). The last stage of our framework is to 
use importation risk to quantify the number of imported infec
tious cases to each country and, accordingly, estimate the conse
quent unfolding of the epidemic due to the emerging variant. The 
epidemic model is intended to quantify undetected infections that 
occur well before the first genomic sequence is isolated from a 

A B

Fig. 5. Pandemic delay. The pandemic delay ty until the lineage reaches a fraction y ∈ [0.13, 0.16] is estimated for Alpha, Delta, BA.1 (B.1.1.529), BA.2, 
BA.2.75, and BA.5. A) The country-specific estimates of ty versus the observed pandemic delay t̂y suggest a linear relation, highlighted by a Theil-Sen 
estimation (dashed line) with slope m ≈ 1.55 and intercept n = −0.47 based on all but the Delta lineage data. B) The lineages sorted according to their 
median ty in combination with the phylogenetic estimate of the reproduction number R show that the additional connectivity information, the monthly 
outbreak country outflux per capita (equivalent to the export probability), explains the shorter predicted pandemic delay of the Alpha lineage despite its 
second-lowest median R.
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case in a country. Finally, we validate our estimate of the pandem
ic delay, that allows a simple to interpret qualitative comparison 
between variants incorporating phylogenetic, epidemic, and con
nectivity information. The estimation is based on a logistic growth 
equation for the relative fraction of a new variant. These predic
tions will be less accurate if growth advantages in different coun
tries are heterogeneous, for example, due to immune escape.

Only the early phase of spread of a new lineage is estimated and 
the proposed model can safely take advantages of assumptions 
like a homogeneous mixing and the lack of feedback loops in the 
epidemic dynamics.

We have validated our integrated framework on existing var
iants, including B.1.1.7 (Alpha), B.1.617.2 (Delta), B.1.1.529 (BA.1), 
BA.2, BA.2.75, and BA.5 (Omicron), finding excellent agreement 
with independent estimates of the relevant phylogenetic and epi
demiological parameters. By accounting for different scenarios in 
the progress of the epidemic in each country, we provide quanti
fiable indicators to inform decision makers and support pro-active 
policy interventions to mitigate the potentially harmful effect of 
an emerging variant, as preventing a sudden overburden of the 
national health care system. For the variant of most concern at 
the time of writing this manuscript (early 2023), BA.5, we estimate 
that its most recent common ancestor existed in early January 
2022 (January 10, 2022, 95% HPD: December 19, 2021–January 29, 
2022), with a daily growth rate of 0.110 (95% HPD: 0.051–0.177).

Overall, our findings show that it is possible to aim at pandemic 
intelligence, even with partial and noisy data. We must caution 
that the estimates of the pandemic potential of an emerging 
SARS-CoV-2 variant are largely driven by the uncertainty in the 
spatio-temporal coordinates of its origin. The Delta lineage is 
our most unreliable estimate (Figs. 3–5), possibly due to the low- 
genomic surveillance at the tMRCA in the outbreak country 
India, even if Delta and Alpha have a comparable sequencing 
rate corrected for under-reporting (Supplementary Table S1), be
cause the under-reporting is based on COVID-mortality that is 
known to be again underestimated in India by a factor of 6 to 7 
(46). Another reason especially for the overestimation of Delta’s 
pandemic delay (Fig. 5) is its low phylogenetic growth rate esti
mate, which implies that during the long time till Delta domi
nates, additional mutations can happen that potentially speed 
up the process. Importantly, note that only the validation of our 
scenario predictions relies on large enough sequencing rates in 
the target country, but not its application. That means our frame
work is perfectly suitable for low- and middle-income countries 
with little to no genomic surveillance, as long as disease related 
mortality is monitored.

Our framework relies on the country of origin’s capacity to se
quence a fraction of its positive tests for the phylogenetic analysis. 
Thus, it is crucial to support international efforts that enhance the 
diagnostic capabilities of countries (48, 47). However, in case the 
outbreak country can differentiate between SARS-CoV-2 variants 
by other means, for example high-throughput PCR assays (49, 50), 
the alternative characterization of the growth rate presented in 
Step 1 by epidemic modeling can be applied. Additionally, the coun
try of origin can be reassured by the outbreak-origin-detection ana
lysis, as described in Step 2.

Failures in international cooperation with a view to finding glo
bal solutions have undoubtedly shaped the COVID-19 pandemic. 
We have provided robust evidence that epidemic intelligence at 
country level could be not enough, alone, to contrast the pandem
ic of respiratory pathogens such as SARS-CoV-2, in the absence of 
well-coordinated genomic surveillance—especially in low- and 
middle-income countries currently lacking an adequate response 

capacity (51)—and global projections of variant’s pandemic po
tential. Our approach is inherently integrated and scalable, add
ing to ongoing modeling efforts and pan-viral analyses (52, 53, 
55, 54, 23, 11) and responding to global calls for coordinated action 
(51, 57, 56). The data-driven approach provides a vital step in the 
path towards pandemic intelligence—where the interconnected 
and interdependent nature of human activities (22, 19, 58) is nat
urally accounted for at a global level—as well a means of enhan
cing global preparedness against future emerging variants.
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