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The Johnson–Mehl–Avrami–Kolmogorov (JMAK) formalization, often
referred to as the Avrami equation, was originally developed to describe the
progress of phase transformations in material systems. Many other transform-
ations in the life, physical and social sciences follow a similar pattern of
nucleation and growth. The Avrami equation has been applied widely to
modelling such phenomena, including COVID-19, regardless of whether
they have a formal thermodynamic basis. We present here an analytical
overview of such applications of the Avrami equation outside its conventional
use, emphasizing examples from the life sciences. We discuss the similarities
that at least partially justify the extended application of the model to such
cases. We point out the limitations of such adoption; some are inherent to
the model itself, and some are associated with the extended contexts. We
also propose a reasoned justification for why the model performs well in
many of these non-thermodynamic applications, even when some of its fun-
damental assumptions are not satisfied. In particular, we explore connections
between the relatively accessible verbal and mathematical language of every-
day nucleation- and growth-based phase transformations, represented by the
Avrami equation, and the more challenging language of the classic SIR
(susceptible-infected-removed) model in epidemiology.
1. Introduction
The Avrami equation was originally developed, and is now widely used, to
model the progress of phase transformations in materials systems. It is a
simple sigmoidal function

f(t) ¼ 1� exp (�ktn) , ð1:1Þ
where f(t) is the fraction of material that is transformed as a function of time, and
k and n are constants that are extracted from the model [1]. It originated in
classical nucleation theory (CNT) and represents the convergence of analyses
performed independently by Johnson & Mehl [2], Avrami [3–5], and Kolmo-
gorov [6]; see [7] for detailed chronology and access to appendices from the
original paper by Johnson and Mehl. It is sometimes formally referred to in
the literature as the JMAK equation (or the KJMA equation, depending on the
conventions of the authors who are referencing the equation).

The Avrami equation has been used to describe the progress of thermodyn-
amic phase transformation of materials in both the physical sciences (for
example precipitation [8] and deformation-induced martensitic transformation
[9] in metal alloys, crystallization in amorphous polymers [10] and metallic
glasses [11], and self-assembly of supramolecular structures [12]) and the life
sciences (for example crystallization of fats [13], proteins [14], haem [15]
and bone minerals [16]). Beyond the context of materials phase transformation,
there are many other examples of changes that initiate and spread through
processes similar to crystal nucleation and growth. There have been pre-
vious efforts to apply the Avrami equation to the kinetics of many such
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non-thermodynamic transformations. The focus of this
review is to critically explore the extent of common ground
between various processes approximated by the Avrami
model, and thus to assess the validity and limitations of
these adaptations of the model. In particular, we consider
the justifiability of using an Avrami model to describe the
progression of disease in a susceptible population.
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Figure 1. Schematic plot of free energy versus nucleus radius (adapted from
Callister & Rethwisch [19]).
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2. Background: the Avrami equation and
thermodynamic phase transformations

2.1. Classical nucleation theory
The process of materials phase transformation is often
divided into two stages: nucleation and growth. Nucleation
is the beginning of formation of a new thermodynamic
phase with lower free energy, in a parent phase with higher
free energy [17]. Nucleation can be instantaneous (time-
independent, occurring at the same time for all transforming
regions in a system) or sporadic (occurring at different times
for different transforming regions).

Nucleation occurs spontaneously via random fluctuations
in the local arrangement of atoms (or molecules) in the parent
phase [18] in two ways: homogeneous nucleation, when free-
standing nuclei form without aids from external nucleation
sites, and heterogeneous nucleation, which is aided by crystal
defects or foreign surfaces [17,19].

Among several theories that have been developed for
understanding the nucleation and growth of a new thermo-
dynamic phase, CNT is the most common [17]. Assuming
homogeneous nucleation of spherical solid nuclei with
radius r in a liquid parent phase, there are two components
to the Gibbs free energy of nucleation: the volume free
energy that works towards formation of stable nuclei, and
the surface energy that works against it. (For nucleation in
a solid matrix, there is a third energy component; it manifests
as a strain, caused by the density difference between the pro-
duct and the parent phase, and works against nucleation.)
Therefore, the change in Gibbs free energy is

DG ¼ 4
3
pr3DGv þ 4pr2g

¼ volume effect þ surface effect: ð2:1Þ

The volume free energy change of phase transformation,
DGv, is always negative; the interfacial energy, g, between
regions of transformed and parent material is always positive.
Since smaller nuclei have a higher surface-to-volume ratio,
their surface energy cost is greater than the released volume
free energy. For larger nuclei, the volume free energy domi-
nates, making the total Gibbs free energy negative; therefore,
the nuclei are viable and can continue to grow and become
‘grains’. This competition is shown in figure 1 (adapted from
Callister & Rethwisch [19], Chapter 10).

Differentiation of equation (2.1) with respect to r gives the
critical radius of stable nuclei, r�, as

r� ¼ � 2g
DGv

: ð2:2Þ

For heterogeneous nucleation, the surface energy term con-
tains the collective effect of the solid–liquid, solid–impurity,
and liquid–impurity interfacial energies.
CNT is developed based on the following assumptions:
[17,20–23]

(1) Nuclei have the same properties (e.g. density, structure
and composition) as the transformed phase.

(2) Nuclei are spherical and have a sharp boundary with
the parent phase; the boundary thickness is negligible
compared with the size of the nuclei.

(3) Capillary approximation: the surface tension (energy per
unit area, g) of nuclei is assumed to be similar to that
of a flat surface, i.e. independent of nucleus curvature,
roughness and size.

(4) One-step nucleation: cluster formation and internal
organization into the new phase happen simultaneously,
without temporary formation of any intermediate or
metastable state.

There are many transformations where the observed be-
haviour departs from these assumptions. There are cases
where the nuclei do not have the same density or structure
as the transformed phase [24], the interface with each nuclea-
tion cluster is an ordered region with a thickness that is
comparable to the cluster radius [25], small nuclei have
highly curved surfaces that disobey capillary approximation
[23,26], or critical nuclei form by aggregation of intermediate
disordered clusters of particles followed by later appearance
of periodic crystal structure [24].

Once the overall free energy is negative, the now-stable
nuclei can enter the second stage of transformation; growth.
2.2. Kinetics of transformation and growth
The time dependence of transformation has been described
by the Avrami equation [1], noted above as equation (1.1).
Cantor [27] dedicated a full chapter to the Avrami equation
in his book ‘The Equations of Materials’ where he selects
and expounds on the most important equations in materials
science.

The equation creates a sigmoidal curve (figure 2). Initially,
transformation is slow; this stage is followed by a period of
rapid grain growth due to the increasing availability of inter-
facial area for atoms or molecules to attach to. Eventually the
transformation slows towards completion, because the process
will run out of transformable material and growing grains will
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Figure 2. Typical plot of progress of a phase transformation at constant
temperature.

Table 1. Values of nN for different cases of nucleation rate.

nN ¼ 1 constant sporadic nucleation rate

nN ¼ 0 instantaneous nucleation

nN . 1 nucleation rate increases with time

0 , nN , 1 nucleation rate decreases with time

Figure 3. Schematic representations of interface-controlled growth (top) and
diffusion-controlled growth (bottom).
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impinge on each other. This impingement can be in the direct
form of physical contact between two (or more) growing
grains. It can also occur at a distance when the diffusion
fields of growing precipitate grains overlap, i.e. the grains
compete for the same compositional resources [28].

The constants k and n in the Avrami equation are system
specific. Avrami [4] uses different notations for these par-
ameters; our convention here is consistent with recent
literature. The Avrami coefficient k is a function of both
nucleation rate and growth rate, and is related to the geom-
etry of the growing nuclei [29]. The Avrami exponent n
depends on dimensionality of growth, d, and on whether
nucleation is instantaneous or sporadic [29]. We can write
n = nN + nG, where nN and nG embed the nucleation and the
growth components respectively [27]. If nucleation is instan-
taneous—such as in heterogeneous nucleation with a fixed
number of nucleation sites—then nN = 0, while for continuous
or sporadic nucleation nN = 1. Some studies [11,30] report
nucleation rates that change over time. Accordingly, the
value of the term nN can have a value that is neither 0 or 1
(table 1). The growth component depends on the growth
mechanism and will be addressed in more depth in the
following section.
2.3. Growth mechanisms and Avrami exponent
Phase transformations can be categorized based on the mech-
anisms involved in growth: (i) interface migration, associated
with atoms or molecules locally rearranging from the structure
of the parent phase into that of the product phase; (ii) diffusion
in a multi-component system, causing changes in chemical
composition [31]. A transformation can involve one or both
of these mechanisms. In the latter case the slower mechanism
controls the overall rate of the transformation.
2.3.1. Interface-controlled growth
This mechanism involves processes that take place in close
proximity to the interface. There is negligible change in
volume and no change in composition as the interface
moves (figure 3, top). This type of growth is linear with
time [28]. Examples include polymorphic phase changes,
solidification and solid-state structural changes in single
component materials, and recrystallization [28,32].

Interface-controlled growth depends only on the attach-
ment of the atoms or molecules from the parent phase onto
the new phase at the interface. Since the growth of a grain in
each dimension is linear in time (r∝ t), the time-dependence
of volume for a three-dimensional grain is v(t)∝ t3. For spora-
dic nucleation (nN = 1), the value of the Avrami exponent is
n = 1 + 3 = 4 for spherical or three-dimensional growth,
n = 1 + 2 = 3 for plate-like or two-dimensional growth and
n = 1 + 1 = 2 for needle-like or one-dimensional growth. For
instantaneous nucleation, the time dependence of nucleation
is zero (nN = 0); therefore, the Avrami exponent will be n = 3,
2 and 1 for spherical, plate-like and needle-like growth respect-
ively [27]. When grains impinge on each other, growth stops in
that direction. This termination of growth is referred to as
‘hard impingement’ [28].

Constant growth rate is a valid assumption for interface
migration into a matrix of constant composition; the growth
rate is independent of the position of the interface and, as a
result, independent of time. However, when a new phase
with a different composition (and possibly structure) precipi-
tates out of the matrix, constant growth rate cannot be
assumed, because the availability of precipitating atoms
around the interface decreases over time [27].
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2.3.2. Diffusion-controlled growth
When the matrix around the growing precipitate is depleted
of solute atoms (figure 3, bottom), continued growth will
depend on the diffusion of solute atoms through the matrix
at ever greater distances from the interface. In this mechan-
ism, contrasting with the original assumptions of Avrami
[3–5], growth in each dimension is proportional to the
square root of time [28]. Examples of diffusion-controlled
growth include precipitate formation in the Al–Cu alloys
[33] used in aircraft construction and the precipitation of
intermetallic compounds in magnesium alloys [34].

Since each growing dimension of a grain follows the
relationship r∝ t1/2, the time-dependence of volume for
a three-dimensional grain is now v(t)∝ t3/2. For sporadic
nucleation (nN = 1), the value of the Avrami exponent is n =
1 + 3/2 = 2.5 for three-dimensional growth, n = 1 + 2/2 = 2
for two-dimensional growth and n = 1 + 1/2 = 1.5 for one-
dimensional growth. For instantaneous nucleation (nN = 0),
the Avrami exponent is n = 1.5, 1 and 0.5 for spherical,
plate-like and needle-like growth respectively [27].

For diffusion-controlled growth, the diffusion fields of
growing grains start to overlap before the grains physically
touch, and the grains will have to compete for the available
solute in the matrix. This competition results in a gradual
decrease in growth rate until growth stops. This phenomenon
is called ‘soft impingement’ [28].
3. Applications of the Avrami equation in the life
sciences and beyond

Though the JMAK model was developed to describe the
progress of phase transformation in a material system, its
application has not been limited to materials science. The
model has been used in other fields of research, including
life sciences examples such as oncology [35–40], ecology
[41–45] and epidemiology [46–50]. Some systems from
those contexts can be regarded as undergoing a ‘phase
transformation’, and non-thermodynamic driving forces ana-
logous to undercooling and supersaturation can be identified.
An Avrami coefficient (k) and an Avrami exponent (n) can be
extracted from data for the system being modelled, and can
be interpreted on the basis of assumptions that are often jus-
tifiable. Dimensions in these cases are any settings through
which the transformation propagates, rather than merely
the three-dimensional space coordinates. The energy cost of
the transformation can be compared with any factor that
works against the transformation, similar to the surface
energy of the interface in materials phase transformations.

3.1. Applications in genetics studies
Li et al. [51] studied the transfer of antibiotic resistant genes in
bacteria. They developed an approximation formula, based
on an adaptation of the Avrami equation by Avramov [46]
for modelling the spread of an epidemic, and found out-
standing agreement (R2 = 0.996) between experimental
results and the model. Their use of this equation is merely
data fitting, and is not explained in the context of phase
transformations.

O’Malley et al. [52] applied the Avrami equation to
describe the spread of invasive gene clusters. Mutations are
described as nucleating randomly and independently in
space and time, creating clusters of invasive alleles. Clusters
that are larger than the critical size will continue to grow
until they reach a sufficiently large radius, and the radial vel-
ocity approaches an asymptotic value. The authors appear to
use the concepts of limiting radius and asymptotic (finite)
growth velocity interchangeably as a means of incorporating
impingement into their model.

Richards et al. [53] modelled the viability decline that
seed ageing causes in gene banks. They do not provide any
comparison between phase transformation and loss of gene
viability, and their choice of Avrami exponent (n = 2) is
made without invoking any explicit analogue of Avrami
growth kinetics.

Ralph & Coop [54,55] persuasively applied the Avrami
model to the geographical spread of selected alleles in a
human population that is adapting to a global selection
pressure. An advantageous allele, that can arise and spread
locally, will spread until it encounters (impinges on) an
allele with the same advantage that is spreading through
the species from a different location.

Herrick et al. [56] adopted an Avrami model to study the
kinetics of DNA replication. They justify this adoption via
the following parallels: (i) random activation of DNA replica-
tion origins (nucleation), (ii) synthesis of the replication
structure (growth), and (iii) coalescence of two replicated DNA
domains once they touch one another (impingement). Assuming
a constant growth rate, they describe the kinetics of DNA repli-
cation similarly to one-dimensional crystal growth. Their
modified Avrami model fits the experimental data from DNA
replication in Xenopus, yields valid description of the time
dependence of replication initiation, provides the initiation
rate of new replication origins and can be generalized to
other organisms. Jun & Bechhoefer [57,58] also studied the
application of a one-dimensional Avrami model to DNA repli-
cation. Their implementation accounts for small, broken-up
DNA fragments, which do not require the assumption of
infinitely long DNA strands made by Herrick et al. [56].
3.2. Applications in cancer studies
González et al. [35] discovered diffusion-controlled growth
and soft impingement processes during tumour growth.
They used a modified Avrami model to describe the
tumour growth, noting that, as in crystal growth, tumour
growth is initially exponential and then slows as the
tumour asymptotically approaches its final volume, resulting
in a sigmoidal curve. Villar Goris et al. [36] compared the
Avrami model and the Gompertz model (a sigmoidal func-
tion widely used in biology to describe growth of various
living organisms or tissues [37]) in predicting growth kinetics
of tumours; they achieved similar results from the two
models. In this case, the Avrami coefficient is related to the
tumour growth rate, and the progress of the transformation
is measured in terms of the addition of cancer cells to the
solid tumour.

Dobrzy�nski et al. [38] modelled the dose dependence of
radiation-induced cancer, describing this dependence as a
sigmoidal function. They consider continuous irradiation of
cells at fixed dose rates, and focus on the dose dependence
evolution of cancer cells, neglecting the natural time-
dependent evolution. The Avrami model is shown to be
more universal in fitting the data, compared with a multi-
stage model. The exponent n = 3.68 is considered close to 4



Table 2. Avrami exponent for different biological processes [60]. Notice
that the n values for growth in plants and animals cluster around 2 (green
shading) and the values for light-related processes cluster between 1 and
1.3 (blue shading).

biological phenomenon n

growth of bacteria 4

growth (length) of regenerating leg of salamander 2.3

synthesis of chlorophyll in maize plant 2.2

growth (weight) of rat 2.0

growth (height) of sunflower plant 1.9

K+ conductance decay in nerve axon 1.9

K+ leakage from poisoned muscle 1.7

dried green leaf IR phosphorescence decay 1.28

myosin splitting of ATP 1.24

muscle tension during tetanic contraction 1.21

cytochrome c IR phosphorescence decay 1.16

firefly flashlight decay 1.16

melanin IR phosphorescence decay 1.08

fresh green leaf IR phosphorescence decay 1.00
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and interpreted as voluminous growth, implying (but not
stated) that nucleation is sporadic. Dobrzy�nski et al. [39]
also used the Avrami equation to model the probability
of cancer transformation as a function of the number of
irradiation-induced mutations in a cell. The implications
of the resulting Avrami exponent (n = 2) are not addressed.

Fornalski & Dobrzy�nski [40] employ the Avrami model
to describe the cancer transformation probability for a
single cell. They treat each oncogene as a cancer cluster on
the DNA chain. They interpret the Avrami coefficient in
terms of the distribution of mutations necessary for cancer
transformation, and the Avrami exponent in terms of the
transformation dynamics.

3.3. Applications in biochemical processes
Cope [59,60] presents thermodynamic and kinetic arguments
that sigmoidal time-dependent data from diverse biological
phenomena can be thought of as phase transitions. He
applies the Avrami equation to these systems, generating
the Avrami exponent values n listed in table 2. Cope high-
lights that the values of n are not distributed randomly;
they cluster around values that have specific interpretations
in phase transformation. Also, physiologically and/or bio-
chemically related processes exhibit similar n values. For
example, n≈ 2.0 for cases of growth in animal and plant
species, and 1.0 < n < 1.3 for light-generating processes.
Szasz et al. [61] provide mathematical insights regarding
why the Avrami equation is so broadly applicable to the
diverse systems addressed by Cope.

Karšaj & Humphrey [62] modelled the production of fibrin
from fibrinogen in intraluminal thrombus. They present refer-
ences to existing, more complex models for the underlying
kinetics, and argue that the Avrami model is much simpler
and has the same efficacy in describing the data.

3.4. Applications in ecology
Kuśnierz & Łomotowski [41] adapted the Avrami equation to
model growth in an algal suspension. Nucleation, growth
and stagnation of algal agglomerates follow the curve of
the Avrami model. The authors consider the random spatial
distribution of individual algal cells, and the effect of their
division and contacts on overall growth rate. Tran et al. [42]
modelled the biofouling of mortar by green algae, using the
Avrami equation, and assuming random nucleation and a
constant growth rate of the clusters. The surface fraction
that is colonized by algae follows a sigmoidal curve. Garbow-
ski et al. [43] modelled the volume fraction of algal particles
having a given diameter in wastewater. The constant k
encompasses the rate of nucleation and growth of the par-
ticles, and n is related to the geometry of particles. While
the values of k and n are not reported, the authors state
that n can be between 1 and 4, aligned with Avrami’s prin-
ciples. The fitted Avrami equation exhibits great agreement
with their data (R2 = 0.99).

Graziani & Quagliarini [44], and Quagliarini et al. [45],
modelled algal growth on sandstone, limestone and clay
bricks. They set n = 4 (assuming that nucleation and growth
are always sporadic and three-dimensional, respectively),
and they fit data by adjusting k (which they recognize as
depending on the nucleation rate of new particles and their
growth rate). By this means, they obtain a close match
between model and data; R2 = 0.978 or higher [44]. The
authors conclude that the model can predict the algal
growth [45]; however, they have used the Avrami equation
solely to fit their experimental data. Also, they invoke con-
siderations external to the Avrami model to explain why k
values vary by an order of magnitude for data obtained
from different samples of the same material, and across
different materials.

Company et al. [63] modelled the loss of seed viability of
native grass species in soil. Their interpretation of the
Avrami coefficient and exponent is limited to how they
describe the shape of the curve. Korniss & Caraco [64] used
the Avrami model to describe the time-dependence of density
of a resident plant species upon invasion by a superior species.
They assume that homogeneous nucleation and growth of
clusters of the invasive species in a d-dimensional volume
cause a decay in the resident species. Nucleation is translated
to successful introduction of the invading species; a cluster of
the invasive species will spread if it is larger than a critical size.

Sangwal [65] applied the Avrami model (which he calls
the Avrami-Weibull function) to germination of tomato
seeds in soil—and to growth of bacteria in cheese, milk and
broth. His results show, without explanation, that the
Avrami model fits the data better than other (Verhulst,
Gompertz) growth models.

3.5. Applications in epidemiology
Avramov [46] proposes that spread of disease (and many
other types of disturbance, in diverse systems) can be mod-
elled as diffusion-based processes, and therefore by the
Avrami equation. He borrows language from the SIR epide-
miology model [66] (where S denotes the susceptible state, I
denotes the infective state, and R denotes the removed or
recovered state) to categorize the total population into three
groups. Individuals in a total population are considered as
connected cells (locally or long-distance) in a d-dimensional
lattice. Individuals (cells) in I state transfer the infection to
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the neighbouring cells in S state. In comparison with phase
transformation, Avramov assumes that S state corresponds
to the untransformed phase, and I and R states together
account for the transformed phase. The rate of long-distance
transfer corresponds to the rate of formation of critical-sized
nuclei, and infection spreads locally only one unit in space
per unit of time (i.e. growth rate is constant). The Avrami
exponent is n = d + 1, therefore assuming sporadic nucleation,
and the Avrami coefficient is related to the combined long-
distance and local propagation rates. Avramov notes that d
must be determined experimentally and is not simply corre-
spondent to the geographical area through which the
disturbance is spreading.

Driven by the 2019 coronavirus disease (COVID-19) pan-
demic, there have been several preprint articles on the
application of the Avrami equation in spread of infection.

Augusto et al. [47] used nucleation theory and the Avrami
equation to model the fraction of population infected by
COVID-19 in Brazil. They (tenuously) assume temperature
to be equivalent to the ‘degree’ of people who are on the
streets spreading the pandemic at the borders of contami-
nated neighbourhoods, without long-distance transmission.
Their Avrami coefficient represents the constant expansion
rate of COVID-19 cases over time, and their Avrami exponent
is the ability to form new infection nuclei and is related to
long-distance transmission (e.g. by air travel). Each infected
individual is assumed to create one infection cluster (nucleus)
when entering a previously uncontaminated region. Based on
their results, n = 3.8 and n = 5.7 give the closest fits to the data
from two Brazilian states. The authors do not provide any
interpretation of these values.

Takase [48] investigated the spread of COVID-19 in Japan,
with an approach derived from previous work on a ferroelec-
tric polarization reversal phenomenon in polymers [67]
where the dipole switching was modelled by the Avrami
equation. He states, without elaboration, that semicrystalline
polymers resemble the complexity of human societies, and
that the time dependence of COVID-19 spread has similar
characteristics to those of polarization reversal. Both one-
dimensional and two-dimensional growth models show
good agreement with the epidemic data in Japan. Takase
suggests that the spread of the epidemic in Japan was rate-
limited by three factors: ‘the initial susceptible, the domain
growth rate, and the nucleation decay constant’. No rationale
is presented on how the assumptions and attributes of the
Avrami model translate into the context of epidemiology.

Tonchev [49] fitted the Avrami model to mortality data
from COVID-19 in four European countries, obtaining n =
3.4 for Spain, n = 4.8 for the United Kingdom, n = 7.2 for
France and n = 3.4 for Italy. He does not provide reasoning
for this application of the Avrami equation. While the
model fits the sampled data (up to 27 April 2020), it severely
underestimates the cumulative number of deaths and when it
would plateau in all the four countries (errors vary from
around 65% to around 100% according to the real COVID-
19 data [68]).

Vilone & Andrighetto [50] used the Avrami equation to
include the time-dependence of the infection rate in model-
ling the infected population during an epidemic’s initial
period. While they introduce the Avrami equation as a
phase transition model, they seem to suggest this model
merely as a mathematical tool, without any parameter
interpretation in epidemiology.
3.6. Applications in chemistry
The Avrami equation is widely used in solid-state reaction
kinetics (e.g. redox reactions [69–71] and hydrolysis reactions
[72]). In these contexts, it is sometimes referred to as the
Avrami-Erofeev equation [73–75].

Kosaka et al. [69] and Lorente et al. [70] studied the kin-
etics of iron oxide redox reaction, where k is the reaction
rate constant and n represents the dimensionality of nucle-
ation and growth. Their graphs show a good match
between experimental and estimated results. Eigen et al.
[71] modelled redox reactions in Fe2NiO4/yttrium stabilized
zirconia composites using two Avrami equations in series,
each corresponding to one of the two steps of the overall oxi-
dation process. They justify their range of n (0.80 < n < 2.25)
with an initial instantaneous nucleation at locations where
the redox mass is available to the gas phase, followed by a
diffusion-controlled transport of iron to gas/oxide interfaces.
Alasmar et al. [72] studied the hydrolysis of Nd-Ni-Mg com-
pounds. Their estimated n = 1.17 is interpreted as being
consistent with a surface-controlled reaction.

Mubarak et al. [76] applied the Avrami model to the
adsorption of heavy metal ions from groundwater onto
zeolite nanocomposites, and achieved close fits to the exper-
imental results (minimum R2 = 0.96). No interpretation is
provided for the resulting Avrami exponent, which is smaller
than 0.5 for all their cases.

3.7. Applications in social studies
Ausloos & Petroni [77] used the Avrami equation to study the
dynamics of religions and the number of adherents. They
consider religion like any other social variable which can
develop, spread and adapt in a society, and can be studied
from a macroscopic (i.e. number of religions) or a microscopic
(e.g. number of adherents) viewpoint. Their model was
applied to religions in Mexico by González-Aviles & Campu-
zano [78], who defined nucleation as the initial change in the
state of a small but stable religion and approximated the per-
centage of adherents (with respect to the world population)
as a function of time. The Avrami exponent (−0.502≤ n≤
1.379) was introduced as a measure of the increase or decline
in the percentage of adherents; however, the accompanying
explanation appears to be inconsistent with the numerical
interpretation of n in the context of crystal growth.

Sangwal [65] applied the Avrami equation to the citation
of papers written by selected top-cited authors. He compares
the cognitive pressure on authors (the driving force to
cite a paper) to the thermodynamic free energy threshold of
phase transformation. The total cognitive citation pressure
is related to the ‘attractiveness’ of the paper that is being
cited. The excellent fit of the Avrami model to citation data
(R2 > 0.99) is interpreted in terms of diffusion and integration
(equivalent to atoms being incorporated into a growing
crystal) of published knowledge. However, there is no
attempt to include (and there may be no room for) the
concept of impingement in the analogy.

3.8. Application in product market analysis
Marianna See [79] used the Avrami equation to model the
market fate of steel and aluminium. This application refers
to three stages of material production and marketing: (i)
introduction of the material and gradual discovery of
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methods of development or manufacturing; (ii) market
acceptance and increased production rate due to increased
demand; (iii) market saturation and eventual decrease in pro-
duction due to depleted resources and decreased demand.
These stages are compared with the Avrami curve: initial
slow growth, rapid exponential growth, and impingement.
The author states that the Avrami parameter k is equivalent
to the sum of coefficients representing innovation (an external
influence) and imitation (an internal influence), and that n is
equivalent to the ratio of the internal and external influences.
The correspondence to the original meanings of k and n is
not discussed.

3.9. Applications in failure analysis
Ohring & Kasprzak [80] discuss the applicability of the
Avrami model in failure analysis. In an initially defect-free
volume, seeds of damage (e.g. voids or precipitates) germin-
ate at a constant nucleation rate. Nuclei are assumed to be
spherical, and to grow at a constant rate until impingement
occurs. The volume fraction of damaged material can be
expressed by the Avrami equation where the coefficient k
embeds temperature, nucleation rate and growth rate, and
n = 4 as required by the above assumptions.

Rodbell et al. [81] applied the Avrami equation to eluci-
date the failure mechanism caused by electromigration in
metallic thin-film interconnects. Electromigration of metal
ions is related to the nucleation, growth and coalescence of
voids, caused by a supersaturation of vacancies. The driving
force for electromigration is provided by both temperature
and applied electromagnetic field. Numerical values of n in
this study are consistent with the classical geometric
interpretation of nucleation and growth.
4. Justifications for applying the Avrami model
to describe change in a system

4.1. Fundamental assumptions in Avrami’s original
development of the theory

Avrami [3–5] describes phase transformations based on the
following assumptions and principles that are broadly
supported by experiment:

(1) The phase transformation is initiated by germ nuclei
(i.e. smaller than the critical size) that pre-exist in the
parent phase. After the critical size is exceeded, nuclei
can grow steadily and become grains in a process called
‘granulation’. The number of germ nuclei per unit nuclea-
tion space depends on the degree and duration of
supercooling.

(2) The number of germ nuclei per unit region decreases
from the initial number in two ways: (i) they become
growth nuclei (i.e. larger than the critical size) due to
temperature- and composition-dependent free energy
fluctuations; (ii) they are swallowed by growing grains
of the new phase whose growth rate is also a function
of temperature and concentration.

(3) There is an ‘isokinetic range’ of temperatures in which
the nucleation and growth rates are proportional to
each other, i.e. they have the same temperature variation,
and the kinetics of phase transformation can therefore be
described by the model even in non-isothermal con-
ditions [28]. (The existence of this isokinetic range is
not a requirement of the Avrami model, but an
observation.)

(4) Growth rate G of all grains is constant. This means that
the germ nuclei quickly go from the initial slow growth
to the constant growth rate, so that any incubation
period of growth nuclei is neglected.

(5) Growth stops where hard impingement happens (but
continues elsewhere until the entire system has
transformed).

(6) The grains that could have formed if their nuclei had not
coincided with an already-occupied area, or had not been
consumed by the growing grains, are called ‘phantom
grains’. The total volume of the grains, including the
phantom grains, is called ‘extended volume’. The actual
transformed volume is the fraction of the extended
volume that excludes the phantom grains. The concept
of extended volume in the derivation of equation (1.1)
is independent of any assumption about isothermal or
isokinetic conditions [4,82,83].

Application of the Avrami equation to a system may be
possible if the system matches this framework. Polymer crys-
tallization often violates assumptions of constant nucleation
rate and constant growth rate (because the motion of the poly-
mer chains is constrained), and 100% crystallinity is
unattainable in practice (due to impurities, polydispersity
and entanglements) [84,85]. Consequently, although the
Avrami equation has been used in polymer crystallization
[86], it usually works only for the early stages and the data
deviate from the model as the transformation progresses
[85]. A similar limitation pertains to the later stages of crystal-
lization in thin samples of metallic glass, where the Avrami
exponent changes during the course of the transformation [87].

The fact that the Avrami equation can usefully describe
diverse life science phenomena, but can fail in describing
some materials crystallization data, establishes that a
‘thermodynamic phase transformation’ is neither necessary
nor sufficient for applying the Avrami model. From a statisti-
cal viewpoint, many transformations can be described by this
model, even if they do not follow its dimensional and geo-
metrical conventions. In a general sense of CNT, viable
nuclei of change can form and grow if they overcome a
nucleation barrier. Replacing the Gibbs free energy (a func-
tion of the geometry of the transformed regions; equation
(2.1)) with θ (a function of an undefined variable x . 0), we
can write

uðxÞ ¼ Bxb þ Axa, ð4:1Þ

where B represents the agencies benefitting (in favour of) the
change and A represents the agencies against the change,
both of which are assumed to have a power law relationship
with x as a generalization that maintains accordance with
CNT. Both b and a are real numbers and b . a. The critical
point of uðxÞ yields the critical x� value

du(x)
dx

¼ Bbxb�1 þ Aaxa�1 ¼ 0 ! x� ¼
ffiffiffiffiffiffiffiffiffiffi
�Aa
Bb

b�a

r
: ð4:2Þ

It is easily shown that ðduðxÞ=dxÞ . 0 for any x , x�, and
ðduðxÞ=dxÞ , 0 for any x . x�. Since b and a are not confined
to integers, we can argue that this nucleation barrier can exist
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in a non-Euclidean space, where growth can occur in non-
Euclidean dimensions. This argument helps us to address
the concept of ‘dimensions’ where growth is not happening
in a conventional geometrical space, such as in spread of
invasive alleles in a species or spread of infection through a
human population. Other constraints may also be revised.
For example, modelling shows that the final volume fraction
of precipitates does not significantly depend on whether
nucleation rate is constant or decreasing [88]. Also, assump-
tion of complete transformation can be circumvented by
replacing the ‘total volume’ with ‘total transformable
volume’ or ‘equilibrium transformed volume’ [89].
 if
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4.2. Generalization of Avrami kinetics
As a prelude to modelling any non-thermodynamic trans-
formation (e.g. due to cancer, infection or a trend) by the
Avrami equation, it is helpful to find defensible equivalences
that can justify such application, and thereby differentiate
modelling from mere curve fitting. This key support for the
analogy is often missing, which detracts from possible
interpretation of the constants k and n, even in cases where
the equation can be made to fit the data. This issue has
been discussed previously [90] regarding application of
the Avrami model in absorption processes [91]. The same
issue is apparent in some epidemiology literature where
the Avrami equation is used simply as a sigmoidal fit to
COVID-19 pandemic data, without justification of the
model parameters [47–50].

Extending the principles of CNT and the Avrami equation
to the broader context of initiation and spread of a ‘change’,
we identify a driver equivalent to ΔGv and a resistance equiv-
alent to γ. For example, in the case of a behavioural change,
ΔGv may be related to intrinsic incentives, and γ may
depend on cultural norms opposing that behaviour. Given
that many of the reviewed cases are not rooted in thermodyn-
amics, we will not attempt to define analogues of additional
thermodynamic parameters such as response functions, ther-
modynamic potentials or order parameters.

We should recognize that interpretation of the Avrami
parameters in any context may depend on how the modelled
‘change’ is measured. This consideration is prompted by
polymer crystallization data where the value of the Avrami
exponent depends on whether the crystallized fraction is
measured directly or indirectly [92].

Epidemiology offers a potentially rich—and relatively
unexplored—context for the Avrami equation to describe
the progress of the infected (transformed) fraction of popu-
lation. Nearly one-third of the global disease burden is
associated with infectious diseases [93]. COVID-19 infected
over 80 million people in 2020 alone [68]. Disease outbreaks
can cause long-lasting social and economic damage. Factors
driving an increasing probability of infection outbreaks
include population density, antibiotic resistance, air travel
and environmental changes [94–96]. Implementing the con-
cept of transformation and the principles of the Avrami
equation in this context can help to create a broadly accessible
cross-disciplinary language for communicating the growth of
an epidemic. However, a more formal justification for apply-
ing the Avrami equation in epidemiology is first needed.
It is essential to understand both the Avrami theory and
the epidemiological parameters that determine the fate of
an infectious disease, and to draw logical parallel between
the two systems. In the next section, we provide a description
of one of the most commonly used models in epidemiology,
the SIR model.
5. Modelling epidemics, and the comparison
with phase transformation

5.1. SIR epidemiology model
The SIR (susceptible-infected-removed) model is a compart-
mental epidemiology model, originating in the work of
Hamer [97], Ross [98], Kermack and McKendrick [99] and
others [100,101]. In this model, the total population, N, is
divided into three subpopulations: susceptible group, S(t);
infected group who can spread the disease to the susceptible
individuals, I(t); and removed population who have recovered
or died from the disease, R(t). The model comprises three
differential equations which provide a mathematical basis
to describe spread of a disease

dS
dt

¼ �bIS
N

,
dI
dt

¼ bIS
N

� gI,
dR
dt

¼ gI: ð5:1Þ

S, I and R are functions of time. b is the constant infection
rate, and is the product of the average number of exposures
per unit time (α) and the probability of infection during an
exposure (μ) [102]. g is the constant recovery rate or removal
rate of the infected individuals; it is related to the reciprocal
of the infectious period, which is the average number of infec-
tious days before transitioning from the I state into the R state
[99,103]. The ratio of b to g is the basic reproductive number,
R0, defined as ‘the average number of secondary cases that
one case would produce in an entirely susceptible popu-
lation’ [104]. The effective reproductive number, Re, is
similarly defined but in a population made up of both sus-
ceptible and infected individuals [105]

R0 ¼ b

g
, Re ¼ b

g

SðtÞ
N

: ð5:2Þ

R0 quantifies the initial contagiousness of the infection,
while Re is a time-dependent value. Re serves as a threshold
value, determining whether the infection will decline and
die out ðRe , 1Þ or whether it will prevail and turn into an
epidemic ðRe . 1Þ [100,105,106].

The SIR model is based on the following assumptions
[66,99]: (i) the total population ðSþ I þ RÞ is large and con-
stant; (ii) the outbreak is a short-term situation; (iii) birth of
new individuals is neglected, as well as the death from
causes other than the infection; (iv) no incubation period is
considered for the infection, so individuals become infectious
immediately after getting infected; (v) the subpopulations are
closed compartments, so transformation to the R state is irre-
versible and reinfection is not possible; (vi) individuals in the
subpopulations are randomly and homogeneously distribu-
ted (the probability of contact between all members is equal).

5.2. Reasoned extension of the Avrami model to
epidemiology

We now compare the Avrami and SIR models: drawing
parallels based on the main elements of the models that
represent and simplify the real phenomena, and noting
the relative accessibility of the Avrami framework as a



Table 3. Summary of the parallels between the Avrami and SIR models.

characteristic JMAK (Avrami) SIR

1. no space limits phase transformation in an infinite space infection spreading in a very large total population

2. existence of a

threshold

nuclei are viable if their radius is larger than the critical

radius

infection sustains an epidemic if R0 > 1

3. holistic scaling nuclei have the same properties as the growing grains individuals have the same contacts and immunity as the

population average

4. random initiation

points

random distribution of nuclei random distribution of susceptible and infected

5. no incubation time quick transition of nuclei from slow growth to constant

growth rate

immediate transition of individuals from infected to infectious

6. isotropic propagation similar growth geometries for all particles similar spreading patterns around each infected cluster

7. termination process hindered growth when transformed regions meet hindered spread when infected individuals meet

8. constant reaction

rates

constant rate of diffusion and attachment to the growing

body

constant possibility of spread per unit time

9. presence of a driver degree of supercooling drives transformation transmissibility of pathogen drives spread

10. single-step process one-step transformation; can describe in terms of a

single parameter

one-step transition from susceptible to infected state
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communication tool. The comparisons start with nucleation
and continue to growth and impingement, and are summar-
ized in table 3.
(1) Phase transformation is assumed to happen in an infinite
geometrical space (JMAK) [107]. Most epidemiological
models (including SIR [66]) assume a very large total
population.

(2) Based on CNT, there is a threshold radius r� after which
the nuclei are stable and phase transformation is ener-
getically favourable and can proceed (JMAK) [19]. In
epidemiology, there is a threshold value for the persist-
ence of the epidemic, which is the reproduction number
of a virus, R0, (SIR) [105]. It should be noted that the
threshold R0 value is by definition a global threshold
for the continuation of the epidemic and not for the for-
mation of infected clusters. However, r� is local and
clusters smaller than this critical value will disappear
and cannot initiate formation of the new phase.

(3) CNT treats the germ nuclei in the same way as growing
grains: the size dependence of properties such as surface
energy is neglected (JMAK) [108]. Similarly, epidemio-
logical models generally consider homogeneous
population characteristics, neglecting individual differ-
ences such as personal contact networks (SIR) [109].

(4) Nuclei are randomly distributed within the parent
phase (JMAK) [17]. Infected individuals are randomly
distributed in the population (SIR) [66].

(5) Germ nuclei quickly transition from the initial slow
growth to the constant growth rate and any incubation
period of growth nuclei is neglected (JMAK) [4].
Infected individuals immediately become infectious,
without any incubation exposed state (SIR) [66].

(6) All grains in a given system maintain their geometry
during growth (JMAK) [4]. Infection spreads around
all infected individuals in a consistent pattern due to
the random and equal contact probabilities between
all members of the population (SIR) [66].

(7) Grain growth is hindered by impingement (JMAK) [4].
Spread of infection around an infected person will be
restricted if they encounter other infected people (SIR) [66].

(8) Both models contain case-specific rates that embody the
drive for initiation and progress of the transformation.
In phase transformations, the Avrami coefficient (k)
encompasses nucleation rate and growth rate (and there-
fore temperature) (JMAK) [110]. In epidemiology, the
reproduction rate ðR0Þ embeds the infection rate and
transmissibility of the disease (SIR) [102]. More precisely:

(8.1) Infection rate ðbÞ parallels the rate of diffusion and
attachment of new molecules or atoms to growing
grains.

(8.2) The average number of contacts per unit time (α) affects
the probability of the spread of infection; similar to how
diffusion coefficient affects grain growth in material
systems.

(9) Supercooling drives the initiation of a new phase in
materials (JMAK) [29]. Transmissibility or infectiousness
of a pathogen (µ) causes new infections (SIR) [102,111].
The role of supercooling in materials can be performed
by other drivers, such as evaporation-induced supersa-
turation in a solution [112,113].

(10) CNT assumes that the nuclei of the new phase form
through a single step process (JMAK) [17]. Transition
from susceptible state to infected occurs in a single step:
contracting the disease (SIR) [66]. Although there may
be many differences between the parent and transformed
phases, it is possible to distinguish between them on the
basis of a single parameter, e.g. density in the case of
phase transformation and infection in epidemiology.

We recognize that there are also several differences
between the two systems, including the possibility of long-



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:202302

10
range transmission of disease via air travel and cruise ships,
while growth of a new thermodynamic phase occurs at the
interface with the parent phase. Also, straightforward crystal-
lization and the Avrami model do not include an equivalent
of the recovered group that appears in the SIR model. How-
ever, there is value in appreciating the similarities that can
support the use of the Avrami equation as a simple math-
ematical tool with only two parameters to model the
evolution of a pandemic, as well as many other life sciences
phenomena.

Interestingly, the idea of harnessing a kinetic perspective
to describe the propagation of disease was suggested in
1925 by McKendrick [114], pre-dating even his seminal pub-
lication [99] that laid the groundwork for the SIR model.
Defining rate coefficients b and g then provided the means
for developing a kinetics-based approach to describing epi-
demics. These coefficients each relate to single processes. By
contrast, the kinetic parameters k and n that describe phase
transformations both embed the time dependence of two pro-
cesses—nucleation and growth. Thus, there is no direct
correspondence between the main parameters of the
Avrami and SIR frameworks.
42
5.3. Extending the context of the SIR model
Finally, we note that the SIR model has itself been adapted to
unconventional contexts, to model transformations as diverse
as the spread of song popularity [115], political influence
[116], rumors [117] and gun ownership [118]. While we
have focused on life sciences applications of the Avrami
equation, the spirit of interdisciplinary science invites us to
also consider whether the SIR model might have relevance
in describing materials phase transformations. For example,
many phase transformations proceed via a kinetically necess-
ary intermediate state [17,119]; compartments of susceptible,
infected and recovered could have analogues in the parent,
intermediate and final transformed phases.
6. Conclusion and outlook
The Johnson–Mehl–Avrami–Kolmogorov (Avrami) model,
widely used in crystal nucleation and growth studies, offers a
simplemethod for describing and/orpredicting the timedepen-
dence of a variable that measures the spread of change in many
different circumstances. Applications extend across several
non-thermodynamic contexts that intersect the life sciences,
including genetics, oncology, biochemistry, ecology and epide-
miology. We have attempted to give an account of the
justifications for, and limitations of, such generalization. It is
apparent that contextual validation often remains incomplete,
andmay even be unattainable in every detail.While the numeri-
cal values of the model parameters, k and n, may serve to
characterize a transformation, interpretation of the underlying
reasons for those values should be executed with caution.

The COVID-19 pandemic has highlighted a need to
explain the sigmoidal profile of disease propagation effec-
tively, to broad and often sceptical audiences, so that timely
mitigation can be adopted to ‘flatten the curve’. The relative
simplicity of the Avrami equation, and the accessible
language of everyday transformations such as solidification
of liquid water into ice, provide a potentially useful com-
munication framework. We hope that this review will
promote relevant interdisciplinary conversation.
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