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Abstract

Background: Carbapenem-resistant Klebsiella pneumoniae, particularly isolates classified as sequence-type
258 (ST258), are multidrug-resistant strains that are strongly associated with poor-prognosis nosocomial in-
fections, as current therapeutic options are limited and ineffective. In recent years, phage therapy has emerged
as a promising treatment option for these scenarios.
Methodology and Results: We report the isolation and characterization of three new phages against Klebsiella
pneumoniae ST258 strains recovered from Machángara river wastewater. These new members of the Ack-
ermannviridae family showed stability over a wide temperature and pH range and burst sizes ranging from 6 to
44 plaque-forming units per bacteria. Their genomes were about 157 kilobases, with an average guanine-
cytosine content of 46.4% and showed presence of several transfer RNAs, which also allowed us to predict
in silico a lytic replicative cycle due to the presence of endolysins and lysozymes.
Conclusion: Three lytic phages of Ackermannviridae family were recovered against Klebsiella pneumoniae
ST258 strains from sewage; however, further characterization is needed for future consideration as therapeutic
alternatives.
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Introduction

The overuse of antibiotics has led to rapid spread of
multidrug-resistant (MDR) Klebsiella pneumoniae vir-

ulent lineages, which are associated with high mortality rates
especially in infections by isolates belonging to clonal
complex 258, where isolates with sequence-type 258 (ST258)
are considered as an ‘‘high-risk’’ clonal group causing a large
proportion of infections, associated with worse prognosis.1–6

Among the alternative treatments proposed to address this
public health crisis, bacteriophage (phage) therapy has

demonstrated efficacy in experimental animal models and
shows promise in clinical cases involving MDR pathogen
infections, including ST258 strains.7–10

Moreover, the most common sources of isolation are rel-
atively easy to access, such as sewage and hospital waste-
water.11–14 For example, a recent study published by Hesse
et al.8 evaluated the efficacy of early treatment with two
phages, termed P1 and P2, in reducing bacterial load in in-
fected mice with refractory bacteremia. The results of the
study showed that early treatment with both phages, either
individually or in combination, resulted in a significant
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reduction in bacterial load compared with placebo-treated
animals. In addition, an improvement in survival was observed
in mice treated with the phages compared with controls.8

Despite some promising results with other high-risk clonal
lineages such as ST11, ST15, and ST16, currently available
evidence remains insufficient for consideration beyond ex-
perimental treatments. Considering the current challenge
posed by MDR lineages of K. pneumoniae, this study aims to
address the knowledge gap by in vitro characterization of
phages recovered from wastewater and evaluation of their
lytic potential on ST258 strains for future development of
effective therapeutic strategies.

Materials and Methods

Host strains, sample collection and isolation,
enrichment, titration, and purification

Two clinical strains of Klebsiella pneumoniae carbape-
nemase (KPC)-producing Klebsiella pneumoniae ST258
(14-765 and 14-751) donated by the Instituto Nacional de
Investigación en Salud Pública–Leopoldo Izquieta Pérez
(INSPI-LIP) from Ecuador were used as host bacteria. The
results of antimicrobial susceptibility testing are in Supple-
mentary Table S1. To obtain the exponential phase, 500 lL of
a saturated broth (obtained from one or two isolated Mac-
Conkey agar colonies mixed in 4.5 mL of Tryptic Soy Broth
[TSB] at 37�C and constant shaking at 9 · g overnight) was
used beforehand. Next, 500 lL of the aforementioned mix-
ture was added to 4.5 mL of TSB and incubated for 4 h at
180 rpm. A standard inoculum of 0.5 McFarland (1.5 · 108

CFU/mL) was used for all assays.
Samples of wastewater were collected from two different

points of Machángara river, Quito-Ecuador. Sample named
K0601 was collected from point one, coordinates: 0�12¢34.7†
S 78�28¢36.6† W and Sample T0701 from collection point
two, coordinates: 0�16¢37† S 78�31¢14† W, all samples were
stored at 4�C for 24 h for sedimentation.

Bacteriophage isolation was performed according to the
protocol described by Kropinski et al.15 and Clokie and
Kropinski16 with certain modifications. In brief, 1 mL of the
host strain in exponential phase culture, 49 mL of doubly
concentrated TSB supplemented with 10 mM Ca2+ and Mg2+,
and 50 mL of supernatant, previously filtered with filter paper
(10 lm pore size filter) to separate the suspended solids
present in the wastewater samples, were mixed. The mixture
was incubated for 24 h at 37�C. The mixture was centrifuged
at 1475 · g for 10 min to remove cells, and the supernatant
was then filtered through a 0.22 lm pore size filter and stored
at 4�C.

Phage presence was verified using the spot test, for which
50 lL of the filtered supernatant was dropped onto the host
strain inoculated by extension on Tryptic Soy Agar supple-
mented with 10 mM Ca2+ (TSAd10) and incubated overnight.

For phage isolation, the double layer agar (DLA) technique
was used using nutrient agar supplemented with 10 mM Ca2+.
Serial dilutions and the DLA technique were performed with
the previously filtered supernatant. In brief, 100 lL of ex-
ponential phase culture, 100 lL of dilution, and 5 mL of agar
(top layer) were mixed and poured over the base layer and
incubated. Procedure was repeated with all serial dilutions.
Phage concentration was expressed in plaque-forming units

per milliliter (PFU/mL). We selected potential phages with
concentrations over 1 · 1010 PFU/mL.

For purification, a lysis plaque (105–108 PFU/mL) was
taken, resuspended in 900 lL of buffer (MgSO4�7H2O
8 mM, Tris-HCl 50 mM, pH 8.4) and shaken vigorously to
dislodge the phage from the agar. The mixture was inoculated
by extension on TSAd10 and left to stand for 30 min. Later,
500 lL of exponential phase culture was mixed with 5 mL of
TSAd10 on top of the aforementioned agar and incubated for
20 h. The best defined and spaced plaques formed after 20 h
were picked and stored at 4�C in 1 mL of buffer and 10 lL of
chloroform for preservation

In vitro phage activity and stability

Phage characterization was performed by the method de-
scribed by Manohar et al.17 Thus, 100 lL of exponential
phase culture host bacteria and 100 lL of purified phage was
mixed and incubated for 25 min. After centrifugation, the
pellet was homogenized using 10 mL of TSB, the DLA
technique was performed to obtain the number of phages.
Burst size was calculated dividing the final number of free
phages by the initial number of phages. For pH stability assay
we added 100 lL of purified phage in 900 lL of saline so-
lution adjusted to different pH and incubated for 4 h, whereas
for thermostability assay a volume of 100 lL of purified
phage was maintained at different temperatures for 1 h.

All assays were performed in triplicate and the DLA
technique was applied. Adsorption rate was performed ac-
cording to reference.18 In brief, 100 lL of the exponential
phase host strain was mixed with 100 lL of purified phage,
allowed to stand for 5 min at room temperature, 100 lL of this
mixture was added in 9.9 mL of TSB and incubated for 1 h,
every 10 min the DLA method was performed. Adsorption
constant was calculated with the following equation:15

K ¼ 2:3
B�t log Po

P
, where B is the initial concentration of bacteria,

Po the initial titer, P the final titer, and t the time interval
between Po and P. The constant was expressed in mL/min.

Genomic DNA extraction

The phage was suspended in buffer, concentrated by cen-
trifugation and filtered through a 0.22 lm pore-size filter.
DNA extraction was performed using Wizard Promega pro-
tocol and was modified by adding proteinase K and DNase I.
1 mL of concentrated phage was mixed with 10 lL of
DNase I, 1 lL of RNase A, 500 lL of lysis solution and 4 lL
of proteinase K, shaken and incubated at the following tem-
peratures: 55�C (60 min), 65�C (15 min), then 320 lL iso-
propanol was added. Six hundred fifty microliters of the
mixture was transferred to a spin column and centrifuged
(1 min at 6000 g). Wash solution (90% ethanol) was added
400 lL and centrifuged again. Finally, we added 75 lL of
rehydration buffer to the column, centrifuged again and ob-
tained phage genomic DNA, which was stored at -20�C.

Complete genome sequencing and analysis

Sequencing was performed by Biosequence (Ecuador) in the
Illumina MiSeq system. Raw sequencing data were deposited
in the Sequence Reads Archive: BioProject: PRJNA815380,
BioSamples: SAMN26549669 (K751), SAMN26549667
(T751), and SAMN26549668 (T765). Reads obtained were

100 TISALEMA-GUANOPATÍN ET AL.



assembled de novo using Unicycler19 in PATRIC20. Quality
and integrity of the viral metagenome-assembled genomes
were evaluated with CheckV21 and subsequently annotated
with Prokka22 in Galaxy.23

Genomes were aligned and rearranged with MAUVE.24

Prokaryotic virulence, toxin encoding, and antimicrobial re-
sistance genes were searched for using Bakta.25 Our genomes
recovered were deposited in GenBank: ON202820 (K751),
ON323462 (T751), and ON399185 (T765). Taxonomic as-
signment was performed by KRAKEN226 and average nu-
cleotide identity (ANI) was calculated to support it.27 The
phylogenomic tree of the whole-genome sequences were
generated by VICTOR.28 The replicative cycle was predicted
in silico with BACPHLIP29 and PhageAI.30

Results

Phenotypic profile

Phages presence was evidenced by formation of lysis
zones and plaques of variable size (ø 1.5–2.0 mm) with a
translucent center and a surrounding halo (Supplementary
Figs. S1 and S2). Three possible phages were isolated and
named according to the recommendations of the International
Committee on Taxonomy of Viruses:31 (Table 1) Klebsiel-
la_virus_K751 (K751), Klebsiella_virus_T751 (T751) and
Klebsiella_virus_T765 (T765). T751 and T765 were in-
activated at temperatures >60�C, whereas K751 was com-
pletely inactivated at 80�C (Supplementary Fig. S3).

Regarding pH, the candidates survive in an environment of
pH 4–11, and are completely inactivated at pH 12. K751 and
T765 tolerated pH 3 (Supplementary Fig. S4). K751 and
T751 reported a latency period of *35 min, whereas T765
was 45 min. Burst sizes (PFU/bacterial) were 6, 44, and 10,
respectively (Fig. 1). In addition, at 10 min, it was estimated
that 28.4% of K751, 12.1% of T751 and 24.4% of T765 viral
particles were adsorbed on the host cell (Table 1).

Genomic profile

Each recovered genome was characterized as double-
stranded linear DNA of *157 kpb, >94% complete and an
average guanine-cytosine (GC) content of 46.4%. The
in silico predicted replicative cycle for all three candidates
was lytic (Table 1). A multiple alignment of the rearranged
genomes showed that the phages shared three syntenic col-
linear blocks (homologous regions) (Fig. 2), complemented
by values >90% of ANI. This allowed us to deduce that our
three phages are within the same species. About 190 open
reading frames and 200 coding DNA sequences were anno-
tated in each genome. Of the latter, >87% are hypothetical
proteins.

Five common transfer RNAs (tRNAs; tRNAThr, tRNAMet,
tRNATrp, tRNATyr, and tRNAGln), and one additional
(tRNAAsn) in T751 y T765. One small RNA (STnc100) was
found in all three genomes. Prokaryotic virulence, toxin-
encoding, and antimicrobial resistance genes were not present,
demonstrating the absence of risk of transfer by lysogenization

Table 1. Characteristics of Phage Isolated Against Carbapenem-Resistant Klebsiella

pneumoniae ST258 Strains

K751 T765 T751

Host strain 14–751 14–765 14–751
Maximum concentration (PFU/mL) 1.0 · 1011 9.0 · 1011 2.0 · 1010

Phenotypic profile
Temperature (�C) -16 to 70 -16 to 60 -16 to 60
pH 3 to 11 3 to 11 4 to 11
Adsorption constant, K (mL/min) 2.1 · 10-10 5.1 · 10-10 1.1 · 10-10

Adsorption at 10 min (%) 28.4 24.4 12.1
Burst size (PFU/bacterial) 6 10 44
Latent period (minutes) 35 45 35

Taxonomy
Family Ackermannviridae Ackermannviridae Ackermannviridae
Genus Taipeivirus Taipeivirus Taipeivirus

Genomic profile
Size (bp) 157.100 157.384 157.384
Depth 125.1 · 219.2 · 274.7 ·
Content GC (%) 46.5 46.4 46.4
Integrity (%) 94.9 94.9 94.8
ORF 197 195 196
CDS 204 205 204
Hypothetical proteins 188 188 190
Functional proteins 23 24 21
tRNA 5 6 6
sRNA 1 1 1

In silico replicative cycle (%)
PhageAI (lytic) 93.45 93.05 93.05
BachliB (lytic) 97.02 97.02 97.02

CDS, coding DNA sequences; GC, guanine-cytosine content; ORFs, open reading frames; PFU, plaque-forming units; sRNA, small
RNA; tRNA, transfer RNA.
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or phage-mediated transduction32 (Fig. 3; Supplementary
Fig. S5). K751, T765, and T751 clustered with members of the
genus Taipeivirus (Fig. 4), as preliminarily expected, as >90%
of the raw reads were taxonomically classified within it.

Discussion

The emergence of carbapenem-resistant Klebsiella pneu-
moniae ST258 strains has led to strong therapeutic challenges
for which some alternatives have been proposed. Among
these alternatives is phage therapy, however, for many of
these potential candidates, the minimum necessary infor-
mation is not available or is still in the experimental stage. In
the context of our research, we isolated three new lytic
phages belonging to the family Ackermannviridae that
showed significant genetic similarities despite different times
and geographical origins.

Our results indicated that our phages belong to the same
species. Reports of phages isolated from wastewater against
ST258 strains7,8,12–14,33 have already shown that there is no
exclusivity for a single family or taxonomic group.30,34,35

Despite the varied phylogenomic distance between families,
mostly aquatic environments shared with their host,36–38 such

as wastewater, which due to the presence of human, animal,
and hospital waste, are a source rich and varied of these
micro-organisms.39–41

After phenotypic analysis and considering the aforemen-
tioned, high stability under different temperature and pH
conditions, and a latency period ranging from 10 to 40 min
were expected.14,42–44 Short latency periods and large burst
sizes are usually a combination that increases therapeutic
potential; however, our values show a discrete difference,
which could indicate that phage-host dynamics are being af-
fected possibly due to the inherent facility of K. pneumoniae
to generate spontaneous phage-resistant mutants.32,34,45–48

The presence of these mutants increases bacterial density
and affects the adsorption rate49–51 due to poor receptor
recognition47,48,52 resulting in slow adhesion and poor initial
diffusion,53 in agreement with our report, in which <30% of
free phages were adsorbed in the first 10 min, in contrast to
Zurabov and Zhilenkov, who recommend that for the selec-
tion of therapeutic phages they should adsorb between 70%
and 80% in the same period.14,44,54 We describe phages of
genus Taipeivirus belong to Ackermannviridae family with
lytic activity in KPC-producing K. pneumoniae.

After genomic analysis, the mean GC content (46.4%) of
our phages was lower than expected for Klebsiella (57.5%),

FIG. 1. Kinetics of Klebsiella_virus_K751, Klebsiella_virus_T751, and Klebsiella_virus_T765. The relationship between
concentration and incubation time with their host cell is shown. Results are based on three replicates. PFU, plaque-forming units.
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FIG. 2. Progressive multiple alignment performed with MAUVE to compare Klebsiella_virus_K751, Klebsiella_vir-
us_T751, and Klebsiella_virus_T765. Each genome is arranged horizontally with homologous segments (locally collinear
blocks) delineated as colored rectangles. Regions inverted with respect to the first genome taken as reference are placed
below those that match in forward orientation.

FIG. 3. Genomic map of Klebsiella_virus_K751. CDS are colored according to their function such as morphogenesis
(purple), replication (green), recombination and repair (pink), lysis (light green), tRNA (blue), and other functions (orange).
CDS, coding DNA sequences; tRNA, transfer RNA.
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so it could infect other gram-negative bacteria, as previous
studies corroborate that genomic GC content accurately
predicts (>95%) potential hosts at the phylum level, but not at
lower taxonomic levels.52,55,56 A marked organization of
structural and functional genes was evident in each genome,
in addition, genes encoding tail proteins (gp5, gp3, and gp17),
required for capsid penetration, adsorption,57 and irreversible
binding to their receptors,58–60 which have been extensively
studied in common models such as enterobacteriophage T4
were also found.61

Furthermore, five similar and one additional tRNA were
present in T751 and T765, which is in agreement with Bailly-
Bechet et al. and Maganha de Almeida Kumlien et al.62 who
state that a lytic phage contains an average of 4 tRNAs and
even more, which are useful to compensate the genomic

compositional differences with the host, and consequently
achieve a more robust integration.61–63 The presence of
tRNAs is possibly unique to lytic phages, as they have not
been described in lysogenic phages. The tRNAs present
correspond to codons abundant in the phage and probably
rare in the host, which gives them an advantage over their
competitors by translating their proteins more efficiently,
reducing latency time and increasing the burst size.64–66 In
addition, GC content and tRNAs could indicate the closeness
between phage and host, although this relationship has not
been explored in detail.66

Despite reporting encouraging results, phenotypic analysis
of our phages revealed certain issues that limit their use as
therapeutics and need to be further addressed before pro-
posing them for in vivo or clinical trials.

FIG. 4. Phylogenomic tree generated by VICTOR using the complete genome sequences of Klebsiella_phage_T751,
Klebsiella_phage_T765, Klebsiella_phage_K751 and members of the nearest Ackermannviridae according to BLASTn.
Members of the families Drexlerviridae and Autographiviridae were used as outgroups.
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Conclusion

Three lytic phages of the Ackermannviridae family were
recovered against Klebsiella pneumoniae ST258 strains from
sewage; however, further characterization is needed for fu-
ture consideration as therapeutic alternatives. Furthermore,
our findings support the strategic targeting of phages for in-
fections by MDR pathogens.
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