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Abstract 

Over 78 million people will suffer from dementia by 2030, emphasizing the need for early identification of patients 
with mild cognitive impairment (MCI) at risk, and personalized clinical evaluation steps to diagnose potentially 
reversible causes. Here, we leverage real-world electronic health records in the observational medical outcomes 
partnership (OMOP) data model to develop machine learning models to predict MCI up to a year in advance of 
recorded diagnosis. Our experimental results with logistic regression, random forest, and xgboost models trained and 
evaluated on more than 531K patient visits show random forest model can predict MCI onset with ROC-AUC of 
68.2±0.7. We identify the clinical factors mentioned in clinician notes that are most predictive of MCI. Using similar 
association mining techniques, we develop a data-driven list of clinical procedures commonly ordered in the workup 
of MCI cases, that could be used as a basis for guidelines and clinical order set templates. 

Introduction 

Dementia is one of the major causes of mortality and morbidity in older people worldwide and it is estimated that 78 
million people will be suffering from some form of dementia by the end of this decade (1), placing a tremendous 
burden on patients, their families, and health care systems. An important risk factor for dementia is mild cognitive 
impairment (MCI). Identifying early symptoms of MCI and recommending appropriate diagnostic procedures for 
patients at the risk of developing MCI is thus crucial. Even if there are currently limited clinical interventions known 
to effectively alter the course of MCI and dementia, identifying patients at risk would allow for targeted recruitment 
into clinical trials to study developing interventions that may only be effective in early phases of disease. Learning 
and disseminating personalized diagnostic evaluation steps offers an immediately practical step optimize timely 
diagnostic workup of MCI cases, including prompt identification of potentially reversible causes (e.g., endocrine, 
nutritional, and infectious).  

MCI is mainly characterized by minor memory impairment (2) and is formally diagnosed by evaluating individual’s 
cognitive capabilities and clinical examination by a healthcare professional (3). Patients do not routinely screen for 
possible MCI and as a result are often either under-diagnosed or diagnosis is delayed until late in the illness trajectory. 
One solution to the lack of formal screening for MCI disease is to identify patients otherwise engaged in the health 
care system by creating automated tools to analyze patients’ medical history and detect those at the MCI risk. 

Electronic health records are a growing source of information to identify patients at risk. Early and accurate diagnosis 
of such diseases can be addressed using machine learning based tools and analyzing patients electronic health records 
(EHR) (4,5). To this end, there have been multiple attempts to predict patients with cognitive impairment using 
standard machine learning models such as support vector machines (SVMs), logistic regression and random forest (6–
9) and public databases such as North American Alzheimer’s Disease Neuroimaging Initiative (ADNI) (10) as well 
as the European’s AddNeuroMed Study (11). SVM models have been effectively used to predict MCI using gait 
analysis of patients (12). Other types of healthcare data such as image-based memory test results along with patients’ 
demographics and medical records have been used to produce MCI prediction tools using naïve bayes models (13). 
Deep learning models such as graph convolutional neural networks, recurrent neural networks and attention-based 
model for longitudinal EHR data analysis have also been used to predict MCI onset from patients EHR data as well 
as imaging and clinical notes data (3,14–16).  

Here, we present a multi-component framework to support anticipatory MCI care including three major components: 
(1) MCI onset prediction, (2) MCI risk factor identification, and (3) care plan recommendation. This design is based 
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on the idea of an automated MCI prediction system that could screen elderly patients at their primary care visits. We 
train our machine learning models to predict onset of MCI within one year of patients’ visits with their primary care 
provider for patients 65 years or older. Further, we identify MCI risk factors extracted from patients’ diagnoses, 
medications, procedures, and demographics structured data as well as features extracted from patients unstructured 
clinical notes. Finally, this study provides a data-driven clinical order set draft in the form of a list of clinical 
procedures commonly ordered for MCI patients around the time of initial diagnosis.  

Materials and Methods 

Data and Cohorts 

Our data consist of deidentified EHR records for patients in Stanford Healthcare from 1999 to 2022 in the OMOP data 
model. Our cohort include 531,387 primary care visits where the patient is 65 years or older. We denote these primary 
care visits as 𝑉 = {𝑣!, … , 𝑣" , … , 𝑣#}, where 𝑛 is the number of primary care visits (i.e., 𝑛 = 531,387). Each primary 
care visit 𝑣"  is assigned a time 𝑡" . For each primary care visit 𝑣"  for patient  𝑝 and at visit time 𝑡" 	we extracted 
diagnosis, medication, and procedure concepts as well as key concepts extracted from patient’s clinical notes  
standardized through an existing natural language processing pipeline using ConTex and NegEx algorithms (17–19). 
These features form a tuple (𝑡$" , 𝑋"), where 𝑋" ∈ ℝ%&' is a multi-hot vector representing medication, diagnosis, and 
procedure concepts as well as clinical notes’ key concepts for patient 𝑝 at or prior to 𝑡". Demographic information 
including age, sex, and race were concatenated to 𝑋". Sex and race were encoded using one-hot vectors. Our final 
dataset includes 531,387 primary care visits (i.e., sample observations) and 480 variables in total. Each primary care 
visit 𝑣" was assigned with a binary label indicating if the patient has at least one MCI diagnosis code within one year 
follow up from the time of their primary care visit, 𝑡".  

Table 1 describes statistics of the demographic features of the patients in our cohort. The average age of patients in 
MCI encounters and Non-MCI encounters were 74 years (25th and 75th percentiles = 68, 79) and 72 years (25th and 
75th percentiles = 66, 77), respectively. The majority were female (59.1% among patients in MCI encounters and 
56.3% in patients in Non-MCI encounters).  

Table 1. Patient demographics among subsequent MCI and Non-MCI encounters.  
Variable MCI Non-MCI 
n 7,895 146,991 
Age a74 

(68, 79)  
72 
(66, 77) 

Female b4,669 (59.1%) 82,836 (56.3%) 
Race 
     Asian 1,196 (15.1%) 24,494 (16.7%) 
     Black/African American 504 (6.4%) 7417 (5.0%) 
     American Indian or 
Alaska Native 

19 (0.2%) 431 (0.3%) 

     Native Hawaiian or 
Other Pacific Islander 

68 (0.9%) 920 (0.6%) 

     White 5,076 (64.3%) 89,883 (61.1%) 
     Unknown 100 (1.3%) 6085 (4.1%) 
     Declines to state 134 (1.7%) 3891 (2.6%) 
     Others 798 (10.1%) 13870 (9.4%) 

a Numbers are in V (x, y) format, where V is the average and x and y are 25th and 75th percentile, respectively. 
  b Numbers are in N (p%) format, where N is the number of patient and p% shows the percentage in the cohort. 

 
Predictors 
Predictors include diagnosis, medication, and procedure concepts as well as concepts extracted from patient’s 
clinical notes plus demographic features. Concepts extracted from clinical notes have already been pre-processed 
and provided in OMOP data model using ConTex and NegEx algorithms (17,18). We used data with primary care 
visit date within 2018 in our train set (our test set data includes visits in 2020 and after) and selected concepts with 
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highest ratio of occurrence frequency in MCI patients to occurrence frequency in Non-MCI patients. This resulted in 
95 diagnosis, 87 medication, 34 procedure, and 5,698 clinical note concepts. We further filtered clinical note 
concepts and only included concepts with frequencies in top 5 percentile which resulted in 249 clinical note 
concepts. Thus, our predictor set include 465 diagnosis, medication, procedure, and clinical note concepts. Note, we 
concatenated 15 demographic features to this predictor set and our final predictor set includes 480 concepts.  

Figure 1 describes how historical variables were extracted from structured and unstructured EHR data for one 
example patient. Their data were de-identified, timepoints were jittered, and only a subset of features is presented in 
the figure due to high volume of the data and data confidentiality. For example, memory impairment related 
predictors are among important predictors of MCI and have been inferred from sentences such as “X states that X 
occasionally forgets things” or “because X has bad memory” in patients clinical notes. Further, conditions and 
procedures such as hypertension, depressive disorder, and 12 lead ECG were extracted from patients historical 
structured data. All concepts extracted from structured and unstructured data were concertante to form 𝑋" ∈ ℝ%(). 
Note, data after the primary care visit time were masked and not used to perform the prediction. 

 

Figure 1. Predictors extracted from structured and unstructured data of an example patient. The models use these 
clinical factors in patient’s historical data on or prior their primary care visit to predict MCI diagnosis within one 
year of the primary care visit.  
 
Models 
Our models include logistic regression, random forest, and xgboost. Logistic regression uses a logistic function to 
model the outcome probabilities of a single trial experiment (20). Random forest (21) is an ensemble model that 
operates by constructing a multitude of decision trees at training time and has been used extensively to solve prediction 
tasks in healthcare data analysis. The goal is to create a predictive model to predict 𝑌" given the training data set 𝑆 =
{(𝑋!, 	𝑌*), … , (𝑋" , 	𝑌"), … , (𝑋#, 𝑌#)} of independent random variables distributed as the independent prototype pair 
(𝑋" , 	𝑌")	(15). For each tree 𝑇$ in a forest including 𝑀 trees, the predicted value for the input sample 𝑋" is denoted by 
𝑚#(𝑥; 𝜃$ 	, 𝐷#), where 𝜃!, … , 𝜃+ are independent random variables, distributed the same as a generic random variable 
𝜃. Similar to random forest, xgboost (22) is an ensample model based on decision trees. Xgboost trains tree ensemble 
models in an additive manner to regularize the ensemble tree objective function.   
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Experimental Results 

Primary care visits with visit dates in or before 2019 were used as training and primary care visits in 2020 and after 
were used as testing set. Logistic regression, random forest and xgboost models were trained and optimized using our 
trainset and through cross-validation method and the models were tested using the unseen test set. 

MCI Prediction 

Table 2 shows the MCI prediction results on the test set using logistic regression, random forest and xgboost models. 
The random forest model has a higher ROC-AUC (68.2%±0.7%) than xgboost and logistic regression models on the 
test set.  

Table 2. Performance of MCI prediction using machine learning on unseen test sets.  
Model AUC 

Logistic Regression 57.0±1.1 

Random Forest 68.2±0.7 

XGBoost 66.8±0.8 

 
MCI Risk Factor Identification 

We utilized the trained random forest model to identify important clinical factors in discriminating MCI vs Non-
MCI samples based on features’ information gain (21). Figure 2 shows top-30 features detected by the random forest 
model as features that provide the most increased power in MCI prediction. Each bar represents one features and the 
lengths of the bar represents the importance score for the relevant feature. These features have been selected among 
480 demographics, diagnoses, medications, procedures as well as key concepts extracted from patients’ clinical 
notes. The type of feature (demographic, condition, procedure, medication, and clinical note) is noted within 
parenthesis for each feature in the figure. For example, Memory impairment (clinical notes) indicates that a concept 
or term related to memory impairment (see Figure 1 for some example terms) has been mentioned in patients’ 
clinical notes prior to their current visit with their primary care provider.  
To summarize Figure 2, the clinical factors include patients age at the time of their primary care visit, occurrences of 
keywords related to memory impairment, senility, and abnormal gait in patients’ clinical notes, as well as conditions 
in patients structured EHR data such as essential hypertension, depressive disorder, hyperlipidemia, malaise, and 
procedures such as mammography and electrocardiogram.  
 

 
Figure 1. Top 30 Clinical factors identified by random forest model that provide increased power in discriminating 

MCI and Non-MCI samples.  
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We further investigated the associations between clinical factors in EHR data and MCI diagnosis. Table 3 described 
clinical factors that were presented in MCI patients EHR records more compared to Non-MCI patients. All primary 
care visits within 2018 where the patients were 65 years or older were used to produce Table 3. Patients were 
followed up for one year from their primary care visit and labeled with MCI if at least one MCI diagnosis was 
found. Each row in Table 3 represents one concept extracted from patients structured EHR or clinical notes data. 
Num MCI shows the number and percentage of MCI patients with at least one occurrence of the relevant concept in 
their historical data prior to their primary care visit. Num Non-MCI shows the same information for Non-MCI 
patients’ cohort. Frequency Ratio shows the ratio of prevalence of each concept in MCI cohort to Non-MCI cohort. 
For example, Amnesia, which is a concept extracted from patients’ clinical notes, was found in 0.22% of MCI 
patients clinical notes while only in 0.06% of Non-MCI patients notes.  
In summary, occurrence of keywords and terms related to amnesia and memory impairment related, injury to head, 
gait and activity daily living are more prevalent in MCI patients’ clinical notes compared to Non-MCI patients. 
These results are consistent with the clinical factors identified by random forest in Figure 2. Risk factors identified 
in this study can inform screening criteria and areas of investigation for identifying patients at risk for MCI.  
 

Table 3. Prevalence of clinical factors in MCI patients versus Non-MCI patients. This table is sorted based on the 
ratio of prevalence of each concept in MCI patients to the Non-MCI patients.  

Concept Num. MCIa Num. non MCIa Frequency 
Ratiob 

Amnesia  210 (0.22%) 2917 (0.06%) 3.84 
Memory impairment 261 (0.27%) 4689 (0.09%) 2.97 
Charcot’s gait 169 (0.17%) 3718 (0.07%) 2.42 
Historian 128 (0.13%) 2823 (0.05%) 2.42 
Head injury 157 (0.16%) 3489 (0.07%) 2.40 
MRI of brain and brain stem 177 (0.18%) 3936 (0.08%) 2.40 
Intracranial 145 (0.15%) 3232 (0.06%) 2.39 
Level of consciousness 151 (0.16%) 3450 (0.07%) 2.33 
Injury of head 193 (0.2%) 4424 (0.09%) 2.33 
Unsteady 131 (0.14%) 3004 (0.06%) 2.33 
Traumatic AND/OR non-traumatic brain injury 189 (0.2%) 4389 (0.09%) 2.30 
Restless 119 (0.12%) 2791 (0.05%) 2.27 
polyethylene glycols 123 (0.13%) 2892 (0.06%) 2.27 
Home health care 169 (0.17%) 4080 (0.08%) 2.21 
Mastoid 209 (0.22%) 5092 (0.1%) 2.19 
Agitation 117 (0.12%) 2853 (0.06%) 2.19 
Toileting 160 (0.17%) 3907 (0.08%) 2.18 

a The numbers are number of patients (percentage). b Numbers show the ratio between percentage of patients in MCI 
cohort to that percentage in Non-MCI cohort.  
  
Procedure Recommendation 

Identifying patients at the risk of MCI is an important step in initiating necessary care plans. Here, we analyzed the 
MCI patient data around the procedures commonly ordered with within one year from their visit with their primary 
care provider leading up to the eventual MCI diagnosis. Table 4 shows a list of procedures that have been ordered 
more for MCI patients compared to Non-MCI patients. Num MCI for shows the number and percentage of patients 
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who had that relevant procedure within one year of their visit with their primary care provider and Num Non-MCI 
shows the same information for Non-MCI cohort. Frequency Ratio shows the ratio of prevalence of the procedures 
in MCI cohort to Non-MCI cohort.  

In summary, MRI and imaging of head/brain are procedures that were ordered for patients who were subsequently 
diagnosed with MCI more frequently compared to patients who did not have an MCI diagnosis within a year. Other 
key procedures associated with the workup towards an eventual MCI diagnosis include physical therapy, home care 
plans as well as assessment of cardiac health procedures. The information presented in Table 4 offers a data-driven 
draft for a clinical order set guide of suggested procedures and reports when considering MCI risk and diagnostic 
evaluation. 

Table 4. Frequency of procedures ordered for patients with subsequent MCI diagnosis compared to Non-MCI 
patients. 

Concept Num MCI  Num Non-MCI  Freq 
Ratio 

Magnetic resonance (e.g., proton) imaging, brain (including 
brain stem); without contrast material 1073 (13.5%) 1525 (1%) 13.4 

Computed tomography, head or brain; without contrast 
material 953 (12%) 2050 (1.3%) 8.9 

Physical therapy evaluation: moderate complexity, requiring 
these components: A history of present problem with 1-2 
personal factors and/or comorbidities that impact the plan of 
care; An examination of body systems using standardized tests 
and measures in 

565 (7.1%) 2128 (1.4%) 5.0 

Therapeutic procedure, 1 or more areas, each 15 minutes; gait 
training (includes stair climbing) 612 (7.7%) 2566 (1.7%) 4.6 

Self-care/home management training (eg, activities of daily 
living (ADL) and compensatory training, meal preparation, 
safety procedures, and instructions in use of assistive 
technology devices/adaptive equipment) direct one-on-one 
contact, each 15 minutes 

740 (9.3%) 3136 (2.1%) 4.5 

Radiologic examination, chest; single view 688 (8.6%) 3024 (2%) 4.3 
Therapeutic activities, direct (one-on-one) patient contact (use 
of dynamic activities to improve functional performance), each 
15 minutes 

1028 (12.9%) 4602 (3%) 4.3 

Physical therapy evaluation 416 (5.2%) 1874 (1.2%) 4.2 
Assessment of cardiac status using monitoring device 598 (7.5%) 2744 (1.8%) 4.2 
Determination of refractive state 324 (4.1%) 1526 (1%) 4.1 
Ophthalmological services: medical examination and 
evaluation, with initiation or continuation of diagnostic and 
treatment program; comprehensive, established patient, 1 or 
more visits 

463 (5.8%) 2200 (1.4%) 4.0 

Intravenous infusion, for therapy, prophylaxis, or diagnosis 
(specify substance or drug); initial, up to 1 hour 624 (7.8%) 3161 (2.1%) 3.8 

Radiologic examination, chest; 2 views 594 (7.5%) 3370 (2.2%) 3.4 
Electrocardiogram, routine ECG with at least 12 leads; tracing 
only, without interpretation and report 2092 (26.3%) 12021 (7.9%) 3.3 
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Discussion 

In this work we analyzed Stanford healthcare EHR data of over 20 years in OMOP common data model from more 
than 531K primary care visits including 8,990 primary care visits leading to MCI diagnosis within one year, and 
522,478 primary care visits with no incoming MCI diagnosis within one year of primary care visit time. We extracted 
480 concepts from patients’ structured diagnosis, medication, procedure, and demographic records as well as from 
patients’ clinical notes. These data were used to train MCI prediction tools for patients 65 years or older using machine 
learning models. Random forest model could predict MCI effectively (ROC-AUC=68.2±0.7). 

Clinical factors associated with higher risk of MCI were analyzed using random forest and statistical analysis. Overall, 
keywords in clinical notes related to memory impairment, abnormal gait, head injury, and activity daily living were 
found more frequently in MCI patients compared to Non-MCI patients. This shows that patients historical EHR data 
contain important clinical factors that can be used to identify patients at MCI risk and therefore the potentials to create 
automated machine learning systems for MCI screening among elderly patients during their primary care visits.  

Even though there is only limited standard treatment for MCI and Alzheimer’s diseases, identifying patients at the 
risk of developing MCI is an essential step. This can be used to inform and educate patients about their incoming 
conditions and can also facilitate decision making for primary care providers when requesting consultation or referring 
patients to specialty care providers. In addition to identifying MCI risk factors and producing MCI predictive models, 
in this study we further followed up patients for one year after their primary care visit and identified a list of procedures 
that have been ordered for patients at higher risk of MCI frequently. These procedures for patients at the risk of MCI 
include brain and head MR imaging procedures as well as physical therapy and setting up home care plans. This could 
provide a draft framework to aid primary care providers to include necessary information when requesting consultation 
with specialists and can help specialists with decision making ordering appropriate procedures for patients at the risk 
of MCI.  

Limitations in the study include that, although we thoroughly tested the models using randomly selected held-out test 
sets, more study is needed to test our models’ performances in a clinical care environment. Here, the models are 
implemented using data in the OMOP common data model and therefore the models can be feasibly used in any other 
healthcare system where the data is in OMOP format. Further, in this study patients historical structured and 
unstructured EHR were used to implement our framework. However, other resources such as patients brain MRI 
images may provide more insights and provide increased power in predicting MCI.  

In conclusion, we presented a multi-component framework including (1) MCI prediction, (2) MCI risk factor 
identification, and (3) recommendation for diagnostic workup steps. While there are already clinical tools developed 
to diagnose MCI such as the Montreal cognitive assessment (MoCA) tool (23), these tools are not intended to be 
predictive of future diagnosis, and have typically been produced using small and underrepresented sample size (e.g. 
only 94 MCI patients data have been used to create MoCA). Further, these tools need to be administered by healthcare 
professionals with the patient in front of them (or online), which limits their applicability and feasibility. Automated 
machine learning based tools may be more feasible to use in large population screening for MCI risk.  
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