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Abstract 
Place-based exposures, termed “geomarkers”, are powerful determinants of health but are often understudied 
because of a lack of open data and integration tools. Existing DeGAUSS (Decentralized Geomarker Assessment for 
Multisite Studies) software has been successfully implemented in multi-site studies, ensuring reproducibility and 
protection of health information. However, DeGAUSS relies on transporting geomarker data, which is not feasible 
for high-resolution spatiotemporal data too large to store locally or download over the internet.  We expanded the 
DeGAUSS framework for high-resolution spatiotemporal geomarkers. Our approach stores data subsets based on 
coarsened location and year in an online repository, and appropriate subsets are downloaded to complete exposure 
assessment locally using exact date and location. We created and validated two free and open-source DeGAUSS 
containers for estimation of high-resolution, daily ambient air pollutant exposures, transforming published exposure 
assessment models into computable exposures for geomarker assessment at scale. 
 
Introduction 
Place-based exposures and community characteristics, termed “geomarkers,” are powerful determinants of health but 
are understudied compared to biomarkers because of a lack of open data and integration tools.[1, 2] Existing high 
resolution spatiotemporal exposure estimates (e.g. daily, < 1 sq km) are not often available as curated data sources 
and require specialized computing expertise to link to health data. Additionally, operationalizing exposure data in 
health studies is difficult because of metadata surrounding the exposure timing, duration, frequency, and latency.[2] 
A lack of shared standards creates research inefficiencies, including having to continuously develop and recreate 
exposure assessment models and data workflows, which ultimately prevent data integration at scale.[2] Geomarker 
data often exist at different spatiotemporal resolutions and extents and integrating these with multi-scale population 
health data requires new informatic research and development approaches.[3]   
 
One such new development is the concept of a computable exposure that refers to “a representation of exposure data 
and metadata that can be used by an algorithm or a piece of software to answer a question.”[2] For geomarkers, 
computable exposures can be considered a tool to estimate and assign exposure data and metadata that can be used 
by an algorithm, model, or piece of software to answer a question. Assigning exposures necessitates linking an 
exposure surface to an individual, residence, or population in space and time. Creating an interoperable and portable 
exposure assessment tool as a computable geomarker also ensures that geomarker data and assessment tools follow 
FAIR data principles but are designed for privacy and reproducibility.[4, 5] The DeGAUSS (Decentralized Geomarker 
Assessment of Multi-Site Studies) framework and set of software packages have embraced this approach for 
geomarker assessment,[6] with successful applications in multi-site studies where the sharing of protected health 
information (PHI), like addresses and dates, was prohibited.[5, 7] DeGAUSS currently relies on sending and 
packaging geomarker data in a tool sent to the health data repository, but this approach is not feasible when the 
geomarker data is too large to store on a local machine or to download over the internet.  
 
Geomarker data size increases exponentially when using high resolution spatiotemporal data common in applications 
related to climate, land usage, tree canopy, noise, and air pollution. A specific example of such a high resolution 
exposure common in environmental epidemiology is fine particulate matter (PM2.5) estimated at a daily, < 1 sq. km 
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resolution.[8, 9] Spatiotemporal PM2.5 prediction models use machine learning with high resolution inputs such as 
land use characterizations, chemical transport modeling simulations, meteorological data, and satellite-based measures 
calibrated using PM2.5 measurements to accurately predict PM2.5 at locations and times where it was not measured.[10-
12] These predictions are used for exposure assessment by linking a geospatial location (e.g., a geocoded residential 
address) and a time frame of interest (e.g., the fourth and fifth months of pregnancy) with a set of gridded 
spatiotemporal estimates.  Daily estimates from some models of ambient PM2.5 concentration exist for the contiguous 
United States dating back to 2000 in online repositories and, depending on the file format, across thousands of different 
files totaling hundreds of GB.[11, 13] 
 
Hosting exposure data online and downloading subject-specific estimates could overcome the data size problems with 
decentralized approaches like DeGAUSS but require transmission of precise spatiotemporal locations over the internet 
to third parties. As used in health studies, precise spatiotemporal locations are considered PHI and their sharing is 
often restricted or prohibited by law, Institutional Review Boards, and institutional data use and sharing policies.[14] 
The HIPAA Safe Harbor Guidelines specify that spatial boundaries containing fewer than 20,000 residents (e.g., a 
five-digit ZIP Code) and dates more specific than a calendar year (e.g., date of birth) are considered pseudo-identifiers.  
For this reason, spatiotemporal locations in datasets that are intended to be deidentified or shared are usually made 
less specific by (1) coarsening the spatial boundaries until they contain at least 20,000 residents (e.g., the first three 
digits of a five-digit ZIP Code) and (2) substituting specific dates by their calendar year.  
 
Here, we extended the DeGAUSS platform to deal with high resolution and spatiotemporally gridded geomarkers by 
implementing an approach where the spatiotemporal precision of PHI is coarsened to query and download 
spatiotemporal subsets of estimates while the true precision is retained locally for exact spatiotemporal linkage.  In 
addition to detailing our approach, we have created an accompanying DeGAUSS software implementation for two 
different high-resolution spatiotemporal PM2.5 exposure assessment models and detailed the example implementation 
of one within the NIH’s Environmental influences on Child Health Outcomes (ECHO) program.[15]  Our hope is that 
this approach will serve as a general framework for using private, FAIR, and reproducible computable exposures for 
high-resolution and spatiotemporally gridded geomarker assessment in health studies. 

Methods 
Figure 1 illustrates our extension of the DeGAUSS framework to work with spatiotemporally gridded datasets hosted 
online by (1) coarsening dates into years and geographic coordinates into Safe Harbor geohashes, (2) using coarsened 
spatiotemporal location to download appropriate subsets of exposure estimates from an online repository, and (3) 
completing exposure assessment locally based on exact date and location.  
 
Safe Harbor Geohash 
Geohashes are hierarchical geospatial indexing systems that can divide space into grid cells. Subdivisions are based 
on space-filling curves and are identified using strings of letters and digits, termed geohashes. Thus, geographic 
locations with more similar geohashes are closer together in space. Because they are hierarchical, geohashes can be 
quickly up-scaled (or down-scaled) to a larger (or smaller) spatial resolution by truncating (or adding) characters. Two 
of the most widely used geohash systems are Google’s S2 Geometry Library (S2, available at https://s2geometry.io/) 
and Uber’s H3 Hexagonal Hierarchical Spatial Index (H3, available at https://h3geo.org/).  Both systems are available 
as free and open-source specifications and software products designed for indexing geospatial data in ways that make 
it easier to build large distributed spatial databases. S2 is based on square grid cells, while H3 is based on hexagonal 
cells. Each system has hierarchical levels of resolution, based on individual (square or hexagonal) grid or lattice cells 
that nest within each other for lower spatial resolution.   
 
To use for querying spatiotemporal estimates in an online repository, we selected an initial resolution for each system 
such that most of the geohashes within the contiguous United States had at least 20,000 residents, satisfying HIPAA 
Safe Harbor Guidelines. The population residing in each geohash was estimated using the area-weighted averages of 
census tract-level 2018 5-yr ACS population estimates. The left side of Figure 2 shows the S2 and H3 geohashes 
covering the contiguous United States colored by estimated population. To combine geohashes such that none had a 
population of less than 20,000, the geohash with the lowest population was repeatedly merged with the neighboring 
geohash that had the lowest population. This process was repeated until all geohashes had a population greater than 
20,000.  We term these “Safe Harbor geohashes”, and storing exposure estimate data in flat files organized by these 
Safe Harbor geohashes creates a system that allows for querying subsets of online data with a lower spatial resolution, 
while maintaining the exact location for local exposure assessment. 
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Figure 1. An overview of the DeGAUSS approach used for large spatiotemporal data.  Input start and end dates are 
expanded into a daily time series for each row in the input data. The calendar year and a coarsened geohash are used 
to download a spatiotemporal subset of exposure estimates.  The files are cached locally, and exposure estimates are 
merged in based on exact date and location of the input data. Spatiotemporal pseudo-identifiers are removed by the 
user and exposures can be optionally averaged over specific time periods to reduce the risk of reidentification if sharing 
data. 
 
Harmonizing and Accessing Exposure Data with Safe Harbor Geographies 
High resolution spatiotemporal exposure estimates are split into separate files based on the Safe Harbor geohash and 
calendar year. The matching, hierarchical system used for the geolocations and exposure data ensures efficient 
extraction of a desired spatiotemporal subset.  For these purposes, the exposure estimates from Di et al. [11] were 
grouped by S2 geohash and calendar year. Brokamp [10] used the H3 geohash directly within the exposure assessment 
modeling framework and so exposure estimates were further aggregated for storage by Safe Harbor geohash and 
calendar year. R packages for both sets of exposure estimates were designed to intake spatiotemporal data, perform 
spatial linkages with the S2 or H3 Safe Harbor geohash, download spatiotemporal subsets of exposure estimates from 
a cloud service, and locally assign exposures using the exact location and date. R packages and code are free and open 
source and are available publicly at https://github.com/geomarker-io and https://github.com/degauss-org. In addition 
to preventing transmission of HIPAA Safe Harbor pseudo-identifiers over the internet to third parties, this approach 
downloads only spatiotemporal subsets of data that are required locally, decreasing the time and resources to run the 
software. 
 
Containerization 
We then containerized R code for use by non-R users. Also known as “operating-system level virtualization,” 
containerization is a unique feature of Unix-based operating systems in which the kernel facilitates multiple isolated 
user-space instances. These containers appear as isolated computers to the programs running them, but also have 
access to all the host computer’s physical resources and virtual files. As compared to virtual machine software that 
replicates an entire computer, e.g., “Virtual Box” or “Parallels”, containers require much less overhead because they 
can rely on the host system’s normal system call interface.  Without the need to be run as an emulation or within a 
virtual machine, containers take advantage of the benefits of these approaches – namely isolation and the use of 
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different operating systems within one host operating system – but also exhibit decreased overhead, increased 
flexibility, and decreased use of storage.  
 
Specifically, we developed DeGAUSS containers using the Docker containerization platform, in which software is 
wrapped into a complete file system that contains everything needed to run such as code, system tools and libraries, 
geographic data, etc. Containers are based on Docker images and run directly on the system infrastructure rather than 
relying on a guest operating system or virtual machine. Docker has been previously used for reproducible research 
and solves common challenges in reproducible computational science like managing evolving software dependencies 
and versions, maintaining code compatibility with changing computing environments, and barriers to adoption and 
implementation by others.[16] 
 
Software Validation 
To validate the ability of the DeGAUSS images for the Di et al. [11] model to estimate exposures, we randomly 
sampled 5,000 coordinates within the contiguous United States.  These locations were matched to the nearest grid 
coordinate using three methods: (1) the DeGAUSS “Schwartz Grid Lookup” image, version 0.4 
(https://degauss.org/schwartz_grid_lookup), (2) ArcGIS (a commercially-available geographic information systems 
software), and (3) R (a statistical programming language that can use geospatial packages).  The ArcGIS and R 
linkages to grid identifiers were completed by technical geospatial experts (JB, NL) using established methods for 
linking exposures produced by the Di et al. [11] model. The ArcGIS method consisted of a Spatial Join with the 
“closest geodesic” match option, while the R method utilized the “geodist” command with the “geodesic” option from 
the “geodist” R package (v0.0.7). 
 
We validated exposure estimates for three common air pollutants PM2.5, nitrogen dioxide (NO2,) and ozone (O3) for 
the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS), one of the birth cohorts contributing data to 
ECHO. We established a data sharing agreement with investigators in ECHO in order to estimate exposures using 
existing methods. We estimated exposures using DeGAUSS and compared the results to those obtained using the 
existing R workflow which extracted estimates from locally stored rds files using the dbplyr and lubridate packages. 
For consistency, all estimates were rounded to the tenths place before comparison. 
 
Software Usability and Evaluation 
In order to track the DeGAUSS user experience, we created a software usability survey in REDCap.[17] We adapted 
this survey from the System Usability Scale (SUS)[18], a method for quickly determining the general usability of a 
software system. In our survey, we collected information about users’ backgrounds and previous experiences, details 
about how DeGAUSS was used, and thoughts on their experience. This included a usability rating and the likelihood 
that the user would use DeGAUSS again in the future or recommend it to a colleague. We also collected information 
about how DeGAUSS performs when compared to possible alternative methods and software tools. Each user was 
requested to respond to the survey while they were using the software. 

Results 
Safe Harbor Geohash 
The final set of S2 and H3 geohashes modified to each have at least 20,000 residents were termed “Safe Harbor 
geohashes.”  Used in combination with the calendar year, this represents the fundamental unit of spatiotemporal 
resolution by which exposure data is stored and queried in online repositories.  The left side of Figure 2 depicts S2 
(resolution: 3) and H3 (resolution: 3) geohashes covering the contiguous United States, colored and shaded by 
population. For the 502 total S2 geohashes, 98 (19.5%) had an estimated population below 20,000 residents. 
Population among those geohashes ranged from 0 to 19,545 with a median population of 7,515. For the 710 total H3 
geohashes, 169 (23.8%) had population less than 20,000. Population among those ranged from 0 to 19,930 and had a 
median population of 7,116. Geohashes that had less than 20,000 residents were merged with neighboring geohashes, 
outlined in red and depicted in the right side of Figure 2. Converting between the native geohash and the Safe Harbor 
geohash resulted in a reduction in the number of total geohashes from 502 to 424 for S2 and from 710 to 578 for H3. 
A data package with tabular files of S2 and H3 geohashes covering the contiguous United States and their 
corresponding Safe Harbor geohash is openly available online at https://geomarker-io.s3-us-east-
2.amazonaws.com/sh_geohash/datapackage.json. 
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Figure 2.  (Left) S2 and H3 geohashes covering the contiguous United States colored by estimated population. (Right) 
“Safe Harbor” geohashes aggregated to prevent any single geohash from containing less than 20,000 estimated 
individuals. Aggregated geohashes are outlined in red. 
 
DeGAUSS Images 
In general, the approach used for high-resolution spatiotemporal exposure estimates in DeGAUSS requires an input 
CSV file, with each row representing a unique location and time interval by including columns specifying latitude, 
longitude, a start date, and a stop date.  This input data specification was designed to coincide with standard address 
history collection forms implemented within ECHO and is flexible enough to represent longitudinal residential 
histories. Optionally, the file may include a column specifying an “index date” that can be used to return exposure 
estimate dates as relative (e.g., “8 days after the index date”) versus absolute (e.g., “January 2nd, 2015”).  This optional 
addition prevents the necessity of using absolute dates in order to maintain temporal proximity to a significant date, 
e.g., date of birth, death, or other health outcomes.  To assign exposures at a daily level based on input date ranges, 
the DeGAUSS container expands the start and end dates to a daily time series for each row in the input.  Each unique 
location (i.e., latitude and longitude coordinate) is locally geohashed, and the Safe Harbor geohash (a coarsened 
version of the geohash) along with the calendar year are used to download a subset of exposure data from an online 
repository.  These subsets of the exposure data are downloaded, and the exact location and date are used locally for 
precise exposure estimation.  Estimates are returned as a CSV file that includes daily predictions for each input location 
and date range. An overview of this process is depicted in Figure 1. 
 
We used this general approach for high resolution spatiotemporal exposure estimates in DeGAUSS with two different 
exposure assessment models.  The model described in Di et al. [11] predicts daily PM2.5, O3, and NO2 exposures at a 
roughly 1 km x 1 km spatial resolution across the contiguous United States. We developed a pair of free and open 
source DeGAUSS images (https://degauss.org/schwartz_grid_lookup and https://degauss.org/schwartz) that use input 
latitude and longitude coordinates to add an S2 grid cell identifier, and then use start and stop dates to assign 
spatiotemporal predictions. These steps can also be used independently. For example, the Schwartz Grid Lookup 
container can be followed up with alternate methods for exposure extraction. Similarly, the model described in 
Brokamp [10] predicts daily PM2.5 exposures at a roughly 0.75 sq km spatial resolution across the United States using 
the H3 grid system.  We created a single free and open source DeGAUSS image (https://degauss.org/pm) that assigns 
daily spatiotemporal predictions based on latitude and longitude coordinates as well as start and stop dates.  
 
Validation of Using DeGAUSS Image for Grid Cell Identifier and Exposure Assessment 
We considered the ArcGIS and R manual linkage methods to be the “gold standard” for assigning grid identifiers and 
exposures. Using 5,000 randomly sampled locations, the DeGAUSS “Schwartz Grid Lookup” image assigned the 
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same grid identifier as 99.8% (n = 4,991) of the grid identifiers using the ArcGIS method and 99.8% (n = 4,988) of 
the grid identifiers using the R method.  
 
We also used DeGAUSS to assign daily PM2.5, O3, and NO2 exposure estimates for 762 children from the CCAAPS 
cohort. Children had varying lengths of follow-up from 2001 to 2010, resulting in a total of 1,521 unique addresses 
and 1,691,985 days of assessed exposure. All daily exposure estimates for all three pollutants obtained using 
DeGAUSS were equal to those obtained using existing methods implemented within ECHO for exposure assessment. 
Existing exposure estimates are available through the Socioeconomic Data and Applications Center (SEDAC) across 
compressed GeoTIFF files totaling 212 GB in size. Using DeGAUSS to assign the same exposure estimates to the 
same CCAAPS cohort required the container to download 4.5 GB of exposure data. This equates to about 2% of the 
size of the total exposure data hosted on SEDAC used with existing methods. 
 
Implementation of DeGAUSS for Exposure Assessment in ECHO 
The DeGAUSS approach for exposure assessment based on the Di et al. [11] model was implemented within the 
ECHO Program cohorts to estimate daily ambient air pollution concentrations for specific addresses and dates.  This 
decentralized approach allowed us to estimate exposures for 17,587 study participants across 53 cohorts, representing 
1,590,931 person-months of follow up time. Critically, this allowed us to conduct exposure assessment using exact 
addresses and dates in instances where research participants did not or could not consent to sharing their PHI with 
investigators external to each cohort or with the ECHO Data Analysis Center (DAC).  Furthermore, to maintain 
consistent and reproducible exposure assessment methods, the DeGAUSS approach was also used at the ECHO DAC 
for study participants’ addresses and dates that were able to be shared with the ECHO DAC.  
 
DeGAUSS Usability Rated by Users 
The results from our software usability survey suggest a generally positive experience when using DeGAUSS, though 
users generally had less ease of use if this was their first experience with command line computing. All respondents 
(n = 7) agreed that DeGAUSS allowed them to both obtain useful data more quickly than alternative geocoding 
services and obtain data that would be unavailable elsewhere. All respondents also indicated that they are likely to 
reuse DeGAUSS for a future project. The average usability rating (0 – 100) was 90.8 and the average likelihood that 
a user would recommend the software to a colleague was 0.895. 
 
 

 
Figure 3. System Usability Survey Results. In the four listed questions, respondents summarized their experience 
using DeGAUSS.  
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It should, however, be noted that among users without prior command line programming experience (n = 2), the 
usability was lower than among those with command line programming experience (84.5, 94.0). Further, these 
respondents indicated that they had some level of difficulty using Docker and/or DeGAUSS. To this point, users 
generally report back a positive experience when using DeGAUSS and that it may be a preferable alternative to more 
widely used geocoding and geomarker assessment techniques. Figure 3 shows four additional experience summary 
responses that indicate an overall positive user experience, with users being able to use DeGAUSS software to help 
complete their research projects while mitigating key privacy challenges, which was not possible with other 
approaches. 
 
Discussion 
Overall, we found that implementing DeGAUSS containers for high-resolution spatiotemporal data allowed for 
reproducible exposure assessment at scale while overcoming key privacy issues related to geolocation. The validation 
of our approach with existing methods and a successful implementation in a large, multi-site study suggest that this 
approach can be generally useful for high-resolution spatiotemporal exposure assessment in health studies, including 
where sensitive or private spatiotemporal information cannot or should not be shared. Our tool is (1) findable because 
each piece of software and data uses a persistent identifier and includes standardized, rich metadata; (2) accessible 
because it is stored in a publicly available repository; (3) interoperable because it uses the widely available CSV 
format for data and the Open Container Initiative standards for containers; and (4) reusable because it is free and open 
source and is supported by rich documentation. 
 
The Safe Harbor Geohashes for S2 and H3 are novel tools that can be used to specify subsets of geographic data 
without disclosing any geographic identifier that might have less than 20,000 residents to satisfy the Safe Harbor 
provision of HIPAA. We used census population estimates, but other more high-resolution estimates such as the 
SEDAC (Socioeconomic Data and Applications Center) 1 sq. km grid, could also be used. Compared to the traditional 
approach of using a three-digit ZIP Code, geohash systems cover the entire globe, are well defined, and could be 
adapted as necessary based on local population estimates and different regulatory requirements that both change over 
time.  Using a geohash system eliminates the need for specialized spatial software libraries usually required to conduct 
high-resolution spatiotemporal exposure assessment.  In the future, methods and tools should leverage recent advances 
in privacy and encryption on text to facilitate truly private exposure assessment (e.g., homomorphic encryption).  
 
The general approach of fragmenting data based on spatiotemporal boundaries to ensure no pseudo-identifiers need 
to be transferred can also be applied to other instances of high-resolution spatiotemporal data sets, including greenness, 
noise, land use, and climate-related data resources. This approach prevents the downloading and processing of 
unnecessary spatial and temporal fragments of exposure estimates, which decreases the time and resources needed by 
a scientist to complete exposure assessment. In contrast to geomasking or jittering methods (e.g., adding random noise 
to spatial coordinates, restricting to the first three digits of a ZIP Code, shifting all dates) our approach utilizes exact 
spatiotemporal information for exposure assessment to prevent losses of accuracy or precision common in geomasking 
methods for individual-level data.[19]   
 
A shareable exposure dataset produced by DeGAUSS does not contain HIPAA Safe Harbor identifiers or pseudo-
identifiers, but like any dataset, could possibly be linked to extant data to recover pseudo-identifiers, including a date 
or geographic extent of an exposure assessment grid/lattice cell.  Averaging exposure assessments over at least one 
day (e.g., weekly exposures averages) would obfuscate the individual daily estimates such that they could not be used 
for re-identification. If daily estimates are required to be shared, a small amount of random noise can be added to each 
daily estimate. Although the introduction of random noise will introduce exposure misclassification, if the noise is 
centered around zero, it will be non-differential and will not cause bias in downstream estimates of health effects.  
 
One limitation of any approach that relies on decentralized methods is that obscuring identifiers to create a shared 
dataset (e.g., the exact location and date) prevents the use of models that rely on spatial relationships or temporal 
effects that need to be linked to some period finer than a year (e.g., season, day of week).  However, the decentralized 
approach here could be extended to fit such spatiotemporal statistical models and report shareable model parameter 
estimates for use in a meta-analysis. Our approach does require exposure estimation data be on some gridded or lattice 
system that coincides with a file structure, but alternatives for extracting spatiotemporal fragments of data in different 
file formats (e.g., Cloud Optimized GeoTIFFs, Apache Arrow Multi-File Datasets, Hierarchical Data Format) could 
be generalized to this approach.  
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Conclusion 
Our approach and DeGAUSS software implementation was found to be highly usable. Because it was designed to be 
used by both clinical data coordinators and informatics specialists, this tool can be used both in a decentralized and 
centralized manner within a multi-site study where each site has varying levels of permission to share spatiotemporal 
PHI.  In conclusion, the DeGAUSS approach transforms high-resolution spatiotemporal exposure assessment models 
into FAIR [4], computable exposures that can be used for private exposure assessment at scale without necessitating 
the sharing of identifiable information.  
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