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Abstract 
Advancements in technology have enabled diverse tools and medical devices that are able to improve the efficiency 

of diagnosis and detection of various health diseases. Rheumatoid arthritis is an autoimmune disease that affects 

multiple joints including the wrist, hands and feet. We used YOLOv5l6 to detect these joints in radiograph images. In 

this paper, we show that training YOLOv5l6 on joint images of healthy patients is able to achieve a high performance 

when used to evaluate joint images of patients with rheumatoid arthritis, even when there is a limited number of 

training samples. In addition to training joint images from healthy individuals with YOLOv5l6, we added several data 

augmentation steps to further improve the generalization of the deep learning model.   

 

Introduction 
Technology has advanced exponentially as the years have passed. Artificial intelligence (AI) has been used to improve 

the advancement of a diverse range of fields including but not limited to speech recognition, recommender system 

(predicts the preference of users), computer vision, self-driving cars, natural language processing, and translation (1). 

Deep learning is a subset of AI that can surpass the performance in content creation or classification of rule-based AI 

or machine learning if there is enough data to train on. Deep learning helps to classify or predict complex solutions 

including object detection, speech translation, image generation, music generation, etc. In the medical field, deep 

learning has been used to detect radiographic evidence of pneumonia (2,3), obtained good representation of gut 

microbiome data for easier future analysis (4), and cancer diagnosis (5). 

Rheumatoid arthritis (RA) is an autoimmune disease that affects multiple small and large joints leading to joint 

damage.  The earliest findings are usually found in the proximal interphalangeal (PIP) joints and metacarpophalangeal 

(MCP) of the hands, the wrists, and the metatarsal pharyngeal (MTP) joints of the feet   (6). Rheumatologists rely on 

a variety of clinical clues to diagnose RA and to determine optimal antirheumatic therapy with a goal of preventing 

joint damage(7). Standard radiographs are usually used to identify and monitor for the development of joint damage 

which is manifested as joint space narrowing and erosion. This often requires a highly-trained medical professional to 

review the radiographs and in resource limited regions, there can be limited timely access to these professionals. There 

are several scoring methods proposed for evaluating radiographs in rheumatoid arthritis (8–12). The current “gold 

standard” scoring tool is the Sharp/van der Heijde (SvH) score which assesses joint space narrowing (JSN) and joint 

erosions in multiple hand and feet joints. Although the SvH method is widely used for clinical research studies, it’s 

use in clinical practice is limited as SvH radiograph scoring requires a highly skilled assessor and is time consuming.  

 

Some technological advancements have addressed these challenges by utilizing deep learning to assess the joint 

damage directly (7,13) Maziarz et al proposed using a deep multi-task method (14) that predicts joint space narrowing 

and erosion scores using a deep convolutional neural network (15). The network simultaneously performs joint 

detection, and predicts joint space narrowing and erosion scores. This group was able to achieve a root mean squared 

error of 0.4075 and 0.4607 for narrowing and erosion respectively in the RA2-DREAM Challenge (16) from 119 

patients obtained from two NIH supported clinical studies. Additionally, Hirano et al (17) created a two step method 

to perform joint score evaluation using deep learning. The steps are 1) joint detection and 2) joint evaluation. The joint 

detection step uses a machine learning algorithm that uses Haar-like features (18) to detect the joints. The joint 

evaluation step uses a convolutional neural network to assign scores to the joints. They evaluated their model on   30 

patients that with diagnosed with RA based on standard criteria (19). They were able to achieve detection of PIP, 

Interphalangeal (IP), and MCP joints with sensitivity of 95.3%. The accuracy for erosion detection was between 70.6% 

to 74.1% while the accuracy for JSN was 49.3% to 65.4%. 
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However, there are no known AI methods that show that we could train on normal or healthy joint images and evaluate 

them on rheumatoid arthritis joint images. We used one of the state-of-the-art object detection algorithms, YOLOv5l6 

(20), to detect the finger joints (PIP, and MCP) and wrist joints (wrist, radius, and ulna). We used a pre-trained 

YOLOv5l6 on COCO and showed that it is transferable and can be used to detect x-ray joints. We showed that the 

YOLOv5l6 model trained on imaging from the RSNA Pediatric BoneAge challenge (21) with only left hand x-ray 

images was able to detect joints of  rheumatoid arthritis patients with left hand, right hand, or both hands in the images 

in our Manitoba dataset.  

 

Methods 
 

Dataset 

The dataset that we obtained is from RSNA 2017 Pediatric BoneAge Challenge (21). The dataset contains images of 

children’s hand skeleton with skeletal age between 0 to 216 months. It contains a total of 14,236 hand skeletal images 

of which 47% of them are female with mean age of 129 months. There was no description whether the children in the 

dataset are healthy or unhealthy as the challenge is to promote the showcase of machine learning on x-ray hand images. 

The annotations for the joints were annotated in https://github.com/razorx89/rsna-boneage-ossification-roi-detection 

from the RSNA Pediatric BoneAge Challenge dataset (Figure 1). There are 240 training images in total and 89 

evaluation images annotated with region of interests of the joints. All of the images consist only x-ray images of the 

left hand. The region of interests were labeled with DIP, PIP, MCP, Wrist, Radius, and Ulna. We included only PIP, 

MCP, wrist, radius, and ulna in the training. There are 240 images and 89 evaluation images where each image contains 

5 PIP joints, 5 MCP joints, 1 wrist, 1 radius, and 1 ulna joint.  

 

In addition, a test set with serial radiographs collected from participants enrolled in the prospective Manitoba Early 

Arthritis Cohort (EAC) were used to manually validate the algorithm/tool. The Manitoba EAC is an inception cohort 

that enrolls adults with recent onset RA defined as meeting classification criteria for RA (22) and having less than one 

year of arthritis symptoms at enrolment.  Participants are treated following clinical guidelines (23), clinical data is 

collected at each visit, and radiographic images are collected annually as part of a study protocol.  Serial radiographs 

(10-12 per participant total 43 images with both hands) from 4 EAC participants (2 female, 2 male; baseline age 46-

70 years; all seropositive for rheumatoid factor and/or anti-cyclical citrullinated protein antibodies, followed for 9-13 

years) were analyzed.  The cohort and related studies have been approved by the Ethics review board at the University 

of Manitoba.  

 

Model Architecture 
In order to detect each joint, we first used YOLOv5l6 to train on the dataset to predict the joint. The difference between 

YOLOv5 and YOLOv5l6 is that YOLOv5 has 3 output layers while YOLOv5l6 has 4 output layers. Having 4 different 

output layers increases the total number of scales the model looks at and can enhance performance. YOLOv5l6 is an 

object detection algorithm that uses convolutional neural network as one of its building blocks to detect objects. It 

only requires a single pass to the neural network to detect all the objects in the image. YOLOv5l6 consists of 3 sections 

– backbone, neck, and head. The backbone section uses a cross stage partial network (CSP) (24) to generate feature 

maps at multiple levels, similar to that of a feature pyramid network (25). The lowest level of the backbone is replaced 

with spatial pyramid pooling to remove the requirement of having a fixed-constraint image size. The output from the 

multiple level of CSP is passed into a path aggregation network (PANet) (26). PANet generates feature pyramids that 

are useful to generalize features in multiple scales. This helps with detecting objects of different sizes. PANet upscales 

and concatenates the features from the backbone, and then passes the features into a bottom-up augmentation before 

passing them to the head of the model to be used for prediction. (27) stated that bottom-up path augmentation can 

capture both global and local features as higher-level layers correspond to the entire object while lower-level layers 

correspond to local patterns and features. This enhances the ability of the network to classify objects. The architecture 

of YOLOv5 is shown in Figure 2 which was obtained from an online message group (28). 

 

The loss functions of YOLOv5l6 consists of 3 parts, object loss, classification loss, and bounding box regression loss. 

The object loss is: 

𝑜𝑏𝑗 𝑙𝑜𝑠𝑠 = − ∑ ∑ 𝐼𝑖𝑗
𝑜𝑏𝑗

[�̂�𝑖 log(𝐶𝑖) + (1 − �̂�𝑖)log (1 − 𝐶𝑖)]

𝐵

𝑗=0

−

𝑆2

𝑖=0

∑ ∑ 𝐼𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

[�̂�𝑖 log(𝐶𝑖) + (1 − �̂�𝑖)log (1 − 𝐶𝑖)]

𝐵

𝑗=0

𝑆2

𝑖=0
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S is the size of the grid of the images divided by yolo, B is the number of bounding boxes, �̂�𝑖 is the prediction of the 

existence of an object in grid i, and 𝐶𝑖 is the ground truth of the existence of an object in grid i. As there are many grid 

cells that does not contain an object, this will skew the model to predict all 0s (no object in grid cell). To solve this, 

𝐼𝑖𝑗
𝑜𝑏𝑗

 and 𝐼𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 are used.  𝐼𝑖𝑗
𝑜𝑏𝑗

 emphasizes more weights on the grids that contain an object while 𝐼𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 will reduce 

the weights on the grids that does not contain an object. The classification loss is: 

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 = − ∑ ∑ [�̂�𝑖(𝑐) log(𝑝𝑖(𝑐)) + (1 − �̂�𝑖(𝑐)) log(1 − 𝑝𝑖(𝑐))]
𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=0

 

�̂�𝑖(𝑐)  is the confidence of the class predicted and 𝑝𝑖(𝑐) is the ground truth label. 

 

 

Figure 1. An example of an x-ray image from the RSNA Pediatric BoneAge Challenge with annotated joints 
 

 

Figure 2. The architecture of YOLOv5 model 
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The bounding box regression loss is: 

𝐼𝑜𝑈 𝑙𝑜𝑠𝑠 = 1 − 𝐼𝑜𝑈 +
𝑝2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣 

 

𝑝2 is the Euclidean distance and c is the diagonal length of the smallest box covering 𝑏 𝑎𝑛𝑑 𝑏𝑔𝑡.  

 

Model Training 
We used YOLOv5l6 to detect PIP, MCP, Radius, Wrist, and Ulna and removed the DIP labels as they are not important 

in determining damage for rheumatoid arthritis. We started the training from a pre-trained YOLOv5l6 model on the 

COCO dataset (Figure 3). We added several augmentations to the image before feeding them into YOLOv5l6 model 

including mixup (29) (mixing up features of different images together into one), mosaic (30) (combines 4 training 

images into 1 image), rotation, translation, scaling, and shearing augmentations. 

 

 

Figure 3. Pre-training YOLOv5l6 model on COCO dataset before training on joint detection on x-ray images 

of hands 

 

Model Evaluation 

We used the intersection over union (IOU) metric to evaluate the performance of the joint detection. IOU is a method 

that looks at the overlapping area of the predicted output and the ground truth mask. The equation for IOU is:  

 

𝐼𝑜𝑈 =  
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 ∩ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑚𝑎𝑠𝑘

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 ∪ 𝑔𝑟𝑜𝑢𝑑 𝑡𝑟𝑢𝑡ℎ 𝑚𝑎𝑠𝑘
 

 

Instead of using accuracy to measure the performance of the object detection model, we used F1 score. While accuracy 

is one of the ways to measure performance, it is not the best metric to measure skewed distributions. We used 1 score 

because F1 score is a much better evaluation metric that treats both positive classes and negative classes equally. The 

equation for F1 score is as follows: 

𝐹1 =  2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Where precision is: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

And recall is: 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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TP is true positive, FP is false positive, FN is false negative. If there is a PIP joint and the model predicted it as PIP, 

then it is considered as true positive. PIP joints that are detected as MCP joints are false negatives. MCP joints which 

are detected as PIP joints are false positive.  

 

We provided a set of IOU threshold and any predicted bounding boxes that have an IOU of greater than the IOU 

threshold when compared to the ground truth bounding boxes were considered as the prediction.  

 

Results 
We set the confidence threshold for our model to be 0.35 and the non-maximum suppression (NMS) IOU threshold 

as 0.1. The results when we have the confidence threshold set as 0.35 and the NMS IOU threshold set as 0.1 performs 

the best which can be seen in Table 1. Any joint prediction that did not have a confidence threshold of more than 0.35 

was removed. Table 2 shows the average precision on different values of IOU threshold. IOU threshold was used to 

remove scoring boxes that are lower than other higher scoring boxes given that their IOU is higher than the IOU 

threshold.  

 

Table 1. Joint Detection Performance Based on Different Confidence Threshold 

Confidence 

Threshold 
0.7 

 PIP MCP Wrist Radius Ulna 

F1 0.452 0.439 0.71 0.289 0.126 

Precision 1 1 1 1 1 

Recall 0.292 0.281 0.551 0.169 0.067 

Confidence 

Threshold 
0.5 

 PIP MCP Wrist Radius Ulna 

F1 0.992 0.988 0.989 0.982 0.978 

Precision 1 0.993 1 1 1 

Recall 0.984 0.982 0.978 0.966 0.955 

Confidence 

Threshold 
0.45 

F1 0.993 0.991 0.989 0.989 0.989 

Precision 1 0.993 1 1 0.997 

Recall 0.987 0.989 0.978 0.978 0.978 

F1 0.993 0.991 0.989 0.989 0.989 

Confidence 

Threshold 
0.35 

 PIP MCP Wrist Radius Ulna 

F1 0.994 0.991 0.993 0.988 0.987 

Precision 1 0.993 1 1 0.997 

Recall 0.987 0.989 0.986 0.976 0.978 
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Table 2. Joint detection average precision on different thresholds 

  

There is still a high performance achieved with YOLOv5l6 when the IOU threshold is at 0.3. The joints detected are 

still located at the fundamental joints area and is still able to capture the joints location. We looked at the detection 

and saw that the joints detected were accurate. YOLOv5l6 that is pre-trained on COCO is able to achieve a better 

performance than no pre-training.   

Table 3. Joint detection metrics 

pre-trained on COCO 

 PIP MCP Wrist Radius Ulna 

F1 0.994 0.991 0.993 0.988 0.987 

Precision 1 0.993 1 1 0.997 

Recall 0.987 0.989 0.986 0.976 0.978 

No pre-trained 

F1 0.928 0.971 0.921 0.977 0.504 

Precision 0.883 0.986 0.87 1 1 

Recall 0.978 0.957 0.978 0.955 0.337 

Pre-trained on COCO 

Threshold/Average 

precision 

0.1 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.5 0.55 

PIP 0.99 0.99 0.99 0.99 0.97 0.87 0.73 0.55 0.38 0.26 

MCP 0.99 0.99 0.97 0.89 0.75 0.58 0.42 0.27 0.2 0.16 

Wrist 0.99 0.99 0.99 0.99 0.97 0.97 0.94 0.93 0.92 0.88 

Radius 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.93 

Ulna 0.99 0.99 0.99 0.99 0.97 0.97 0.96 0.96 0.82 0.7 

No Pre-trained 

PIP 0.98 0.98 0.98 0.98 0.97 0.93 0.85 0.69 0.46 0.3 

MCP 0.98 0.98 0.95 0.89 0.82 0.71 0.60 0.46 0.35 0.26 

Wrist 0.99 0.99 0.98 0.96 0.94 0.94 0.91 0.89 0.89 0.84 

Radius 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.94 0.93 0.86 

Ulna 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.65 0.48 
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Table 3 shows the F1 score, precision, and recall metrics for the joints. All joint types were able to achieve at least 

0.98 F1 score performance when evaluated on the evaluation set. The mean metrics are shown in Table 4. Map0.1 is 

the mean average precision with IOU threshold set as 0.1, map is the mean average precision from 0.1 IOU threshold 

to 0.55 IOU threshold. The PIP and MCP joints have the most number of targets as there exist 5 joints for each of 

them while only 1 joint each for wrist, radius, and ulna.  

 

Table 4. Joint detection mean metrics 

Pre-trained on COCO 

 Seen Number 

targets 

Mean 

precision 

Mean recall map0.1 map 

All 89 1157 0.998 0.983 0.993 0.854 

PIP 89 445 1 0.987 0.994 0.772 

MCP 89 445 0.993 0.989 0.994 0.624 

Wrist 89 89 1 0.986 0.994 0.958 

Radius 89 89 1 0.976 0.994 0.983 

Ulna 89 89 0.997 0.978 0.988 0.933 

No pre-trained 

All 89 1157 0.948 0.841 0.919 0.81 

PIP 89 445 0.883 0.978 0.984 0.814 

MCP 89 445 0.986 0.957 0.977 0.7 

Wrist 89 89 0.87 0.978 0.987 0.932 

Radius 89 89 1 0.955 0.977 0.957 

Ulna 89 89 1 0.337 0.669 0.647 

 

Figure 4 shows the visualization of the joint prediction by YOLOv5l6 on the Manitoba dataset of RA patients. The 

x-ray images shown all correctly predicted by YOLOv5l6. As the training dataset only consists of left hands, we can 

see the detection by YOLOv5l6 on the Manitoba dataset of RA patients is still accurate even when the x-ray images 

consist of right hands or both hands. The joints were still able to be predicted when the hands orientations were not 

exactly “flat” on the x-ray images although there is a missed MCP joints due to how the fingers were arranged in the 

third row and bottom right x-ray image in Figure 4. As deep learning network tends to require a fixed image size that 

was trained based on the image size to be able to do a prediction, YOLOv5l6 was able to predict the joints regardless 

of needing fixed image sizes. Images that is fed into YOLOv5l6 does not need to be resized to a specific format, 

YOLOv5l6 can take variable image sizes. It was also able to predict joints correctly on images that contain either 

left/right hand or both hands even though the training data consists only of left hands. As there is a different distribution 

in having images with one hand or both hands due to the hand placement and the difference in the size of the images 

(images with one hand are generally smaller than images with both hands by half the size), the variability did not 

affect the performance for YOLOv5l6 in detecting the joints. 

212



  

 
 

Figure 4. Visualization of predicted joints (PIP, MCP, wrist, radius, ulna) of rheumatoid arthritis patients in 

the Manitoba Dataset of 4 different x-ray images (right hand or both hands) by YOLOv5l6. The first two rows 

consist of x-ray images with only one hand. The last row consists of x-ray images with both hands. 

 

We showed an example of the extracted joints for a patient’s left hand in Figure 5. This image shows a close-up 

picture of the extracted joints of PIPs, MCPs, wrist, radius and ulna joints.  

 

Discussion 
A large open access normal pediatric hand radiograph dataset was used to train the joint detection model as there are 

few similar adult datasets that are accessible. The ability of our model which was developed to identify "wide" joint 

spaces characteristic of non-ossified immature pediatric joints- excluding wrists joints) to also identify narrower 

(adult) joints could be considered even more robust.  
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Conclusion 
In this work, we showed YOLOv5l6 is capable of detecting joints (PIP, MCP, wrist, ulna, radius) of rheumatoid 

arthritis patients even if YOLOv5l6 was trained on left hand joints of healthy patients. It was able to achieve high 

performance on the test set with F1 score of more than 0.9 for all the joint types (PIP, MCP, wrist, ulna, radius). 

YOLOv5l6 was able to achieve a high performance even when the pre-trained weights were started on weights that 

were trained on the COCO dataset.  

 

This study opens up the possibility of a variety of applications including rheumatoid arthritis. Future work will use 

this tool to identify/extract the joints detected on radiographic images from rheumatoid arthritis patients, classify the 

severity joint damage (joint space narrowing and erosions), and correlate our deep learning algorithm /tool with 

clinician assessed radiographic damage. Additionally, we will use deep learning to extract joints in combination with 

serially collected radiographs and longitudinal clinical data to predict changes in rheumatoid joint damage over time. 

This application may assist clinicians caring for individuals with rheumatoid arthritis by informing RA treatment.  

 

Figure 5. Extraction and numbering of joints of hand. 
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