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Abstract
Background  Idiopathic pulmonary fibrosis (IPF) is characterized by the accumulation of extracellular matrix in the 
pulmonary interstitium and progressive functional decline. We hypothesized that integration of multi-omics data 
would identify clinically meaningful molecular endotypes of IPF.

Methods  The IPF-PRO Registry is a prospective registry of patients with IPF. Proteomic and transcriptomic 
(including total RNA [toRNA] and microRNA [miRNA]) analyses were performed using blood collected at enrollment. 
Molecular data were integrated using Similarity Network Fusion, followed by unsupervised spectral clustering to 
identify molecular subtypes. Cox proportional hazards models tested the relationship between these subtypes and 
progression-free and transplant-free survival. The molecular subtypes were compared to risk groups based on a 
previously described 52-gene (toRNA expression) signature. Biological characteristics of the molecular subtypes were 
evaluated via linear regression differential expression and canonical pathways (Ingenuity Pathway Analysis [IPA]) over-
representation analyses.

Results  Among 232 subjects, two molecular subtypes were identified. Subtype 1 (n = 105, 45.3%) and Subtype 2 
(n = 127, 54.7%) had similar distributions of age (70.1 +/- 8.1 vs. 69.3 +/- 7.6 years; p = 0.31) and sex (79.1% vs. 70.1% 
males, p = 0.16). Subtype 1 had more severe disease based on composite physiologic index (CPI) (55.8 vs. 51.2; 
p = 0.002). After adjusting for CPI and antifibrotic treatment at enrollment, subtype 1 experienced shorter progression-
free survival (HR 1.79, 95% CI 1.28,2.56; p = 0.0008) and similar transplant-free survival (HR 1.30, 95% CI 0.87,1.96; 
p = 0.20) as subtype 2. There was little agreement in the distribution of subjects to the molecular subtypes and the risk 
groups based on 52-gene signature (kappa = 0.04, 95% CI= -0.08, 0.17), and the 52-gene signature risk groups were 
associated with differences in transplant-free but not progression-free survival. Based on heatmaps and differential 
expression analyses, proteins and miRNAs (but not toRNA) contributed to classification of subjects to the molecular 
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Background
Idiopathic pulmonary fibrosis (IPF) is characterized by 
abnormal accumulation of extracellular matrix (ECM) 
in the pulmonary interstitium. The natural history of IPF 
is characterized by progressive decline in lung function, 
often culminating in death from respiratory failure [1]. 
Significant progress has been made in understanding the 
pathobiology of IPF, including high-throughput assess-
ments of genetic risk factors, changes in gene expres-
sion, and alterations in the abundance of proteins in the 
lungs or peripheral blood that are associated with the 
development or progression of IPF [2–11]. These stud-
ies reinforce the conceptualization of IPF as a disease 
initiated by recurrent, low-grade injury to the lung epi-
thelium, with pathologic disruption in cellular aging and 
innate immune responses to injury as drivers of ECM 
deposition. Molecular analyses have yielded candidate 
biomarkers for confirmation of an IPF diagnosis or stag-
ing of disease. A 52-gene expression signature [9, 10] 
and, more recently, a 13-gene signature developed using 
unsupervised clustering [12], identified persons with IPF 
at high risk of mortality when measured in peripheral 
blood. In addition, a signature of 17 proteins measured in 
peripheral blood identified patients with non-idiopathic 
pulmonary fibrosis who were at high risk of disease pro-
gression [11]. MicroRNAs (miRNAs), small non-coding 
RNAs that regulate gene expression post-transcription 
[13], have been mechanistically linked to IPF, but are 
incompletely studied as biomarkers of disease progres-
sion [14–16].

Integrative multi-omics analyses have identified molec-
ular subtypes of several forms of cancer [17–21]. With a 
few exceptions, high-throughput studies of the molecular 
landscape of IPF have focused on alterations in a single 
type of molecule [22–25]. In this study, we measured the 
abundance of proteins and the expression of total RNA 
and miRNAs in the peripheral blood of patients with 
IPF enrolled in a multi-center observational registry. We 
hypothesized that cross-platform integration and simul-
taneous assessment of several types of molecules in the 
gene-to-function pathway using an unsupervised integra-
tive clustering method would identify clinically meaning-
ful molecular endotypes of IPF.

Methods
This study included 300 patients enrolled in the US-
based, multi-center, observational Idiopathic Pulmo-
nary Fibrosis Prospective Outcomes (IPF-PRO) Registry 
(NCT01915511), whose key inclusion criterion is IPF 
diagnosed or confirmed at the enrolling center in the 
past 6 months [26]. Enrollment procedures included 
collection of a blood sample, demographics and health 
information. Patients are followed longitudinally with 
information such as pulmonary function tests collected 
as part of their routine clinical care. For this analysis, all 
participants who were enrolled between June 2014 and 
February 2017, with longitudinal outcomes ascertained 
through December 2019, and who had blood samples 
available for molecular analyses described below were 
selected. A formal power analysis was not conducted.

Identification of molecular subtypes of IPF
Whole blood and plasma collected at enrollment were 
stored centrally. The process used to quantify plasma 
proteins by aptamer-based methods, measure miRNA 
expression in plasma, sequence total RNA (referred to 
as toRNA) in whole blood, and to perform bioinformat-
ics analyses, is described in Additional file 1: Section S1. 
After excluding 52 subjects due to low toRNA quality, 9 
due to low miRNA quality, and 7 for low quality of both, 
data from 232 subjects were analyzed. Additional file 2: 
Table S1 summarizes the features within each molecule 
type (toRNA, miRNA, protein) that were available for 
modeling.

To identify molecular subtypes of IPF, an integrative, 
two-step method, spectral clustering Similarity Network 
Fusion (scSNF) was used to cluster subjects based on data 
from all three molecule types. First, Similarity Network 
Fusion, a method that integrates similarity networks, was 
applied to fuse proteomics, miRNA and toRNA expres-
sion data for each subject [27]. Second, an unsupervised 
spectral clustering method [28] was applied to the fused 
similarity network. This method uses eigenvectors of the 
graph Laplacian of the similarity network to cluster sub-
jects. To achieve stable clustering results, consensus clus-
tering with 100 iterations and a 0.8 subsampling ratio was 
applied [29]. Average Silhouette scores [30] were used to 
determine the number of clusters, with 2 to 10 clusters 

subtypes. The IPA showed enrichment in pulmonary fibrosis-relevant pathways, including mTOR, VEGF, PDGF, and 
B-cell receptor signaling.

Conclusions  Integration of transcriptomic and proteomic data from blood enabled identification of clinically 
meaningful molecular endotypes of IPF. If validated, these endotypes could facilitate identification of individuals likely 
to experience disease progression and enrichment of clinical trials.

Trial registration  NCT01915511
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assessed, where scores near 1 indicate optimal clustering 
and a decrease toward 0 indicates increasing overlap in 
clusters. The scSNF method was compared to the alter-
native integrative clustering methods iCluster+ [31] and 
iClusterBayes [32]. Sensitivity analyses assessed cluster-
ing membership when the toRNA variance filter (set as 
the top 10% most variable features for the main analysis) 
was adjusted to include the top 50% most variable fea-
tures or to 100%.

Clinical characterization of molecular subtypes of IPF
Patient characteristics within each molecular subtype 
were summarized using means and standard deviations 
for continuous variables and numbers and percentages 
for categorical variables. Characteristics were com-
pared between the subtypes using the Kruskal-Wallis 
test for continuous variables and the Chi-square test for 
categorical variables, with p < 0.05 considered statisti-
cally significant. To determine the relationship between 
the molecular subtypes and clinically meaningful out-
comes, the occurrence of two composite outcomes was 
determined: (1) lung transplant or death; and (2) dis-
ease progression, defined as ≥ 10% absolute decline in 
forced vital capacity (FVC) % predicted, lung transplant, 
or death. FVC decline recorded at the first instance of a 
post-enrollment value ≥ 10% lower than the enrollment 
value. These events were selected because they can be 
objectively assessed and have similar importance in the 
natural history of IPF [33]. Transplant-free and progres-
sion-free survival were considered separately to enable an 
evaluation of the relationship between molecular mark-
ers and these two outcomes. Subjects who withdrew 
from the study or had not experienced an outcome by 
December 2019 were censored on the date of their last 
follow-up visit. Kaplan-Meier plots and Cox proportional 
hazards regression models (unadjusted, and adjusted for 
baseline disease severity based on the composite physi-
ologic index [CPI] [34] and antifibrotic treatment status 
at enrollment) were used to determine the risk of the two 
composite outcomes.

Next, to place the molecular subtypes identified in this 
study in the context of existing literature, the previously 
described 52-gene expression signature was applied to 
group the subjects as high-risk or low-risk (for death or 
transplant) [9, 10]. Cohen’s kappa assessed agreement 
in groupings based on the molecular subtypes and the 
52-gene signature. The risk of experiencing each compos-
ite outcome was assessed for the 52-gene signature high-
risk compared to the low-risk group using Kaplan-Meier 
plots and Cox proportional hazards regression models 
(unadjusted, and adjusted for CPI and antifibrotic treat-
ment status).

Biological characterization of molecular subtypes of IPF
The molecular characteristics that distinguished the 
subtypes identified by scSNF were investigated in sev-
eral ways. First, Normalized Mutual Information (NMI) 
measured agreement of distribution of the subjects to 
the subtypes when clusters were formed using only one 
data type (i.e., protein, toRNA, or miRNA) compared to 
using all three data types [35]. Next, heatmaps visualized 
differences in protein abundance, toRNA, and miRNA 
expression between the subtypes. Finally, a random forest 
model [36] with 5-fold cross validation was used to iden-
tify molecular features that could classify individuals to a 
subtype. The classifier process is described in Additional 
file 3: Section S2 and Figure S1.

To investigate the biology underlying the molecular 
subtypes, linear regression models identified differen-
tially expressed features within each molecule set (see 
Additional file 4: Section S3 for details). Then, Ingenu-
ity Pathway Analysis (IPA) (QIAGEN Inc.) [37] identi-
fied canonical pathways in which differentially expressed 
features were significantly over-represented, based on a 
hypergeometric/right-tailed Fisher’s exact test with false 
discovery rate (FDR)-adjusted p-value < 0.05 [38]. IPA 
analyses were conducted separately among significantly 
up-regulated and down-regulated features. All analyses 
except those performed with IPA were performed using 
R version 3.6.1.

Results
Unsupervised clustering identified molecular subtypes of 
IPF with distinct clinical characteristics
The scSNF clustering method suggested two as the 
optimal number of clusters based on Silhouette scores 
(Additional file 5: Figure S2). The alternative clustering 
methods (iCluster + and iClusterBayes) suggested a larger 
number of clusters, but these were largely overlapping 
with the scSNF clusters (Additional file 5: Section S4 and 
Table S2). In the sensitivity analyses based on different 
RNA-seq variance filters, scSNF clusters were preserved 
across variance filtering cutpoints (Additional file 5: 
Table S3).

Subtype 1 comprised 105 (45.3%) subjects while sub-
type 2 comprised 127 (54.7%) subjects. Subtype 1 had 
more severe disease at baseline, with lower diffusion 
capacity of the lung for carbon monoxide (DLco) % pre-
dicted (38.3 vs. 43.1; p = 0.01), lower FVC % predicted 
(67.9 vs. 73.8; p = 0.02), and higher CPI (55.8 vs. 51.2; 
p = 0.002). There were no significant differences in age, 
sex, smoking status, medical history, GAP stage [39], 
diagnostic category [40], or antifibrotic treatment status 
at enrollment (Table 1).

During a median follow-up of 27.5 months (inter-
quartile range 15.8–36.7 months), the composite of 
lung transplant or death occurred in 95 (40.9%) subjects 
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(18 lung transplants, 77 deaths, and 137 censored non-
events). The composite of disease progression occurred 
in 143 (61.6%) subjects (88 with FVC decline, 8 lung 
transplants, 47 deaths, and 89 censored non-events). 
In the unadjusted analysis, subjects in subtype 1 expe-
rienced a significantly shorter time to lung transplant 
or death (median 35 vs. 45 months, log-rank p = 0.03; 
HR 1.54, 95% CI 1.03–2.23, p = 0.03) (Fig.  1A) and a 

significantly shorter time to disease progression (median 
21 vs. 32 months, log-rank p < 0.0001; HR 1.96, 95% CI 
1.41, 2.78, p < 0.0001) (Fig.  1B). After adjusting for CPI 
and antifibrotic treatment status at enrollment, subtype 
1 had a significantly shorter time to disease progression 
(adjusted HR 1.79, 95% CI 1.28, 2.56; p = 0.0008) but no 
different time to transplant or death (adjusted HR 1.30, 
95% CI 0.87, 1.96; p = 0.20) (Fig. 1).

When the 52-gene signature was applied to our anal-
ysis cohort, the high-risk group comprised 85 (36.6%) 
subjects and the low-risk group 147 (63.3%) subjects. 
The molecular subtypes were distinct from the 52-gene 
signature risk groups, with no agreement beyond chance 
(k = 0.04, 95% CI= -0.08, 0.17), p = 0.49; Additional file 5: 
Table S4). The 52-gene high-risk group experienced an 
increased risk of lung transplant or death in unadjusted 
and adjusted models (Fig.  2A). However, the high-risk 
group did not experience a significantly increased risk 
for disease progression in unadjusted or adjusted models 
(Fig. 2B).

Molecular subtypes differed based on proteomics and 
miRNA features
Based on good agreement (indicating substantial overlap) 
on the distribution of subjects to a cluster using a single 
molecule type compared to the scSNF multi-omics data, 
proteins (NMI = 0.41) and miRNAs (NMI = 0.62) contrib-
uted substantially to the clustering, while toRNAs had 
little effect (NMI = 0.0003) (Additional file 5: Table S5). 
Heatmaps confirmed this assessment, with clear differ-
ences between the subtypes for proteins and miRNAs but 
not for toRNAs (Fig. 3).

The random forest classifier yielded a 5-iteration mean 
classifier prediction area AUC of 0.95 (sd = 0.03) to pre-
dict the molecular subtypes. To further assess the clas-
sifier’s performance to identify clinically meaningful 
subtypes of IPF, Cox proportional hazard models esti-
mated the risk to experience each composite endpoint in 
each iteration’s training and validation datasets. Although 
the classification of subjects to the molecular subtypes 
based on each iteration’s classifier did not achieve p < 0.05 
in all iterations, the point estimates of HR were in the 
same direction, suggesting consistent classification of 
subjects based on clinically meaningful outcomes using 
the molecular data (Fig.  4). Features selected at least 3 
times in all 5 iterations included 34 proteins and 7 miR-
NAs (see Table  2, including the mean variable impor-
tance for each molecule), and features selected in all 
5 iterations included 4 proteins (BARK1, IF4G2, NDP 
kinase B, UFC1) and 1 miRNA (miR-744-5p).

Table 1  Patient characteristics at enrollment by molecular 
subtype

Subtype 1 
(N = 105)

Subtype 2 
(N = 127)

p-value+

Age 70.08 (8.07) 69.33 (7.62) 0.31

Sex 0.16

  M 83 (79.1%) 89 (70.1%)

  F 22 (21.0%) 38 (30.0%)

Ever smoker 0.59

  Y 73 (69.5%) 83 (65.4%)

  N 32 (30.5%) 44 (34.7%)

History of coronary artery dis-
ease (including prior MI)*

1.0

  Y 33 (31.4%) 39 (31.0%)

  N 72 (68.6%) 87 (69.1%)

History of COPD* 1.0

  Y 19 (18.1%) 22 (17.5%)

  N 86 (81.9%) 104 (82.5%)

History of diabetes* 0.18

  Y 24 (22.9%) 19 (15.1%)

  N 81 (77.1%) 107 (84.9%)

Antifibrotic treatment 0.07

  Nintedanib 24 (22.9%) 18 (14.17%)

  Pirfenidone 41 (38.1%) 43 (33.86%)

  Neither 40 (39.1%) 66 (52.0%)

DLCO % predicted 38.31 
(12.46)

43.09 
(14.69)

0.01

FVC % predicted 67.89 
(15.18)

73.82 
(17.72)

0.02

FEV1% predicted 76.09 
(16.11)

81.03 
(20.00)

0.12

CPI [34] 55.77 (9.93) 51.21 
(11.49)

0.01

Diagnostic category [40] 0.41

  Definite IPF 77 (73.3%) 95 (74.8%)

  Probable IPF 22 (21.0%) 29 (22.8%)

  Possible IPF 6 (5.7%) 3 (2.4%)

GAP stage [39] 0.15

  1 22 (21.0%) 40 (31.5%)

  2 64 (61.0%) 71 (55.9%)

  3 19 (18.1%) 16 (12.6%)
Data are mean (SD) or n (%). Abbreviations: MI: Myocardial infarction, DLco: 
Diffusing capacity of the lungs for carbon monoxide, FVC: Forced vital capacity, 
FEV1: Forced expiratory volume in the first second, CPI: Composite physiologic 
index.

*One subject in subtype 1 was missing medical history.
+Kruskal-Wallis test compared continuous variables and Chi-square test 
compared categorical variables.
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Coordinated alteration of biological pathways in the 
molecular subtypes
Linear regression identified 232 proteins (Additional 
file 5: Table S6), 291 miRNAs (Additional file 4: Table 
S7), and no toRNAs that were significantly differentially 
expressed or abundant between the molecular subtypes. 
In the IPA analysis of differentially abundant proteins, 
209 down-regulated proteins (in subtype 1 compared 
to subtype 2) corresponded to 69 enriched pathways 
(Additional file 6: Table S8). Among the 291 differentially 
expressed miRNAs, 142 were up-regulated, correspond-
ing to 591 experimentally-validated target genes and 345 
significantly enriched pathways, and 149 were down-reg-
ulated, corresponding to 1,313 target genes and 341 sig-
nificantly enriched pathways (Additional file 7: Table S9).

Interestingly, there was substantial overlap in the 
pathway over-representation analysis for proteins and 
miRNA target genes (Fig.  5; and see specific pathways 
highlighted in Table S8 and Table S9). Pathway enrich-
ment shared among down-regulated proteins and up-/
down-regulated miRNAs included mTOR, FGF, VEGF, 
PDGF, ERK/MAPK signaling, NRF2-mediated oxidative 

stress response, and PI3K signaling in B lymphocytes. 
Among enriched pathways that were unique to up-regu-
lated miRNAs, many were related to cellular or metabolic 
processes, such as endoplasmic reticulum stress pathway, 
unfolded protein response, NAD salvage pathway II, and 
glucose and glucose-1-phosphate degradation. Among 
enriched pathways that were unique to down-regulated 
miRNAs, many were related to immunity, including 
altered T and/or B cell signaling, role of RIG1-like recep-
tors in antiviral innate immunity, and crosstalk between 
dendritic cells and natural killer cells.

Discussion
In this analysis of the IPF-PRO Registry, a prospective 
registry of patients with IPF, we used a two-step method 
to harmonize multi-omics datasets and conduct unsu-
pervised clustering based on the molecular features. This 
method identified two novel molecular subtypes of IPF 
associated with distinct clinical characteristics. Patients 
in subtype 1 had more severe disease at enrollment and 
shortened time to disease progression than patients in 
subtype 2, after adjusting for disease severity and use of 

Fig. 1  Risk of outcomes based on the molecular IPF subtype. Kaplan-Meier plots show the time from enrollment to the composite outcome of lung 
transplant or death (A) and the composite outcome of ≥ 10% absolute decline in FVC % predicted, lung transplant, or death (B) for subtype 1 compared 
to subgroup 2. The associated tables show the unadjusted hazard ratio and the hazard ratio adjusted for CPI and antifibrotic treatment use for subtype 1 
compared to subtype 2. HR: hazard ratio; PH: proportional hazards; CPI: composite physiologic index
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antifibrotic treatment at baseline. The distribution of sub-
jects into the molecular subtypes was driven by miRNA 
expression and protein abundance, while toRNA expres-
sion did not differ between the subtypes. Consistent with 
this observation, these molecular subtypes of IPF were 
distinct from risk groups identified using a previously 

described 52-gene (RNA) signature [9, 10]. A signature 
of 34 circulating proteins and 7 circulating miRNAs may 
be useful to classify patients as subtype 1 or 2. These 
data will be important to permit validation of the exis-
tence and clinical implications of these subtypes. A bio-
logical pathway analysis of genes encoding differentially 

Fig. 3  Heatmaps comparing protein abundance and miRNA or toRNA expression in the molecular IPF subtypes determined by the spectral clustering 
Similarity Network Fusion (scSNF) integrated two-step method

 

Fig. 2  Risk of outcomes based on the 52-gene signature. Kaplan-Meier plots show the time from enrollment to the composite outcome of lung trans-
plant or death (A) and the composite outcome of ≥ 10% absolute decline in FVC % predicted, lung transplant, or death (B) for the high-risk group and 
low-risk group. The associated tables show the unadjusted hazard ratio and the hazard ratio adjusted for CPI and antifibrotic treatment use for the high-
risk group compared to the low-risk group. HR: hazard ratio; PH: proportional hazards; CPI: composite physiologic index
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abundant proteins or regulated by the differentially 
expressed miRNAs suggested a coordinated alteration of 
gene expression among individuals at greater risk of dis-
ease progression, including in pathways previously asso-
ciated with pulmonary fibrosis.

Accurate identification of patients with IPF who are 
likely to experience short-term disease progression has 
been proposed as part of an enrichment strategy for 
clinical trial design [41]. Previous studies have demon-
strated associations between circulating levels of pro-
tein biomarkers and IPF prognosis; most of these studies 
measured a limited panel of proteins (selected based on 
disease mechanisms), or evaluated progression-free sur-
vival without considering disease progression [42–47]. 
Interestingly, two independent studies found that sev-
eral neoepitopes of matrix metalloprotease-degraded 
extracellular matrix proteins or collagen synthesis were 
elevated in the blood of patients with progressive IPF 
relative to those with stable IPF [44, 45]. Another study 
used an aptamer-based platform for proteomic profil-
ing of blood in patients with IPF, and identified 9 pro-
teins associated with IPF progression [48]. Interestingly 
two (carbonic anhydrase XIII and NACA) were among 
the 232 proteins that we identified as differentially 

abundant in the IPF subtypes, but while we determined 
that lower abundance was associated with progression, 
this prior study found lower abundance to be protective 
[48]. Similarly, the 52-gene signature has been shown to 
predict transplant-free survival; however, its association 
with disease progression has not previously been tested 
[9, 10]. When applied in our cohort, the high-risk group 
based on the 52-gene signature experienced significantly 
shorter transplant-free survival (as expected), but did not 
experience shorter progression-free survival based on a 
composite of ≥ 10% absolute decline in FVC % predicted, 
lung transplant, or death. In contrast, our molecular sub-
type 1 experienced shortened progression-free survival 
after adjusting for disease severity and antifibrotic drug 
use at enrollment. This suggests better resolution to pre-
dict disease progression based on multi-omics rather 
than gene expression (toRNA) alone. While a recent 
analysis suggested that longitudinal change in peripheral 
blood gene expression predicted a ≥ 10% decrease in FVC 
over follow-up [49], risk ascertainment at a single time-
point would be optimal, with the protein/miRNA classi-
fier of IPF subtypes a candidate for further development 
and validation.

Fig. 4  Random forest classification of subjects into molecular subtypes, based on the risk of experiencing the composite outcome of lung transplant or 
death (A), and the composite outcome of ≥ 10% absolute decline in FVC % predicted, lung transplant, or death (B) in each iteration of the cross-validation 
procedure. For all iterations, the HR was greater than 1, indicating a greater risk of these outcomes in subtype 1 compared to subtype 2. The associated 
tables show the HR, 95% CI, and p-values for each iteration in the training and validation datasets. HR: hazard ratio; CI: confidence interval
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Integrating high-throughput data from multiple plat-
forms remains a challenge. In this study, we initially con-
sidered three methods based on two general approaches. 
iCluster + and iClusterBayes include a variable selection 
step (i.e., lasso) followed by distillation of input matrices 
to a smaller set of latent variables, allowing joint clus-
tering of samples and identification of cluster-relevant 
features [17, 31, 32]. Our two-step scSNF constructed a 
sample-similarity network (where each patient is a sam-
ple) for each omics data type and integrated these net-
works into a fused similarity network using a non-linear 
combination method [13], followed by unsupervised 
spectral clustering [32]. Importantly, the scSNF proce-
dure omitted the variable selection step, limiting one 
source of bias.

The molecular subtypes that we identified based on 
integration of data from several constituents of the gene-
to-protein expression pathway appear to reflect the 
pathobiology of IPF. Several of the proteins that were dif-
ferent in subtype 1 compared to 2 have been implicated 
in IPF pathogenesis. For example, activation of GSK-3 
beta protein, which is reduced in molecular IPF subtype 
1, is enhanced by TGF-beta, contributing to myofibro-
blast differentiation; GSK-3 beta signaling inhibition 
has been proposed as a treatment strategy for IPF [50]. 
PKB beta protein, reduced in subtype 1, has been impli-
cated in the pathogenesis of IPF, where AKT2 knockout 
results in lower IL-13 and TGF-beta production by mac-
rophages, alleviating fibrosis in animal models [51]. The 

Table 2  Molecules selected as classifiers of the molecular 
subtypes of IPF in at least 3 iterations
Molecule Number of 

iterations in which 
molecule was 
selected

Variable importance 
across iterations where 
selected
Mean (standard deviation)

GRB2 adapter 
protein

4 5.96 (1.47)

PKC-A 4 4.92 (2.16)

BCL2-like 1 protein 3 3.93 (3.26)

Sorting nexin 4 4 3.86 (1.67)

DUS3 3 3.29 (1.34)

IF4G2* 5 3.28 (2.29)

NDP kinase B* 5 3.25 (2.54)

GSK-3 alpha/beta 4 3.20 (1.42)

Cyclophilin F 3 2.97 (0.84)

DLRB1 3 2.96 (3.23)

FER 3 2.95 (2.06)

UFC1* 5 2.85 (0.91)

Caspase-3 4 2.70 (1.46)

14-3-3 3 2.66 (0.38)

PKB beta 3 2.41 (3.05)

Sphingosine 
kinase 1

4 2.26 (2.06)

PDE5A 4 2.19 (1.51)

HSP 60 3 2.14 (1.78)

Cofilin-1 3 2.02 (1.13)

SBDS 4 1.96 (0.62)

SMAD2 3 1.70 (0.73)

ERK-1 4 1.69 (0.95)

BARK1* 5 1.63 (0.78)

MAPK2 4 1.63 (0.99)

CSK 4 1.56 (1.01)

Calcineurin 4 1.50 (1.49)

PKB a/b/g 4 1.49 (0.72)

RAC1 3 1.48 (0.73)

IMB1 4 1.14 (0.69)

Aflatoxin B1 alde-
hyde reductase

3 1.02 (0.63)

Cytochrome P450 
3A4

3 0.97 (0.80)

TEC 4 0.91 (0.46)

LYNB 3 0.83 (0.42)

XPNPEP1 3 0.73 (0.43)

hsa-miR-744-5p* 5 2.17 (1.33)

hsa-miR-199a-5p 3 1.94 (0.07)

hsa-miR-126-5p 3 1.61 (0.65)

hsa-miR-107 3 1.46 (0.38)

hsa-miR-3074-5p 3 1.21 (0.15)

hsa-miR-451a 3 1.15 (0.30)

hsa-miR-24-3p 3 1.10 (0.11)
*Indicates a molecule selected in all 5 classifier iterations.

The larger the variable importance score, the more relevant the variable is to 
the prediction.

Fig. 5  Overlap among the enriched pathways of down-regulated pro-
teins, up-regulated target genes for miRNAs and down-regulated target 
genes for miRNAs.
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MAPK/ERK pathway, of which several protein constitu-
ents were reduced in subtype 1, is activated by TGF-beta, 
with ERK-1/2 linked with abnormal cellular senescence 
[52, 53]. MAPKAPK2 (MK2) is elevated in fibroblasts and 
epithelial cells from patients with IPF, and its inhibition 
has been proposed as a treatment strategy based on pre-
clinical models [54]. Interestingly, we found decreased 
protein abundance in the peripheral blood of persons 
with IPF who were at increased risk for physiologic pro-
gression, while the literature suggests that reduced quan-
tity or activity should be protective or therapeutic. It is 
possible that target tissue protein quantity or activity dif-
fers from blood, but these findings may have important 
implications for use of blood proteins as candidate bio-
markers of disease stage and/or treatment response.

Several miRNAs that have been mechanistically linked 
with IPF were differentially expressed in molecular 
IPF subtype 1 compared to 2. We identified increased 
expression of mir-142-5p and reduced expression of mir-
130a-3p in subtype 1. Altered expression of these miRNA 
in macrophages (in a similar direction as we observed) 
has been implicated in lung and liver fibrosis via reduced 
STAT6 signaling; mir-142-5p targets SOCS1 (a negative 
regulator of STAT6 phosphorylation), and mir-130a-3p 
targets the PPAR-g inhibitor [16]. We found reduced 
expression of miR-21-3p and increased expression of 
miR-21-5p in molecular subtype 1. Over-expression of 
miR-21 has been demonstrated in the lungs of patients 
with IPF and in animal models of lung fibrosis, suggesting 
it may function via reduction of Smad7, a downstream 
inhibitor of TGF-beta signaling [15]. We also observed 
differential expression of miR-34a-5p, miR-126-5p, and 
miR-199a-5p in molecular subtype 1 although the direc-
tion of differential expression did not always match that 
expected in IPF based on published literature [55–58].

To gain additional insight into biologic differences 
between the molecular subtypes, canonical pathways 
over-representation analysis (IPA) was conducted sepa-
rately for up- and down-regulated molecules in subtype 
1 compared to 2. The intersection of these datasets com-
prised a number of pathways known to be altered in IPF 
(e.g., VEGF, PDGF, ERK/MAP signaling [52–54, 59]). 
Among non-intersecting (across proteins and miRNA) 
pathways, multiple innate or adaptive immunity-related 
pathways were over-represented among target genes of 
miRNA that were down-regulated in progressive IPF. 
Pathways that were uniquely over-represented among 
target genes of up-regulated miRNA in progressive IPF 
included a number that were related to cellular or met-
abolic processes. Given that miRNA often act as post-
transcriptional down-regulators of gene expression, this 
might suggest that IPF progression is associated with 
increased immune responses and decreased cellular 
metabolism. With miRNA not extensively studied in IPF, 

additional research is needed to better understand these 
results.

Our study has several limitations. First, the aptamer-
based proteomics platform we used contains a targeted 
list of biomarkers that is not comprehensive of all the 
proteins that may be found in the blood or potentially 
associated with pathobiology. Second, molecules mea-
sured in peripheral blood may not reflect the pathobi-
ology of the target tissue [18, 19, 24]. Third, while this 
real-world registry followed participants to death or 
transplant, we cannot exclude the possibility that detec-
tion of disease progression based on only physiologic 
decline was impacted by informative missingness in lung 
function measurements (i.e., sicker patients were less 
able to complete testing). Finally, although we were able 
to internally validate (via resampling) our classifier of the 
molecular subtypes, the classifier of the molecular sub-
types of IPF requires further development and validation 
in an independent cohort.

Conclusions
In summary, we used a well-characterized, prospective, 
real-world cohort of patients with IPF to identify novel 
endotypes of IPF by integrating peripheral blood tran-
scriptomic (toRNA, miRNA) and proteomic information. 
If externally validated, the classifier of patients with IPF 
to molecular subtype 1 or 2 could serve as a biomarker 
for prognostic enrichment in clinical trials. Constituents 
of the classifier, or pathways enriched among progres-
sion-associated molecules, could be explored further as 
therapeutic targets.

A podcast discussing these data and other analyses of 
circulating biomarkers in the IPF-PRO Registry is avail-
able at: https://www.usscicomms.com/respiratory/Todd/
IPF-PROmultiomics.
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