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ABSTRACT

Despite ongoing efforts in cardiovascular research, the acquisition of high-resolution and high-speed images for the purpose of assessing car-
diac contraction remains challenging. Light-sheet fluorescence microscopy (LSFM) offers superior spatiotemporal resolution and minimal
photodamage, providing an indispensable opportunity for the in vivo study of cardiac micro-structure and contractile function in zebrafish
larvae. To track the myocardial architecture and contractility, we have developed an imaging strategy ranging from LSFM system construc-
tion, retrospective synchronization, single cell tracking, to user-directed virtual reality (VR) analysis. Our system enables the
four-dimensional (4D) investigation of individual cardiomyocytes across the entire atrium and ventricle during multiple cardiac cycles in a
zebrafish larva at the cellular resolution. To enhance the throughput of our model reconstruction and assessment, we have developed a paral-
lel computing-assisted algorithm for 4D synchronization, resulting in a nearly tenfold enhancement of reconstruction efficiency. The
machine learning-based nuclei segmentation and VR-based interaction further allow us to quantify cellular dynamics in the myocardium
from end-systole to end-diastole. Collectively, our strategy facilitates noninvasive cardiac imaging and user-directed data interpretation with
improved efficiency and accuracy, holding great promise to characterize functional changes and regional mechanics at the single cell level
during cardiac development and regeneration.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0153214

INTRODUCTION

Cardiac contraction relies on the orchestrated interplay among
cells at the tissue level.1–3 The continuous investigation of myocardial
properties andmechanics is critical for the assessment of cardiac struc-
ture and contractility under physiological and pathophysiological con-
ditions. Recent progress has demonstrated that zebrafish is a powerful
model for investigating cardiac development and repair due to its opti-
cal transparency, genetic tractability, and regenerative capacity.4–7

However, conventional techniques face limitations in analyzing car-
diac architecture and function of zebrafish heart due to insufficient

spatiotemporal resolution and shallow penetration depth. Light-sheet
fluorescence microscopy (LSFM) overcomes these challenges by rap-
idly scanning across the entire ventricle and atrium with high spatio-
temporal resolution and minimal photodamage,8–13 allowing for the
concurrent investigation of myocardial micro-structure and contractile
function.

To reconstruct cardiac contraction following LSFM imaging,
both prospective14 and retrospective15–19 synchronization have been
developed. Bypassing the extra camera and real-time processing for
cardiac gating in the former method, retrospective synchronization
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allows for the four-dimensional (4D) reconstruction of quasi-periodic
cardiac dynamics. However, due to the deluge of raw data and tedious
procedures, the retrospective algorithm usually requires over three
hours to process �100 GB images under the current computational
power, limiting our high-throughput capability to iterate and analyze
cardiac activities. Since parallelization of algorithms provides an effi-
cient way for the time-consuming computation in biomedical imaging
reconstruction,20 we designed and implemented our 4D reconstruc-
tion algorithm based on parallel computing, resulting in a tenfold
improvement in reconstruction efficiency.

In addition, the technical challenge of analyzing intercellular inter-
action within a complex environment poses a major challenge to assess-
ing cardiac contractility and regional mechanics.21 Current unparalleled
high-resolution 4D LSFM image stack requires an accurate segmentation
approach and a user-directed method to interpret cardiac contraction at
the single cell level. In this context, we implemented a deep learning
approach termed 3DeeCellTracker22 to track individual cells across the
entire heart in the zebrafish larva within multiple cardiac cycles, and we
developed a virtual reality (VR)-based interactive platform23–25 to identify
local differences of contracting velocity and quantify cellular motion
from end-systole to end-diastole. This further allows us to investigate
intricate micro-structure, quantify regional contractility, and assess myo-
cardial mechanics across the ventricle and atrium at different cardiac
phases. Collectively, our holistic framework including imaging system
construction, parallel computation, and advanced quantitative analysis
allows for the in vivo investigation of regional variations in myocardium
of zebrafish models with high accuracy and efficiency, holding potential
to foster our understanding of the cardiac development and regeneration.

RESULTS

We have developed a framework, including sample preparation,
image acquisition, and post-processing [Fig. 1(a) and supplementary
material Fig. S1], to demonstrate the feasibility and potential of our
prototype for zebrafish heart imaging and analysis. Briefly, we anesthe-
tized zebrafish larvae ranging from 3 to 7 days post fertilization (dpf)
with 0.05% tricaine and immobilized them in 0.8% low-melting-point
agarose under the microscope, to ensure the growth of the larvae and
optimal transparency. Our six-axis translational stage synchronized by
the customized LabVIEW control scanned the contracting heart across
the sheet of laser, while the sCMOS camera captured image sequences
at each slice [Fig. 1(b) and supplementary material video 1]. Our retro-
spective synchronization algorithm based on image similarity analy-
sis26 has been empowered by parallel computation to reconstruct the
4D cardiac contraction [Fig. 1(c)]. We have further tracked individual
cells using the established 3DeeCelltracker22 within one cardiac cycle
and implemented our VR platform for the interactive quantitative
analysis of cells across the entire heart [Figs. 1(d) and 1(e)].

POINT SPREAD FUNCTION CALIBRATION

Our LSFM system is composed of a horizontal detection arm and
a cylindrical lens-based illumination (supplementary material Fig. S2).
To measure the point spread function (PSF) of our LSFM system, we
imaged fluorescent beads with a diameter of �0.53lm as shown by
Fire pseudo color [Fig. 2(a), supplementary material video 2). To verify
the spatial resolution and minimize the variation of opacity at different
depths, we calibrated the PSF across the whole sample and demon-
strated the representative results of the full width at half maximum

(FWHM) at depths of 10, 30, 50, and 70lm [Fig. 2(b)]. Our results
indicate that the lateral and axial resolutions are 1.266 0.15 and
2.486 0.15lm (n¼ 60 beads), respectively, suggesting the invariant
spatial resolution within the imaging depth.

PARALLEL COMPUTATION-BASED RETROSPECTIVE
RECONSTRUCTION

To improve the efficiency of our retrospective synchronization
for high-throughput analysis, we have established parallel computation
to maximize the usage of multi-core CPU and GPU processors for 4D
cardiac reconstruction. In contrast to 3-h processing of 30 000 frames
(800� 800 pixels/frame) from 100 movies, our current method
accomplished the same task within 20min. Briefly, two steps were
involved. First, to identify cardiac cycles, we assigned independent Z-
movies to individual CPU cores and aligned cardiac phases in different
cardiac cycles using GPU cores until all Z-movies were processed [Fig.
3(a)]. Next, to synchronize different Z-movies, we assigned two con-
secutive Z-movies to each CPU core and aligned cardiac phases within
multiple cycles of all movies using GPU cores [Fig. 3(a)]. We imple-
mented image similarity analysis to match the targeted phase (in red)
with the potential frames (in yellow) in other cardiac cycles in both
steps. Since GPU is able to handle more pixels in parallel,27 we tested
different numbers of frames and Z-movies to compare the computa-
tional efficiency of our new method with the previous version under
varying conditions [Fig. 3(b)]. The results indicate that the image reg-
istration time is proportional to the number of frames (left panel) and
Z-movies (right panel), and the parallel computation improved our
reconstruction efficiency over ten times in both steps.

IMAGING OF THE BEATING ZEBRAFISH HEART

We implemented the aforementioned system and algorithm to
capture the traveling cardiomyocyte nuclei across the entire ventricle
and atrium in transgenic (Tg(cmlc2:nucGFP)) zebrafish larvae (Fig. 4).
We acquired around 100–200 Z-movies per fish (depending on its
size) to cover the entire contracting heart at a rate of 200 frames per
second (fps), with each movie consisting of 300 frames and the step
size of 1lm between consecutive movies. Each Z-movie usually
included five cardiac cycles, but we retained the three complete cardiac
cycles during the 4D reconstruction. The LSFM system provided us
the single cell resolution to investigate the ventricular and atrial con-
traction in zebrafish larvae from 3 to 7 dpf [Figs. 4(a) and supplemen-
tary material videos 3 and 4), and our reconstruction algorithm
allowed us to establish 4D digital heart models from end-systole to
end-diastole with 200 volumes per second [Fig. 4(b) and supplemen-
tary material videos 5 and 6). The integration of our engineering meth-
ods with green fluorescence protein (GFP) labeled myocyte nuclei
depicted the contour of the micro-architecture of ventricle (in pink),
atrium (in blue), and atrioventricular canal in zebrafish larvae, provid-
ing an entry point for the in vivo study of myocardial trabeculation
and compaction during cardiac development and regeneration.

TRACKING OF INDIVIDUAL CARDIOMYOCYTE NUCLEI

To further the quantitative analysis of myocardial contraction
and mechanics, we incorporated an established deep learning
approach termed 3DeeCellTracker22 into our computational frame-
work. Using our reconstructed cardiac LSFM images [Fig. 5(a)], we
were allowed to segment and differentiate individual cardiomyocytes
within multiple cardiac cycles [Fig. 5(b) and supplementary material
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videos 7 and 8). The raw images were first segmented and classified
into cell or non-cell categories by 3D U-Net, which was followed by
the 3D tracking step. To pinpoint the precise cell locations, two
approaches, feedforward network and PR-GLS, were utilized. Unlike

manual annotation, these methods allowed for efficient registration of
cardiomyocytes in current (red circles) and subsequent volumes (blue
crosses) within the region of interest, until all volumes were registered.
To ensure the accuracy of the tracking results, we selected a 2D slice

FIG. 1. 4D light-sheet fluorescence microscopy (LSFM) framework for zebrafish heart imaging and analysis. (a) Workflow of the zebrafish cardiac activity analysis, including
major steps from zebrafish preparation in standard E3 medium with phenylthiourea (PTU) and tricaine, to 4D image acquisition, and to reconstruction and single cell tracking.
(b) Simplified schematic illustration of the customized LSFM system construction. CL: cylindrical lens. EO: excitation objective. DO: detection objective. TL: tube lens. FL: filter.
CAM: sCMOS camera. (c) Illustration of retrospective synchronization for 4D zebrafish image registration. Z-movie indicates a continuous image sequence at a certain depth
along the z-axis. Each frame in the image sequence is represented by a red dot, and the starting and ending phases from end-diastole to end-systole are highlighted in the yel-
low box. (d) Procedures of cell segmentation and tracking. Raw, segmented, and successively registered images are presented from left to right. Individual cells are coded
using pseudo-colors. (e) User-directed interaction, including cell selection and quantitative analysis, has been achieved in the virtual environment.
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from the central region of the heart with 64 cell nuclei and manually
annotated all cells as the ground truth for comparison [Fig. 5(c)]. Due
to the varying intensity and irregular shape of cells close to the bound-
ary, our results indicated that about 80% of cells were correctly tracked
using this approach within one cardiac cycle (�400ms). To identify
differences in contractility across various myocardial regions, we
analyzed the displacements of three representative cells in the atrium,
ventricle, and atrioventricular canal of zebrafish at 3 and 7 dpf, respec-
tively [Figs. 5(d) and 5(e)]. The results indicated that the atrial cell had
the largest displacement during heart contraction, implying that the
atrial contractile function undergoes more significant changes com-
pared to other regions within one cardiac cycle.

USER-DIRECTED ANALYSIS OF CARDIAC
CONTRACTION

Due to numerous traveling cells across the entire heart, an effec-
tive data interpretation method could provide an in-depth analysis of

cardiac contractile function. We have developed a VR platform that
enables us to visualize and assess the regional cardiac contraction with
numerous manipulative functionalities, such as selecting arbitrary cells
and cardiac phase, and measuring cellular properties (Fig. 6 and sup-
plementary material video 9). To demonstrate the feasibility of our
approach, we tracked the whole-cycle trajectories of targeted individ-
ual cells and their current positions indicated by glowing points [Figs.
6(a) and 6(b)]. In addition to individual cells, we were able to select
two arbitrary cardiomyocytes from different regions, such as ventricle
and atrium, to quantify their traveling velocities, volumes, surface
areas, and relative distance to each other over time [Figs. 6(c) and
6(d)]. In addition to individual cells, we also could conduct the group
analysis to measure average velocity [Fig. 6(e)], relative distance varia-
tion between cell pairs [Fig. 6(f)], and surface area to volume (SA:V)
ratio of cells [Fig. 6(g)] in different regions within one cardiac cycle for
zebrafish at 3 and 7 dpf. Our results reflect that the average velocity of
atrial cells was higher than that of ventricular cells, suggesting that the

FIG. 2. Full width at half maximum (FWHM) of beads captured by LSFM at various depths. (a) Raw data of fluorescent beads in a volume of �300� 300� 75 lm3 in the left
panel. The average lateral and axial resolutions of the LSFM are 1.266 0.15lm and 2.486 0.15lm, respectively. Normalized intensity is shown in Fire pseudo color. (b)
Cross section images of beads at different depths ranging from 0 to 75lm. Representative lateral and axial resolutions at different depths were measured along the dash lines.
Scale bars: (a) 50 and (b) 2 lm.
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FIG. 3. Parallel computation for 4D image registration. (a) Procedures of using parallel computation to register different Z-movies. The initial step was to determine the cardiac
cycle. Each CPU core was assigned to initialize the calculation process for one movie, and the GPU was utilized to match a targeted image in red with others in yellow that cor-
respond to the same cardiac phase in subsequent cardiac cycles within the same Z-movie. The matched frame was marked with an additional red box. The next step involved
aligning Z-movies in different depths to start from the same cardiac phase. Each CPU core was assigned to initialize the calculation process between two consecutive movies,
and the GPU was used to match the targeted image in red with others in yellow that correspond to the same cardiac phase in the next Z-movie. (b) Quantitative comparison of
the processing time between parallel computing and sequential computing. The registration time for different numbers of frames (on the left) and movies (on the right) improved
by over tenfold in both the overall process (at the top) and in individual steps (at the bottom).
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regional contractility of the atrium is always larger. Additionally, the
relative distance between cells varies depending on their locations,
allowing us to further investigate the local stretch and strain. The SA:V
ratio holds promise for evaluating the local strain of individual nuclei
and also reflects the developmental change. Collectively, in contrast to
conventional pre-defined visualization and operations, we have proved
the concept that VR platform holds great potential for multi-
dimensional structural and functional investigation of cardiac contrac-
tion at the single cell resolution with the user-directed interaction.

DISCUSSION

Zebrafish is a powerful model for cardiac research due to its opti-
cal transparency, remarkable regenerative capacity, and genetic and
physiological similarity to humans.4–7 We are able to identify over
70% of human genes and more than 80% of human disease genes in at
least one zebrafish counterpart.28 This makes it an ideal model for
both fundamental research and translational investigations in cardio-
vascular disease. The advent of LSFM fosters the 4D investigation of
cardiac morphology and contractile function of zebrafish larvae due to
its high spatiotemporal resolution, minimal photodamage, and optical
sectioning in contrast to other optical imaging methods.16–19 To better
understand the myocardial structure and contractility during heart

formation, development, injury, and repair, we developed a holistic
strategy that integrates LSFM system construction and control, retro-
spective synchronization, individual cell tracking, and interactive VR
platform for quantitative assessments. Overall, our framework enables
us to efficiently image the heart, reconstruct the 4D model, track and
quantify individual cells, providing an entry point to assess cardiomyo-
cytes functionalities and regional myocardial deformation.

Our customized LSFM system provides a cellular resolution of
1.26lm in the lateral direction and 2.48lm in the axial. While the
anisotropic resolution of our current LSFM might affect the quality of
4D reconstruction, the cellular resolution of this customized system is
sufficient for distinguishing zebrafish cardiomyocytes with the diame-
ter ranging from 10 to 20lm.29,30 The 3D reconstruction model of
fluorescent beads further verifies the resolving power of our current
system (supplementary material video 2). Further efforts in multi-view
fusion and deconvolution techniques will enhance our imaging capa-
bilities, allowing us to overcome the limitations stemming from resolu-
tion disparities between different imaging directions.13

Our LSFM system with retrospective reconstruction method
allows us to analyze the contracting ventricle and atrium at over 200
volumes per second. However, the deluge of data in 4D light-sheet
imaging remains a challenge in both acquisition and analysis. Our

FIG. 4. Light-sheet imaging of GFP-labeled cardiomyocyte nuclei in the transgenic Tg(cmlc2:nucGFP) zebrafish larvae. (a) Cardiac contraction was captured from ventricular
systole to diastole in 3–7 days post fertilization (dpf), respectively. (b) 4D Reconstruction of contracting hearts in zebrafish larvae at 4 (top) and 7 dpf (bottom) was presented
as a maximum intensity projection (MIP) image. The clock on the upper left of each frame indicates the cardiac phase starting from end-systole. Cardiac ventricle and atrium
are depicted in pink and blue, respectively. V: ventricle. A: atrium. AVC: atrioventricular canal. Scale bar: 30 lm.
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system generated approximately 100 GB of images in a single fluores-
cent channel within five cardiac cycles. Due to the independence of
each Z-movie, parallel computation depending on multi-core CPU
and GPU is able to improve the reconstruction efficiency over ten
folds. However, parallel computing also poses challenges for memory

management. To avoid memory fragmentation and computer slow-
down caused by excessive memory consumption, we optimized our
algorithm by minimizing the size of memory allocation and dealloca-
tion. For instance, we cleared the loaded images after each call and
experimented with different types of image buffers. As a result, our

FIG. 5. Cell tracking results for zebrafish beating heart. (a) Raw and segmented images of Tg(cmlc2:nucGFP) zebrafish heart at 7 dpf were presented as a MIP image. The
total number of tracked cells is 580. (b) Cell tracking algorithm enabled us to register cells among various cardiac phases. Manually corrected cells in the first volume were
denoted as red circles, while the cells registered by 3DeeCellTracker in target next volume were denoted as blue crosses. (c) Assessment of the tracking accuracy in 64 cells
over time. The results indicate false positive (FP) labels where non-cell regions were labeled as cells and false negative (FN) labels where specific cells were not detected.
Individual cells were assigned pseudo-colors to differentiate them. (d) and (e) Further displacement analysis allowed for the tracking of representative cells in the ventricle,
atrium, and AVC in the 3D space at 3 and 7 dpf, respectively.
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memory usage increased much less than the reconstruction efficiency.
We performed a quantitative comparison to demonstrate the improve-
ment in memory performance of our parallel computing algorithm
(supplementary material Fig. S3).

While the retrospective synchronization assumes that cardio-
myocytes return to their original positions after each cardiac cycle,
previous studies have demonstrated the feasibility of this method and
indicated that the heartbeat variability in zebrafish embryos is only

FIG. 6. Manipulative functionalities of our VR platform on 4D zebrafish heart models. (a) The VR platform provides users with an immersive viewing and interactive experience of a
4D zebrafish heart model, allowing us to visualize and analyze the heart function in a user-defined mode over time. (b) Overview of the analyzing tool in VR. The available interac-
tions in the VR platform include cell selection, time point selection, time pause, and lighting adjustment. Trajectories for the selected cells are displayed as dotted lines, and a glowing
point indicates the current position in the trajectory. After cell selection, the VR platform provides quantitative analysis outputs, including velocity, volume, surface area, and relative
distance if two cells are selected. (c) and (d) To validate the platform’s functions, we randomly selected two cells in the ventricle and atrium (VC: ventricular cell and AC: atrial cell)
and compared their traces at different time points. (e)–(g) After collecting the measurement results from our VR platform, we compared the velocity and relative distance change in
one cardiac cycle between selected cells, and the SA:V ratio for selected cells in different heart regions at 3 (top) and 7 dpf (bottom), respectively. (e) The average velocity changes
in five ventricular cells and five atrial cells. (f) The relative distance changes between three groups of cells, i.e., two ventricular cells, a ventricular cell and an atrial cell, and two atrial
cells. (g) SA:V ratio change of four randomly selected ventricular and atrial cells during one cardiac cycle are depicted over the time course.
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�1% in the period length between consecutive beats,15,16 echoed by
our results in Figs. 5(d) and 5(e). Other methods such as light-field
microscopy hold great potential to minimize the impact of this
assumption and redundant sampling in a single slice.31–33 In addition,
our results indicate a larger fluctuation of the SA:V ratio in the atrium
in comparison to the ventricle [Fig. 6(g)], implying that the multi-view
deconvolution approach could improve the image contrast if the
atrium is away from the detection objective lens.13 To further improve
the accuracy and efficiency of the reconstruction algorithm, we will
also investigate two methods for identifying cardiac cycle and aligning
cardiac phases: the sum of squared differences (SSD)34 and Pearson’s
correlation.35 The former one is potentially useful for finding cardiac
cycle in each Z-movie as this approach assumes that all processed
images have a similar range of intensities. The latter is better suited for
cardiac phase alignment across different Z-movies as it assumes a lin-
ear relationship among all processing images.

While computational analysis of cardiac contractile function has
been established in some imaging modalities,21 approaches tailored for
LSFM are still under development. Due to the contribution of cardio-
myocytes to cardiac contraction,36,37 we utilized the 3DeeCellTracker
tool to track individual cardiomyocytes from end-systole to end-
diastole. More training data for this neural network will definitely
improve the tracking accuracy from 80% to a higher level, but a data-
efficient method is also needed to reduce the time-consuming manual
annotation. Our ongoing efforts in machine learning38,39 provide an
entry point to minimize the training dataset for this purpose. By inte-
grating LSFM and deep learning methods, we investigated representa-
tive cardiomyocytes in the atrium, ventricular apex, base, and
atrioventricular canal of zebrafish at 3 and 7 dpf. Our findings indicate
that ventricular myocardium undergoes less deformation, which could
be attributed to the thicker myocardium of the ventricle.40 We also
found that the cardiomyocytes at 3 dpf exhibited a larger displacement
[Figs. 5(d) and 5(e)] and SA:V ratio [Fig. 6(g)] compared to those at 7
dpf. These findings suggest that myocardial properties or hemody-
namics may contribute to the changes observed as the fish grow.41,42

However, it is crucial to emphasize that conducting a comprehensive
statistical analysis is imperative for future investigations to further
understand and validate these observations.

In addition to the current study of myocardial contractility using
the transgenic Tg(cmlc2:nucGFP) zebrafish line, other transgenic mod-
els such as Tg(tp1:GFP) for Notch activity and Tg(fli1:DsRed) for endo-
cardium could also extend our study in elucidating cardiac
morphogenesis and regeneration (supplementary material Fig. S4).
One possible extension of our method is to implement multi-channel
fluorescence imaging to track numerous lineages and cell types such as
cardiomyocytes, endothelial cells, and fibroblasts for the study of cellu-
lar heterogeneity and intercellular interaction during the cardiac devel-
opment and regeneration.43 Ongoing efforts on the integration of
advanced imaging methods such as light-field microscopy will enable
us to investigate hemodynamics, hemostasis, and thrombosis, as well
as their interaction with cardiac function in the live zebrafish
models.44–46

To better visualize and analyze the 4D heart model, we also
developed a VR platform for user-directed manipulation with more
freedom. Our platform provides an immersive and interactive experi-
ence for studying individual cells and global patterns with high accu-
racy and efficiency. This enables us to quantify the cellular velocity

and SA:V ratio change across the entire ventricle and atrium, investi-
gate the physical relationship between arbitrary cells and regions dur-
ing the contraction, and further deepen our understanding of their
roles in myocardial mechanics.41,47 The use of VR will also enable us
to perform complex tasks such as cell segmentation and annotation
more efficiently and accurately, as users can interact with the data in a
straightforward manner and adjust parameters in real time.23–25 Since
this progressive research provides more potential for the study of intri-
cate architecture and dynamics, we will improve its generalizability
and functionality for more animal models across numerous scales.13,24

Different from conventional ejection fraction or strain analysis,
our computational analysis allows us to unravel the difference in
regional myocardial contractile function under physiological and path-
ophysiological conditions.21,48 Our continuous efforts in 4D live imag-
ing enable us to investigate the underlying mechanisms of heart
disease that perturb cardiac structure and function. The integration of
our 4D imaging platform and multi-dimensional computation with
transgenic zebrafish models provides an entry point for the in vivo
investigation of myocardial infarction, cardiac arrhythmias, and con-
genital heart defects. With the enhancement of computation power,
we will assess more cardiac phases and cycles to capture the variability
of contractility over time. A more comprehensive assessment includ-
ing stress and strain analysis will also advance our understanding of
myocardial contractile function at both cellular and tissue levels.
Collectively, we have proved that this holistic strategy allows for the
in vivo study of cardiac contractile function, holding great promise to
uncover the mechanism underlying cardiac morphogenesis and facili-
tate new therapies.

METHODS
Customized LSFM system with program control

We built an in-house LSFM imaging system (supplementary
material Fig. S2) using a continuous-wave diode-pumped solid-state
(DPSS) laser system with dual wavelengths at 473 nm (LRS-0473-
GFM-00100–03, Laserglow Technologies) and 532nm (LRS-0532-
GFM-00100–03, Laserglow Technologies) as the illumination sources.
The initial beam diameter was �2mm, with a divergence less than 1.5
mrad. Both beams were aligned before passing through a 5� achro-
matic beam expander (GBE05-A, Thorlabs) and a variable iris (ID25,
Thorlabs). The aligned beam was focused by a plano–convex cylindri-
cal lens (f¼ 50mm, Thorlabs) and relayed by a pair of lenses (CLS-SL,
ITL200, Thorlabs) to the back focal plane of the illumination objective
lens (Plan Fluor, 4�/0.13, Nikon). This optical setup yields a light
sheet with a beam waist of 1lm and an effective width of 2mm. The
detection module was composed of a water-immersion objective lens
(Plan Fluor, 20�/0.5, Olympus) for fluorescence detection, a tube lens
(ITL180, Thorlabs), a filter set (Semrock), and an sCMOS camera
(Flash 4.0 v3, Hamamatsu). A 3D-printed chamber was made to hold
the zebrafish larva and the detection objective. A six-axis stage was
installed to precisely position the specimen. The control of this whole
system was customized via LabVIEW 2020 for laser illumination, sam-
ple scanning, and fluorescence detection.

PSF calibration

We diluted the fluorescent beads to a concentration of 1:150 000
using a solution of 0.8% agarose with de-ionized water. The diluted
beads were mounted in a fluorinated ethylene propylene (FEP) tube
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and immersed in a water-filled chamber for imaging. The waist of the
Gaussian beam, determined by the excitation wavelength and the
numerical aperture (NA) of the illumination objective lens dominates
the axial resolution in the LSFM system. In our light-sheet setup, axial
resolution is mainly given by the beam waist, and other factors include
the NA of the detection lens, the refractive index, and the emission
wavelength.49

Preparation of the transgenic zebrafish sample

Transgenic Tg(cmlc2: nucGFP), Tg(tp1: GFP), and Tg(fli1a:
DsRed) zebrafish lines were used. Animal protocols, experiments, and
housing in this manuscript have been approved (IACUC #20–07) and
conducted under the oversight of the University of Texas at Dallas and
University of Texas at Arlington Institutional Animal Care and Use
Committee. To maintain the optical transparency of the larvae, we
added 0.003% phenylthiourea (PTU) in the medium to suppress pig-
mentation of larvae at 20 hours post fertilization (hpf). Zebrafish larvae
were anesthetized in 0.05% tricaine for 10min to ensure immobiliza-
tion, followed by the immersion in 0.8% low-melt agarose at 37 �C in
the FEP tube (refractive index: �1.33). The whole specimen with the
FEP tube was held by the translational stages and placed inside the
chamber filled with water. Tg(cmlc2: nucGFP) larvae were imaged
every 24 h from 72 to 168 hpf, while Tg(tp1: GFP) and Tg(fli1a:
DsRed) lines were imaged at 96 and 120 hpf.

Image acquisition

The sCMOS camera continuously recorded Z-movies (image
sequences), while the light-sheet sectioned a thin layer of the contract-
ing heart at different depths. We reiterated the recording-scanning
process to capture 300 frames in each Z-movie to cover 3–5 cardiac
cycles. To meet the Nyquist-Shannon sampling theorem, we set the
step size between two consecutive slices as 1lm and captured
100–200 Z-movies to cover the entire volume.

Image registration

To register different Z-movies, the first key step was to estimate
the cardiac cycle length. The number of images N between the first
and fourth peak systolic frames in the first movie was manually
counted, and the average cycle length L was defined as L¼N/3� E,
where E is the exposure time. The cardiac cycle length was empirically
between 0.85 L to 1.15 L.17 Then, each Z-movie was split into different
cycles based on each possible cycle length from 0.85 L to 1.15 L, and a
within-movie similarity comparison was performed for each Z-movie.
Specifically, every image in each cycle was back projected to the previ-
ous cycle, and the SSD between the two cycles was calculated. The
cycle length with the smallest SSD was chosen as the most possible
cycle length. The second key step was to align the starting points of Z-
movies at different axial locations. An iterative image similarity com-
parison through the first Z-movie to the last Z-movie was used. First, a
clip including around three cardiac cycles in the first Z-movie with
start slice number S was cropped. Multiple clips in the second and
third Z-movies were cropped with the same length but with adjusted
start slice number SþD, where D stands for the cardiac phase differ-
ence between these two Z-movies. To determine the best D for align-
ing the first two clips, we computed the SSD between them. We also
calculated the SSD between the clips of the first and third Z-movies, as

well as the second and third Z-movies, to avoid local optimization.15

We picked the correct clip in the second Z-movie by identifying the
smallest SSD and aligned all subsequent Z-movies iteratively using the
same method.

Parallel computation

We used two parallelism strategies to speed up the processing of
images in our algorithm. First, we implemented task parallelism into
the CPUmulti-core parallel processing by adapting the MATLAB par-
allel computing toolbox into our established algorithm.50 Next, we
applied the data parallelism strategy to the image to be processed. We
converted them into gpuArray datatype and used CUDA (Compute
Unified Device Architecture) to perform computations on GPU. The
improved reconstruction algorithm was programmed using MATLAB
and tested on a workstation equipped with Intel i9-10900X CPU
(3.7GHz, 10 cores), 64.0 GB RAM, NVIDIA Quadro RTX 5000
graphics card (3072 CUDA cores, 16 GB GDDR6 memory).

Cell tracking

We implemented the deep learning method, 3DeeCellTracker,22

to segment cardiomyocytes at different cardiac phases. We used water-
shed method51 to separate continuous regions of voxels, and then
assigned each region a number. The segmented cells were manually
corrected only in the first volume of 3D images. In the following 3D
tracking step, feedforward network was used to predict cell positions
based on spatial patterns of cells maintained between previous and
current images. The predicted positions are corrected with PR-GLS52

to obtain precise cell locations. We visually inspected the tracking
results by comparing the locations of tracked cells with the corre-
sponding raw images.

VR analysis for assessment of cardiac activities

Our VR analysis framework consisted of processing and segment-
ing zebrafish cardiac images, producing a surface mesh for each individ-
ual cardiomyocyte nucleus, model importing, and interaction with each
individual nucleus to intuitively analyze the cardiac contractility and
morphology such as cell trajectory during each cycle. To interact with
the 4D heart model in the virtual environment, we started by obtaining
the cell tracking results from 3DeeCellTracker. Next, we validated the
tracking data and saved cells with consistent image intensity across all
volumes in Python. Afterward, we customized a Python program to
generate a surface mesh and assign a unique color code to each cell in
3D Slicer. The heart models including all cells in different timepoints
were exported as .obj files with .mtl files and imported into Unity. We
further customized C# programs to allow for 4D visualization and inter-
active analysis. The VR platform allows for cell selection, time point
selection, time pause, and lighting adjustment. The user can select two
cells and analyze their trajectories, velocities, volume, surface area, and
relative distance. The time point selection option allows the user to
choose a specific time for 4D data analysis.

SUPPLEMENTARY MATERIAL

See the supplementary material, which includes four supplemen-
tary figures and nine supplementary videos. Supplementary material
Fig. 1 provides the overview of the zebrafish cardiac imaging and anal-
ysis pipeline. Supplementary material Fig. 2 depicts illustrations and
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photos of our LSFM hardware system. Supplementary material Fig. 3
compares the workstation memory usage for 4D reconstruction algo-
rithms. Supplementary material Fig. 4 includes other transgenic mod-
els including Tg(tp1:GFP) for Notch activity and Tg(fli1:DsRed) for
endocardium under our LSFM microscope. All supplementary mate-
rial videos provide supporting materials including the LSFM system
simulation, the 4D reconstruction and cell tracking, and the VR analy-
sis of the heart.
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