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Background: Serological surveys have been the gold 
standard to estimate numbers of SARS-CoV-2 infec-
tions, the dynamics of the epidemic, and disease 
severity. Serological assays have decaying sensitiv-
ity with time that can bias their results, but there is a 
lack of guidelines to account for this phenomenon for 
SARS-CoV-2.
Aim: Our goal was to assess the sensitivity decay of 
seroassays for detecting SARS-CoV-2 infections, the 
dependence of this decay on assay characteristics, 
and to provide a simple method to correct for this 
phenomenon.
Methods: We performed a systematic review and meta-
analysis of SARS-CoV-2 serology studies. We included 
studies testing previously diagnosed, unvaccinated 
individuals, and excluded studies of cohorts highly 
unrepresentative of the general population (e.g. hos-
pitalised patients).
Results: Of the 488 screened studies, 76 studies 
reporting on 50 different seroassays were included 
in the analysis. Sensitivity decay depended strongly 
on the antigen and the analytic technique used by 
the assay, with average sensitivities ranging between 
26% and 98% at 6 months after infection, depending 
on assay characteristics. We found that a third of the 
included assays departed considerably from manufac-
turer specifications after 6 months.
Conclusions: Seroassay sensitivity decay depends on 
assay characteristics, and for some types of assays, 
it can make manufacturer specifications highly unreli-
able. We provide a tool to correct for this phenomenon 
and to assess the risk of decay for a given assay. Our 
analysis can guide the design and interpretation of 
serosurveys for SARS-CoV-2 and other pathogens and 
quantify systematic biases in the existing serology 
literature.

Introduction
Throughout the COVID-19 pandemic, policymakers have 
been guided by the number of past infections inferred 
from serological assays. Seroassays have been heav-
ily used to estimate the proportion of individuals that 
have been infected, the rate of fatal or severe infec-
tions [1-5] and population-wide immunity [6-8], and to 
anticipate the effect of future infection waves [9,10], 
among other purposes.

However, antibody levels wane with time after infec-
tion [11], reducing the sensitivity of serological assays 
for detecting previous infections [12-14]. We refer to 
the decay of assay sensitivity (in the context of sero-
surveillance) with time after seroconversion as seror-
eversion (by ‘time’, we refer to the time spanned 
between COVID-19 diagnosis and serological testing). 
Seroreversion is a major potential source of bias when 
estimating numbers of infections [1,15,16], and because 
these estimates guide public health policies such as 
vaccination programmes, it is important to account for 
this phenomenon.

More broadly, understanding seroreversion in general 
is important for the management of other emerging 
infectious diseases. For this, the study of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infections presents a unique opportunity. Firstly, an 
emergent pathogen with distinct symptoms, lead-
ing to a high rate of people seeking diagnosis and 
doctors requesting tests, and short incubation times 
allows for precise timing of epidemic waves and infec-
tions. Secondly, in some cohorts, it can be assumed 
that reinfections are rare (i.e. serosurveys performed 
after first epidemic waves). Thirdly, large numbers of 
serological surveys were performed for SARS-CoV-2 
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infection, using a wide range of assays and cohorts. 
These features of the COVID-19 pandemic allow for a 
rich analysis of seroreversion.

Strikingly, there is a lack of general analyses and 
guidelines to correct for seroreversion in the SARS-
CoV-2 literature, to the best of our knowledge [15-17]. 
Time-varying sensitivity of seroassays has been evalu-
ated in previous studies, but these were limited to few 
assays or short time spans [13,14,18-21]. Other stud-
ies analysed the change in quantitative antibody lev-
els [11,13,22-26], which is informative for other uses of 
serological assays (e.g. studying immune protection), 
but not for infection surveys.

We performed a systematic review and meta-analysis 
of serology studies of COVID-19, to better characterise 
seroreversion across assays. We collected and curated 
time-specific sensitivity estimates from serological 
studies testing previously diagnosed COVID-19 patients 
who had not received COVID-19 vaccines. We analysed 
76 of more than 400 screened studies, encompassing 
50 seroassays, 290 data points and 44,992 tests.

We present time-varying sensitivity estimates for the 
assays included in the analysis and the dependence 
of seroreversion on assay characteristics. Finally, we 
compare time-varying sensitivities to manufacturer-
reported sensitivities and estimate the risk of seror-
eversion bias in the literature, providing an overview 
of how seroreversion impacted the performance of 
emergency-approved seroassays during the COVID-19 
pandemic.

Methods

Literature search
We performed a systematic literature review of sero-
prevalence studies, including studies identified up to 
13 July 2022 and using search parameters detailed in a 
prior publication [27].

We supplemented this analysis with a search on 
medRxiv, BioRxiv, PubMed, SSRN and Google Scholar, 
on 30 June 2021 using the key “COVID-19 longitudinal, 
antibody waning” and on 15 February 2022 using the 
key “COVID-19 seroreversion”. Additional studies were 
taken from a prior review [28]. If a study cited prior pub-
lications assessing seroreversion in the same research 
cohort, we included those prior publications.

Inclusion and exclusion criteria for studies to be 
included in the analysis are listed in the Supplement, 
section A. The results of the systematic search are 
summarised in Figure 1. Broadly, we excluded stud-
ies reporting on vaccinated individuals and on highly 
unrepresentative groups. For the final list of included 
studies, see Supplementary Table S1. Details of the 
included study cohorts (e.g. age, sex) are shown in 
Supplementary Table S2 and further discussed in 
Supplement section A. Most cohorts (90%) were sero-
logically tested during 2020, indicating that the rein-
fection incidence is likely to be low in the analysed 
data [29] and that infections mainly correspond to the 
original SARS-CoV-2 variant [30]. A list of the included 
studies and search details is presented in the GitHub 
repository associated with the project.

What did you want to address in this study?
Knowing how many people get infected with SARS-CoV-2 is important for determining the severity of the 
virus, herd immunity thresholds and groups at higher risk. To estimate this, results from antibody tests are 
used. However, antibody levels fall with time after infection, which can make these tests unreliable. We 
aimed to quantify the reliability of different tests, to understand possible biases in our understanding of 
COVID-19.

What have we learnt from this study?
The change of antibody test reliability through time is very variable, and it depends on assay characteristics. 
Some assays will give strongly biased estimates of infections a couple of months after an epidemic wave, 
while others will remain reliable for many months. We provide a tool for researchers to assess the risk that 
an assay will give biased results, and to quantitatively correct for this effect.

What are the implications of your findings for public health?
Because test reliability changes across time, some antibody tests have the potential to strongly bias our 
understanding of crucial aspects of COVID-19. As this effect varies depending on the test, the reliability of 
test results needs to be considered in a test-specific way. For future outbreaks and new infectious diseases, 
it is important that public health agencies provide guidelines and tools to account for this possible bias.

KEY PUBLIC HEALTH MESSAGE
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Analysed assay characteristics
Serological assays have different characteristics. We 
considered only some assay characteristics to keep 
model complexity low. We did not consider antibody 
isotype because IgG is used in all assays, and a prelim-
inary analysis did not show effects for including other 
isotypes (data not shown). We considered whether the 
assay was quantitative or a lateral flow assay (LFA). We 
did not consider the specific type of quantitative read-
out technique, guided by preliminary analyses (data 
not shown). We considered all three antigens: nucle-
ocapsid, spike protein and S1 receptor-binding domain 
(RBD). We considered three different types of antibody 
binding in quantitative assays: indirect, competitive 
and direct (the latter also called double-antigen sand-
wich assays in the literature).

Statistical model
We fitted a hierarchical logistic regression Bayesian 
model to the data. For a given cohort of N serologically 
tested individuals in a study (all of whom had a previ-
ous COVID-19 diagnosis), we modelled the likelihood of 
the number of positive results x, with a binomial distri-
bution with sensitivity θ:

 

𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥|𝜃𝜃𝜃𝜃) ∝ 𝜃𝜃𝜃𝜃𝑥𝑥𝑥𝑥(1 − 𝜃𝜃𝜃𝜃)𝑁𝑁𝑁𝑁−𝑥𝑥𝑥𝑥  

 

Each cohort of N individuals tested in a study was 
associated with a time of testing t (i.e. the average time 
between COVID-19 diagnosis and serological testing for 
this cohort). Throughout the text, we refer to a cohort 
of individuals tested in a given study s, at a given time 
t, with an assay a, as a data point (e.g. a cohort tested 
across different times corresponded to multiple data 
points). We modelled the sensitivity of data point θa,s,t 
(assay a, time t, study s) with the logit function:

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 � 𝜃𝜃𝜃𝜃𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠,𝑡𝑡𝑡𝑡
1−𝜃𝜃𝜃𝜃𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠,𝑡𝑡𝑡𝑡

� = (𝜇𝜇𝜇𝜇 + 𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎 + 𝑢𝑢𝑢𝑢𝑠𝑠𝑠𝑠) + (𝛽𝛽𝛽𝛽 + 𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎) × 𝑡𝑡𝑡𝑡  

 where μ is the mean intercept, ua and us are the ran-
dom effects on the intercept of assay and study, β is 
the mean time-slope and ba is the random effect of 
assay on the slope. We set flat priors for μ and β. We 
set gamma priors with shape and rate parameters of 4 
for the standard deviations σua , σus and σba of the ran-
dom effects.

Figure 1
Prisma flow diagram, systematic review on SARS-CoV-2 seroassay sensitivity, January 2020–July 2022 (n = 555)

Dx: diagnosis; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SSRN: Social Science Research Network.
Diagram from [41].
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To study the effect of assay characteristics, we modi-
fied the equation of the logistic regression to include 
their effects on the slope:
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Parameters βLFA , βDirect and βCompetitive are the effects on 
the time slope of using, respectively, LFA, quantita-
tive-direct or quantitative-competitive assay designs. 
Variables La , Da and Ca take values of 0 or 1 to indicate 
whether assay a uses that design. We did not include 
an effect for the quantitative-indirect design, mak-
ing it the baseline slope (thus, the parameters above 
indicate a difference relative to this design). Similarly, 
βNucleocapsid , βSpike and βRBD are the effects of the antigen 
used on the time slope.

We fitted the models using STAN [31], with four chains 
with 4,000 draws each (1,000 warmup) and default 
parameters.

We tested the model fits using a cross-validation anal-
ysis, leaving out data points from model fitting and 
obtaining sensitivity predictions for the left-out data. 
We repeated this procedure to obtain an estimate for 
every data point. We used a tailored procedure that 
required that every prediction involved extrapolation 
of the model through time (for details see Supplement 
section B).

Estimation of testing times
When studies did not report the median time between 
diagnosis and serological testing for their cohort, we 
estimated these times using reported case curves [32] 
for the study’s location (see details in Supplement sec-
tion A).

Data and code availability
All the data, code, literature pointers and review com-
ments are available at the associated GitHub page.

Results

Assay variability in seroreversion
We fitted a model without considering assay character-
istics. In Figure 2, we see the slope of sensitivity decay 
obtained for each assay (we provide the correspond-
ing sensitivity–time curves in Supplementary Figure 
S1). Estimated slopes were highly variable across 
assays (random effects of the assay were σua  = 0.26 
(95% credible interval (CrI): 0.19–0.36) for the inter-
cept and σba  = 0.66 (95% CrI: 0.31–1.04) for the slope). 
Interestingly, although most assays had decreasing 
sensitivity as expected (negative slopes), some assays 
had increasing sensitivities (positive slopes, shaded 
region in Figure 2). The positive slopes were not due 

to a lower starting sensitivity, or an initial increase fol-
lowed by a decay. In Supplementary Figure S2, we pro-
vide an additional analysis in which an early and a late 
slope are fitted to these assays, where both early and 
late changes in sensitivity were increasing. There was 
also considerable variability in the intercepts between 
different studies using the same assay, with a stand-
ard deviation of σus  = 0.81 (95% CrI: 0.67–0.97) (larger 
than the between-assay standard deviation), outlining 
the importance of this source of variability.

We note that while some assays had many data points 
spanning several months, other assays only had a 
few time points (several assays with only a few data 
points can be seen in Supplementary Figure S1). For 
the latter, our model’s sensitivity estimates involved 
extrapolation of sensitivity across time. We tested our 
model’s performance at extrapolation using a cross-
validation procedure specifically designed for this 
(method details in Supplement section B). We found 
that the 95% CrI contained the validation data 91.7% of 
the time. For assays with fewer than nine data points 
(which applied to 99 of the 290 data points), 95.1% of 
the data points were within the cross-validation CrI.

Assay characteristics determine seroreversion
Next, we analysed the relation between assay charac-
teristics and sensitivity decay. We fitted a model with 
effects of different assay characteristics on the assay-
specific slope. We included terms for each of the three 
antigens (nucleocapsid, spike, and RBD) and for three 
different assay designs (LFA, quantitative-direct, quan-
titative-competitive), leaving the fourth assay design 
(quantitative-indirect) as the baseline slope.

Both the analytic technique and the antigen showed 
important effects on seroreversion (Figure  3, Table  1). 
The slope term for LFA assays was negative, βLFA  = −0.23 
(95% CrI: −0.40 to −0.07), and βLFA < 0 in 99.6% of 
the posterior samples, indicating that their sensitiv-
ity decayed faster than that of quantitative-indirect 
assays. The slope term for quantitative-direct assays 
had a value of βDirect  = 0.31 (95% CrI: 0.15–0.48), and 
βDirect > 0 in 99.9% of the posterior samples, indicating 
that they decayed more slowly. The term for quantita-
tive-competitive assays had a value of βCompetitive  = −0.03 
(95% CrI: −0.25 to 0.20), and βCompetitive > 0 in 40.1% of 
the posterior samples, showing no clear difference 
compared with the quantitative-indirect assays (which 
may be due to the small number of assays in the quan-
titative-competitive group). Differences between ana-
lytic techniques can be appreciated by comparing the 
different columns of Figure 3.

On the antigen effect, assays targeting the nucleocap-
sid showed faster seroreversion than those target-
ing the spike protein (βNucleocapsid < βSpike in 99.7% of the 
posterior samples). Assays targeting the RBD had on 
average slower seroreversion than those targeting 
the spike protein, although the effect was not statisti-
cally significant (βSpike < βRBD in 87.3% of the samples). 
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Differences between antigens can be appreciated by 
comparing the different rows of Figure 3.

To see how the different slopes translate to differences 
in sensitivity, the reader can compare the sensitivi-
ties of the different types of assays for a given delay 
between diagnosis and test in Table 1. Note that there 
was considerable variability between different assays 
of the same type (i.e. between the black lines within 
a same panel). We provide assay-specific sensitivity 

profiles in Supplementary Table S2. When estimating 
the extent of seroreversion for a given survey, assay-
specific sensitivity estimates should be preferred over 
the coarser estimates provided for assay types.

All these results were robust to fitting separately a 
model using only assay antigen (the detailed results of 
this model fit are provided in Supplementary Figure S3) 
and a model using only analytic technique (detailed 
results provided in Supplementary Figure S4), and 

Figure 2
SARS-CoV-2 seroassay slopes estimated without assay characteristics, January 2020–March 2022 (n = 290 cohorts)

LFA: lateral flow assay; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
Points show the mean of the posterior distribution of the slope for each assay; horizontal bars show the 95% credible intervals. The slopes 
were obtained from the model that does not include effects of assay characteristics, but colour and point shape indicate the characteristics of 
the assays. The grey shaded area marks assays with slopes significantly greater than 0. Sources: [8,12-15,18,20,42-120].
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to excluding data points with estimated times from 
the model fit (these analyses are appended as extra 
material in Supplementary Figures S5 and S6). The 
full model had cross-validation accuracy similar to the 
original model, with data points falling in the 95% CrI 
of their predictions 92.0% of the time, and CrI were 
narrower (more precise) in 81% of the data points.

Finally, we tested whether specificity was also related 
to assay characteristics. Since specificity does not 
have temporal dynamics, we only analysed point esti-
mates (see the details of the model in Supplement sec-
tion G). Similar to sensitivity, we found that LFA assays 
have on average smaller specificities than quantitative 

assays (βLFA < 0 in 98.4% of the posterior samples). 
Unlike sensitivity, we did not find significant differ-
ences with quantitative assays (e.g. βDirect > 0 in 85.0% 
of the posterior samples) or between antigens (e.g. 
βRBD > βN in 67.2% of the posterior samples). Differences 
in specificity between types of assays were of epidemi-
ologically relevant magnitude (e.g. average specificity 
of 99.9% (95% CrI: 99.7–100) for RBD/quantitative-
indirect assays and 98.8% (95% CrI: 96.6–99.7) for 
nucleocapsid/LFA assays; the authors make all esti-
mates available in Supplementary Table S4). Like for 
sensitivity, we found considerable variability between 
studies reporting on the same assay (σus  = 0.61, 95% 

Figure 3
Sensitivity profiles for different SARS-CoV-2 seroassay characteristics, January 2020–March 2022 (n = 276 cohorts)

LFA: lateral flow assay; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
The sensitivity profile across time for each kind of assay is shown in a different panel. Rows indicate the targeted antigen, and columns 
indicate the analytic technique. For example, the panel in the second row and second column shows assays that target the spike protein and 
use a quantitative-indirect design. Red lines: mean sensitivity for each kind of assay; shaded regions: 95% credible intervals of the mean 
sensitivity of the group (i.e. not accounting for variability between assays); black lines: fits for individual assays; grey dots: data, with size 
proportional to the square root of sample size. Empty panels indicate that no assays with those characteristics were found for the analysis.
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CrI: 0.20–1.14). Specificity data and the resulting fit are 
appended to this article in Supplementary Figure S7.

Manufacturer sensitivities and risk of bias in 
the literature
Although quantitatively estimating and correcting the 
seroreversion bias in the literature is outside the scope 
of the present work, we can coarsely estimate the risk 
of seroreversion across the literature.

We compared our estimates to assay sensitivities pro-
vided by manufacturers, which report the percentage 
of serological samples from individuals diagnosed with 
COVID-19 that show a positive test result (if manufac-
turer values were missing, we used values reported by 
the United States Food and Drug Administration (FDA) 
or reported by authors). We found that 4 months after 
diagnosis, 20% of the assays have sensitivities below 
75% of the originally specified value. At 6 months after 
diagnosis, 34% of the assays were below 75%. Thus, 

a few months after a COVID-19 wave, some serological 
assays (mostly LFA and quantitative-indirect assays 
targeting nucleocapsid antibodies) can severely under-
estimate previous infections.

We further analysed what percentage of serosurveys 
reported in the literature were at high risk of bias by 
seroreversion. As a reference, we used a comprehen-
sive meta-analysis of the global evolution of SARS-
CoV-2 seroprevalence [17], using the publicly available 
SeroTracker dataset [33], which notes the lack of seror-
eversion adjustment as a limitation. We estimated what 
percentage of the data points listed in SeroTracker, 
aligned with the World Health Organization (WHO) 
Unity protocol (i.e. those studies used in [17]), used 
assays with high rates of seroreversion (LFA assays or 
nucleocapsid quantitative-indirect assays). Because 
seroreversion depends on the assay used and on the 
time elapsed between an epidemic wave and serosur-
vey, we segregated the data across semesters.

Table 1
Estimated sensitivities of SARS-CoV-2 seroassays at each time after diagnosis, for each type of assay fitted in the analysis, 
January 2020–March 2022 (n = 276 cohorts)

Time after 
diagnosis 
(months)

Sensitivity by assay type in % (95% CrI)

LFA LFA LFA Q-indirect Q-indirect Q-indirect Q-direct Q-direct Q-competitive

N S RBD N S RBD N RBD RBD
1 84 (79–89) 87 (83–91) 88 (84–91) 87 (83–91) 89 (86–92) 90 (87–93) 90 (87–93) 93 (90–95) 90 (86–93)
2 75 (66–83) 83 (76–88) 85 (78–91) 83 (77–88) 88 (84–92) 90 (87–93) 90 (85–94) 95 (92–96) 90 (85–93)
3 64 (49–76) 78 (67–86) 82 (71–90) 78 (69–85) 87 (82–92) 90 (86–94) 90 (84–94) 96 (94–98) 89 (82–94)
4 50 (32–69) 71 (57–83) 78 (61–89) 72 (60–82) 86 (80–91) 90 (84–94) 90 (82–95) 97 (95–98) 89 (80–95)
5 37 (19–60) 64 (45–80) 73 (51–89) 65 (50–78) 85 (77–91) 90 (83–95) 89 (80–95) 98 (96–99) 88 (76–95)
6 26 (10–50) 57 (34–77) 69 (40–89) 57 (39–74) 84 (73–91) 90 (81–95) 89 (77–96) 98 (96–99) 88 (73–96)
7 18 (5–41) 49 (24–73) 63 (31–88) 49 (30–70) 82 (70–92) 90 (79–96) 89 (74–97) 99 (97–100) 87 (69–97)
8 12 (2–32) 42 (17–69) 58 (22–88) 42 (22–65) 81 (65–92) 89 (77–96) 88 (71–97) 99 (97–100) 86 (64–97)
9 8 (1–24) 35 (11–65) 53 (16–88) 35 (15–60) 79 (61–92) 89 (75–97) 88 (68–97) 99 (98–100) 86 (59–97)
10 5 (1–18) 29 (7–61) 48 (11–87) 29 (10–55) 77 (56–92) 89 (72–97) 87 (64–98) 99 (98–100) 85 (54–98)
11 3 (0–13) 24 (5–57) 44 (7–87) 23 (7–50) 76 (51–92) 89 (69–98) 87 (60–98) 100 (98–100) 84 (49–98)
12 2 (0–9) 19 (3–53) 40 (5–86) 18 (5–45) 74 (46–92) 88 (67–98) 86 (56–98) 100 (99–100) 83 (44–98)
13 1 (0–6) 16 (2–48) 36 (3–86) 15 (3–40) 72 (42–92) 88 (64–98) 86 (52–99) 100 (99–100) 82 (40–99)

CrI: credible interval; LFA: lateral flow assay; N: nucleocapsid; Q: quantitative; RBD: receptor-binding domain; S: spike; SARS-CoV-2: severe 
acute respiratory syndrome coronavirus 2.
Each row corresponds to a different type of test, with characteristics indicated in the first three columns. These estimates do not include the 
between-assay or between-study variability in their CrI. These sensitivities correspond to the red lines and shaded regions in Figure 3.

Table 2
Unity-aligned seroprevalence data points of the Serotracker dataset [33] that use assays at high risk of seroreversion, defined 
as lateral flow assays or quantitative-indirect assays for SARS-CoV-2 nucleocapsid antibodies, January 2020–December 2021 
(n = 1,592)

Period of serological sampling SeroTracker data points at high seroreversion 
risk (total data points)

Percentage of assays at high seroreversion 
risk (%)

1 Jan–30 Jun 2020 135 (506) 26.9
1 Jul–31 Dec 2020 140 (596) 23.4
1 Jan–30 Jun 2021 58 (330) 17.5
1 Jul–31 Dec 2021 10 (160) 6.3

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
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We see in Table 2 that although the use of serological 
assays at high risk of seroreversion decreased through-
out the pandemic, they still constituted a considerable 
fraction of Unity-aligned data points until mid-2021.

Discussion
Serology-based estimates of infections are impor-
tant to understand COVID-19. Although it is known 
that accounting for seroreversion in these estimates 
is important, there is a lack of appropriate data and 
guidelines to do so. Few studies correct for serorever-
sion [1,15,16,27,34,35], and the lack of robust assay-
specific seroreversion estimates make it uncertain how 
accurate existing adjustments are. We present the first 
large-scale systematic analysis of seroreversion across 
dozens of seroassays for SARS-CoV-2, making three 
major contributions to help understand and correct for 
seroreversion.

Firstly, we provide time-varying sensitivity estimates 
for 50 assays and estimates of the average time-var-
ying sensitivity for different assay types. These esti-
mates can be used to adjust for seroreversion in the 
literature. Knowing the assay’s identity (or its charac-
teristics, for assays not represented in our sample), 
and the time span between the epidemic wave and the 
serosurvey date at the tested location (which can be 
estimated from case or death curves), a seroreversion-
adjusted sensitivity estimate can be selected from our 
results. Using these sensitivity estimates in the stand-
ard Rogan–Gladen formula will produce seropreva-
lence estimates that are corrected for seroreversion. 
Importantly, this procedure showed good performance 
at predicting assay sensitivity in a rigorous cross-vali-
dation analysis.

Our second contribution is the quantification of how 
seroreversion depends on assay characteristics. We 
show that seroreversion depends heavily on the anti-
gen and on the analytical technology. Assays that use 
LFA technique (qualitative, rapid tests) show faster 
sensitivity decay, while quantitative assays with direct 
antibody binding have the slowest decay. This is in 
line with the high sensitivity of direct binding assays 
reported for other pathogens, ascribed to factors such 
as less sample diluting or the detection method not 
being limited to one class of antibodies [36,37]. Assays 
for nucleocapsid-targeting antibodies tended to decay 
faster than assays for spike protein antibodies, while 
assays targeting S1-RBD antibodies tended to decay 
more slowly (although this last effect was not signifi-
cant at the 95% level). Interestingly, we found that one 
type of assay, the quantitative-direct assays target-
ing RBD-binding antibodies had on average increas-
ing sensitivity over time. This is in line with previous 
studies reporting assays of this type to have increas-
ing sensitivity, attributing this effect to prolonged anti-
body maturation [13,14]. Because reinfection incidence 
was likely to be low in our data, it is unlikely that these 
results reflect infections.

The striking differences between types of assays 
(e.g. average sensitivity at 6 months of 98% for 
S1-RBD-targeting quantitative-direct, against 26% for 
nucleocapsid LFA assays) outlines the need for assay-
specific corrections. For example, the one-size-fits-all 
seroreversion rates (i.e. not assay-specific) used in two 
previous analyses of SARS-CoV-2 infection fatality rate 
(5% monthly decrease [35] and 190 days half-life [1]) 
would either considerably overestimate or underesti-
mate seroreversion for many assays, according to our 
results. These results are in line with previous reports 
in the literature [13-15,20], although previous studies 
analysed fewer characteristics in general and did not 
quantify their effects. Our analysis also showed that 
specificity depends on assay characteristics.

These results will allow researchers to assess the 
risk of seroreversion bias in serosurveys, providing a 
valuable tool for the design of serological studies. For 
example, our results suggest that the strategy of com-
paring S1-RBD and nucleocapsid antibody prevalences 
to distinguish vaccine- and infection-induced popula-
tion immunity can be affected by the different seror-
eversion rates of these assays [10,17,38].

Our third contribution is showing that a few months 
after diagnosis, manufacturer specifications can 
be unreliable for a considerable fraction of assays. 
Relatedly, we show that a sizable fraction of Unity-
aligned serosurveys used in recent WHO estimates of 
global seroprevalence dynamics are at risk of seror-
eversion bias [17]. This underscores the potential of 
decaying sensitivity to bias our epidemiological under-
standing of COVID-19, and a potential interest of public 
health policymakers in ensuring that assay manufac-
turers and regulatory bodies provide information and 
guidelines regarding seroreversion [39]. The sensitivity 
estimates presented here should provide a straightfor-
ward way to correct for seroreversion in such datasets 
and to quantify literature bias.

To our knowledge, this is the most comprehensive 
analysis, for any pathogen, of assay-specific sero-
logical sensitivity decay and its dependence on assay 
characteristics. This is because some characteristics 
of the COVID-19 pandemic have allowed for a richer 
seroreversion dataset than is probably possible for 
any other pathogen (i.e. well approximated infection-
to-testing times, multiple seroassays, multiple studies 
per seroassay, first exposures to a novel pathogen). 
Thus, many of the conclusions extracted from this 
analysis may serve as a guide for other emerging and 
endemic pathogens.

Our study has some limitations. Firstly, although we 
included more assays than previous studies, many of 
the included assays had seroreversion data for only a 
few time points. Secondly, we were unable to test the 
effects of important parameters such as age or disease 
severity on seroreversion [13,14,25,40]. Relatedly, 
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although an ideal dataset would use a well defined 
cohort representative of the general population, with 
known age, sex ratio, disease severity, infecting vari-
ant and occurrence of reinfections, the available litera-
ture falls short of this ideal. This has the potential to 
introduce variability and biases in our estimates. We 
note, however, that our modelling framework is flex-
ible, and could be extended to account for these vari-
ables, given appropriate data. Thirdly, as we analysed 
test data conditional on individuals having a previous 
COVID-19 diagnosis, it is likely that asymptomatic indi-
viduals were underrepresented in our sample. Finally, 
because our analysis included only data points on non-
vaccinated individuals, and most of the included data 
points were sampled in 2020 when SARS-CoV-2 vari-
ants of concern and reinfections were uncommon, it is 
unclear how our results would extrapolate to antibod-
ies induced by vaccines, reinfections or new variants 
of the virus.

Conclusion
Accounting for seroreversion in serology-based esti-
mates of infection numbers is important for understand-
ing the COVID-19 pandemic, and for the usefulness of 
continued serological testing to monitor the effects of 
COVID-19. Rapid LFA tests as well as quantitative-indi-
rect tests for nucleocapsid targeting antibodies have 
a high potential for seroreversion, and quantitative-
direct assays are likely to be preferred for long-term 
serological surveillance. A considerable number of 
studies in the literature use assays with high risk of 
seroreversion, indicating some important potential for 
bias. We present a simple method for researchers to 
account for seroreversion when analysing serological 
data and when designing serological studies. This may 
be of interest to the management of other pathogens, 
and serosurveillance more in general, because of the 
unique opportunity to study the effects of serorever-
sion provided by the data generated during the COVID-
19 pandemic.
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