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SUMMARY Clostridioides difficile infection (CDI) represents a significant challenge to
public health. C. difficile-associated mortality and morbidity have led the U.S. CDC to
designate it as an urgent threat. Moreover, recurrence or relapses can occur in up to a
third of CDI patients, due in part to antibiotics being the primary treatment for CDI and
the major cause of the disease. In this review, we summarize the current knowledge of
innate immune responses, adaptive immune responses, and the link between innate
and adaptive immune responses of the host against CDI. The other major determinants
of CDI, such as C. difficile toxins, the host microbiota, and related treatments, are also
described. Finally, we discuss the known therapeutic approaches and the current status
of immunization strategies for CDI, which might help to bridge the knowledge gap in
the generation of therapy against CDI.

KEYWORDS Clostridium difficile, fecal microbiota transplant, host immune response,
innate lymphoid cells, microbiome, vaccine

INTRODUCTION

C lostridioides difficile is a Gram-positive, anaerobic, spore-forming, toxin-producing,
rod-shaped bacterium that is the leading cause of nosocomial and gastroenteritis-

associated death in developed countries (1, 2). C. difficile infection (CDI) accounts for
around 460,000 illnesses and 20,000 deaths annually in the United States and 130,000
illnesses and 12,400 deaths in Europe (1, 3–9). It usually occurs in susceptible patients
with dysbiosis due to prior antibiotic therapy. Other contributing risk factors include
advanced age, recent hospitalization, gastrointestinal manipulations, drugs that lead
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to gastric acid suppression, the use of proton-pump inhibitors, and disruption of nor-
mal microbiota by chemotherapeutic agents (10–15). When C. difficile spores are
ingested in these vulnerable individuals and reach the small bowel, their germination
depends on various factors, including microbiota-host immune response, primary bile
acids (mainly taurocholate), and different amino acids (16–18). From the small bowel,
spores move down to the colon. Under favorable conditions, they germinate to vege-
tative cells producing enterotoxins to disrupt the intestinal epithelial barrier, cause
tissue damage, gain nutrients, provoke or suppress inflammation, and contribute to
colonization (14, 19–23). Disruption in the epithelial barrier by intoxication results in
endogenous colonic flora translocating into the mucosa and becoming exposed to
immune cells. This process activates immune responses, proinflammatory cytokines,
and chemokine production that recruit neutrophils, mast cells, monocytes, and innate
lymphoid cells (ILCs) (24). Neutrophils are responsible for the colonic pseudomem-
branes pathognomonic of the disease and in part via neutrophil extracellular traps
(NET) attempt to protect the gut barrier (24). NET is known to limit the dissemination
of pathogens by trapping them and creating an effective environment for an effective
neutrophil microbicidal effect. Mast cell degranulation stimulates histamine release
resulting in increased permeability of the intestinal barrier. Consequently, a substantial
loss of fluid into the lumen causes severe diarrhea, cramps, dehydration, and in the
most severe cases toxic megacolon (16, 25, 26). In addition, mucosal B cells, macro-
phages, and plasma cells are diminished in patients with CDI (27).

Repeat infections with C. difficile (rCDI) are also common, with over 15 to 35% of
CDI patients suffering from one or more recurrent infections (28). It suggests that natu-
ral infection may not always stimulate a protective immune response (29). The lack of
protection following primary CDI could be due to continued disruption of the normal
microbiome from antibiotic therapy of CDI, insufficient antibody (Ab) production, and
infection with an antigenically distinct strain (toxinotype) (30, 31). Although antibody
responses directed against the toxins A and B (TcdA and TcdB) are associated with pro-
tection, primary CDI does not consistently induce T follicular helper cells (Tfh) cells or B
memory (Bmem) cells that produce toxin-neutralizing antibodies (32–34). Many risk
factors have been consistently associated with recurrent CDI, such as advanced age,
(28, 35), chronic kidney disease, (28, 30), high leukocyte count, (28), baseline comorbid-
ities (30, 31), continued use of non-C. difficile antibiotics after CDI diagnosis, and con-
comitant use of antacid medications (32–34).

CDI varies among individuals due to the complex relationships in the host immune
response, host microbiota, and CDI. Some individuals develop asymptomatic coloniza-
tion after acquiring C. difficile due to their strong immunity, whereas others individuals
develop the symptomatic disease as they are vulnerable due to the above-discussed
reasons. Some individuals suffer from recurrent disease as they are unable to mount
enough of a protective adaptive response.

SUBTYPES OF THE TcdB TOXIN AND PHYLOGENETIC CLADES OF C. difficile

C. difficile secretes the closely related toxins TcdA and TcdB that bind to receptors
on intestinal epithelial cells and act to disrupt the gut epithelial barrier (36, 37). In most
strains of C. difficile, toxins are present on a pathogenicity locus (PaLoc) that encodes
toxin genes (tcdA and tcdB) with regulatory (tcdR and tcdC) and secretory (tcdE) genes
(38, 39). Epidemic strains may lack regulatory genes and additionally express a third
toxin known as the binary toxin (CDT), in collaboration with septins that enhance the
adhesion to the gut epithelia (20, 40–43). CDT enhances pathogenic host inflammation
and has been demonstrated in the mouse model to be responsible for the increased
virulence of epidemic strains by suppressing protective colonic eosinophils (20). CDT
has two subunits, namely, CDTa and CDTb, where CDTb binds with the target cell and
helps CDTa in cytoplasmic translocation. CDTa being an ADP ribosyltransferase dis-
turbs the actin and microtubule balance to induce microtubule-based protrusions of
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the cell membrane by catalyzing the modification of actin fibers. These protrusions
enhance the adhesion of C. difficile.

TcdB as the key virulence factor of C. difficile undergoes accelerated evolution, likely
in part to escape antibody-mediated neutralization (Table 1) (44). Clinically relevant
strains of C. difficile are divided into 5 phylogenetic clades, and variants of TcdB were ini-
tially described in association with emerging hypervirulent clade 2 strains (i.e., TcdB2
[45] and TcdB4 [46]). Since then, at least 8 to12 TcdB subtypes have been identified with
distinct biological activities (including a separate cell surface receptor in the case of
tcdB2 and tcdB4 [47]). TcdB1 to 4 are the dominant subtypes and TcdB6, 7, and 8 are
found in ribotypes not clearly associated with any of the 5 known clades. In addition,
subtype variations of TcdB1 (TcdB1a/b/c) and TcdB2 (TcdB2a/b) exist (44). Among the
dominant subtypes (1–4), TcdB1/3 use chondroitin sulfate proteoglycan 4 (CSPG4) and
frizzled (FZD) receptors, TcdB2 uses CSPG4 and tissue factor pathway inhibitor (TFPI),
and TcdB4 uses TFPI (47). Differences in cell entry of TcdB subtypes are thought to lead
to divergent pathology (48). However, besides the clear association between TcdB2/4-
producing clade 2 strains and more severe clinical outcomes, disease phenotypes associ-
ated with the less common toxin B subtypes are not well established (Table 1) (49, 50).
Some have suggested that clade classifications are less important than specific virulence
factors, such as binary toxin (CDT), and host factors (51). Importantly, the neutralizing
capability of anti-toxin B monoclonal antibodies, including bezlotoxumab, may vary
according to TcdB1 and TcdB2 as well as potentially other subtypes (52).

While CDT explains at least in part the heightened virulence of epidemic strains, TcdB
plays a key role in causing gastrointestinal diseases in all strains since all pathogenic C.
difficile strains contain functional tcdB genes, and lacking TcdB, but not TcdA, drastically
attenuates the virulence of clinical strains in animal models (53, 54). Adaptive immune
responses to one lineage may not result in protective immunity against other lineages
(55). The induction of a strong toxin-neutralizing antibody response likely plays a key
role in protection from disease, whereas immunity to cell surface antigens and other
polysaccharides is likely important for promoting colonization resistance or pathogen
clearance (35). Germination of C. difficile spores and colonization are critical steps in
C. difficile pathogenesis, and adaptive immune responses that impact colonization have
the potential to reduce transmission in health care facilities and communities (35).

C. difficile INFECTION AND THE MICROBIOME

The gut microbiota plays a central role in the prevention of CDI and colonization
through several potential mechanisms. Some of the mechanisms involve primarily the
impact of dysbiosis in abrogating otherwise protective mucosal type 2 immune responses.

TABLE 1 Subtypes of the TcdB and disease associations

Clade TcdB subtype Associated host receptor Diseases associated with hypervirulent sequence types
1 TcdB1 (classical) Fzd, CSPG4 Hypervirulent ribotypes are notably absent.
2 TcdB2a CSPG4, Fzd/TFP1 RT027 strains are well associated with worse outcomes in CDI (49, 50).
2 TcdB4 TFP1 Clinical data are very limited since TcdB4 was discovered only

recently (44, 46).
3 TcdB1, TcdB1b Fzd, CSPG4 Hypervirulent clade 3 strains showed rates of severe infection

comparable to clades 2 and 5 and with significantly more bloody
diarrhea (174) RT023 correlates with biomarkers of severity but not
increased mortality (175).

4 TcdB1, TcdB3b Fzd, CSPG4 Data from clade 4 outbreak settings with RT017 suggest potentially
more severe disease compared with prior types (176, 177).

5 TcdB1c Fzd, CSPG4 RT078 was associated with over twice the 14-day mortality compared
with clade 1 (25% versus 12%, P, 0.0001) (175). Note that 078
also produces CDT.

5 TcdB5 Fzd, CSPG4 Just recently described, clinical data are not reported for this specific
subtype (44).

Undefined TcdB6, TcdB7, TcdB8 Fzd/ TFP1, CSPG4 Rarely found in outlier strains (44).
aOne strain of clade 1 does express TcdB2.
bOne strain of clade 1 does express TcdB3.
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The other mechanisms may also include competition for food and niche between C. diffi-
cile and commensal microbes (56, 57), the production of antimicrobial peptides (AMP),
bacteriocin production by commensal bacteria (22, 58, 59), and deconjugation of primary
bile acid into secondary bile acid to inhibit the germination of spores and growth of vege-
tative cells (60).

Susceptibility to CDI is due primarily to antibiotic-mediated dysbiosis disrupting the
protective type 2 innate immune response in the gut. The intestinal microbiome has
been shown to affect the production of cytokines, such as interleukin-25 (IL-25) (56), IL-
33 (57), transforming growth factor b (TGF-b) (61), and IL-22 (62), which can ultimately
alter CDI outcomes. Hence, fecal microbiota transplantation (FMT) to restore type 2 im-
munity is one of the current treatments to cure and manage refractory or recurrences
of CDI (59). The safety and efficacies of the FMT procedure have been confirmed by
randomized controlled clinical trials and meta-analyses (63–68). FMT also helps in the
proliferation and differentiation of intestinal epithelial cells and fortification of the mu-
cus layer to protect against disease recurrence (69). FMT can be delivered from differ-
ent routes, including an upper gastrointestinal (GI) route (oral capsules, nasogastric
tube, gastroscopy, or percutaneous endoscopic gastrostomy) and lower GI route (colo-
noscopy) with no significant difference in efficacy (70, 71). Along with the benefits of
FMT, there are risks, including inflammatory and infectious complications in normal or
immunocompromised and immunocompetent recipients (72–74). FMT has rarely been
associated with ventilator-associated pneumonia, toxic megacolon, Crohn’s disease,
Escherichia coli bacteremia, drug-resistant E. coli bacteremia, transmitted septic shock,
and death (75–79). Hence, the treatment of CDI patients with FMT must be examined
critically to avoid such clinical repercussions. In this regard, live and purified Firmicutes
bacterial spores (SER-109) have recently been clinically tested as a replacement for
FMT (80, 81). Seres Therapeutics, Inc. (Nasdaq, MCRB) is a leading microbiome thera-
peutics company manufacturer of SER-109 that was granted Breakthrough Therapy
designation and Orphan Drug designation for the prevention of rCDI by the U.S. Food
and Drug Administration (FDA).

The severity of CDI and the efficacy of FMT also depend upon the host’s immune
response which varies from person to person. Hence, this variation may be the reason
for not knowing the clear mechanism of FMT (82). Along with this information, intesti-
nal IL-33, which is regulated by indigenous colonial microflora, prevents disease
through the activation of ILC2s irrespective of the bacterial count. It is interesting to
note that the production of IL-33 and IL-25 from the pericryptal myofibroblasts and in-
testinal endothelial cells is regulated by the commensal bacterium and FMT protects
rCDI by restoring the signaling between the innate immune system and intestinal bac-
terium (56, 57). Downstream of IL-25 and IL-33, innate lymphoid cells were defined pre-
viously to protect from CDI. ILC1s are shown to protect CDI (83) and ILC2s too via tissue
repair and eosinophil recruitment (56, 57). In addition, microbiota-derived acetate-
induced ILC3s were also found to protect CDI through IL-22 production (84).

INNATE IMMUNE RESPONSES TO Clostridioides difficile

The first line of defense in the case of CDI is the mucosal layer and intestinal epithe-
lium, including antimicrobial peptides secreted by the epithelial cells, Paneth cells, and
commensal bacteria (58, 59, 85). The binding of C. difficile toxins to their receptors on
colonocytes disrupts epithelial barrier integrity, including the cytoskeletal structure
and tight junctions (86–89) that result in the translocation of commensals into the lam-
ina propria. This process leads to inflammasome activation and the production of
proinflammatory cytokines, such as IL-1b , IL-6, IL-12, IL-23, TNF-a, IFN-g , and chemo-
kines, including CXCL1, CXCL2, CXCL5, and IL-8, through the activation of nuclear fac-
tor-kB (NF-kB) and activator protein 1 (AP-1) pathways. They help in the production of
antimicrobial peptides (AMP) and the recruitment of immune cells, including neutro-
phils, eosinophils, macrophages, ILCs, and dendritic cells (DCs), to the site of infection (90).
TcdB-dependent inflammasome formation activates caspases that mediate proinflammatory
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responses, such as IL-1b secretion. This inflammasome formation was found to be ben-
eficial or harmful depending on context (23, 91, 92). It has also been noticed that plas-
minogen helps in the germination of vegetative cells by modulating the cell surface of
C. difficile spores (93). In addition, reactive oxygen species (ROS) and reactive nitrogen
species (RNS) are produced by epithelial cells that disrupt the metabolism and attenu-
ate the toxin potency of C. difficile, respectively (94, 95).

Neutrophils appear to play a dual role in reducing pathogen burden and mediating
tissue damage (24, 96, 97). Macrophages secrete proinflammatory responses that help
in bacterial clearance and the prevention of a recurrence of the disease. In contrast, C.
difficile spores may survive within macrophages to avoid clearance and promote per-
sistence in the gut (92, 98–100). Eosinophils remarkably showed a protective role in
CDI, as in the mouse model, the adoptive transfer of eosinophils protected, and in
humans, conversely, a peripheral eosinopenia at the time of CDI diagnosis was associ-
ated with higher mortality (56, 101). As per the available data, IL-4 plays a major role in
tissue repair and the dampening of inflammatory responses (102, 103). Additionally,
data from our lab also suggest the depletion of IL-4-producing eosinophils could be
restored by IL-25, which enhances epithelial integrity and reduces disease severity in
the recovery phase of CDI (56, 103). The role of IL-13 in the generation of protective
anti-inflammatory alternatively activated macrophages in the recovery phase was also
investigated in our lab (unpublished data). On the other side, we showed the patho-
genic role of IL-23 signaling during CDI in both human and murine models. The IL-23
protein level increases in human colon biopsy specimens, and blocking IL-23 signaling
increased the survivability of mice during CDI (104).

INTEGRATED DYNAMICS OF INNATE AND ADAPTIVE IMMUNITY OF C. difficile
ILCs Cross Talk with Type 2 and Type 3 Responses

Intestinal tissue-resident ILCs are known to integrate signals and communicate
among microbiota, pathogens, and the host immune systems (84). ILC differentiation is
dependent on IL-7, and their maintenance is done by IL-2 (105). ILCs can survive for
18 months in vitro in the presence of IL-2 and can survive lifelong in the host when trans-
ferred to gc–/–Rag2–/– mice (106). This feature is very specific for the ILCs which are not
seen even in T and B lymphocytes which generally have a long life as memory cells. ILCs
respond earlier than adaptive immune cells, developing against the invasion of bacteria.
Commensals modulate intestinal homeostasis by interacting with ILCs (107, 108).

Nuclear factor, interleukin 3 regulated knockout (Nfil32/2) mice, which have a defect
in ILC maturation, were found to be more susceptible to CDI (109). Ragyc2/2 mice, which
lack T and B cells along with ILCs, were also more susceptible and mortal to CDI than
Rag22/2 mice, which lack only T and B cells (83), suggesting a major role of ILCs in pro-
tecting against CDI. In addition, ILC1-associated IFN-g was demonstrated to be involved
in CDI recovery (83). It is worth noting that IL-33 and IL-25 were shown to increase ILC2s
(57). ILC2s could initiate an adaptive response and respond back to the signals produced
by B cells and T cells (110). A study in a mouse model showed that both ILC2 and ILC3
express major histocompatibility complex (MHC) class II and promote T cell responses
(111, 112). ILC2s also express costimulatory molecules CD80, CD86, PD-L1, OX40L, and in-
ducible costimulator ligand (ICOS-L) that enable them to process and present antigens
to CD41 T cells leading to their differentiation into Th2 phenotype in an IL-2-dependent
manner (111). Along with this information, ILC2s can also perform endocytosis (111).
Most of the studies available that describe cross talk between the ILC2s and the adaptive
immune system were performed on mouse models (113–115). ILC2 can also activate B
cells to undergo isotype switching, survival, and antibody production through cytokines
and the interaction of ICOS with its ICOS-L ligand (116–118). In vitro data also showed
that ILC2s dwelling in mesenteric fat could increase immunoglobulin A (IgA) production
by peritoneal B cells (105). From the above knowledge, we may suggest that microbiota-
induced IL-25/IL-33 regulates ILC2s that interact with T and B cells to protect against
CDI/rCDI. Additionally, commensals produce acetate by fermenting dietary fibers. This
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acetate activates Free Fatty Acid Receptor 2 (FFAR2) receptor signaling present on ILC3s,
which helps in epithelial healing and CDI protection through the release of IL-22 (56, 57,
84) (Fig. 1).

Role of IL-33 and IL-25 in the Innate-Adaptive Immune Cross Talk

IL-33 signaling in CDI was found to be important in both mice and humans. The
data from our lab showed in a C. difficile mice model the balance between type 17 and
type 2-associated immunity governed by IL-33, which reduces neutrophils and
increases eosinophils (57). To develop a mouse model of CDI that closely represents

FIG 1 The gut microbiota orchestrates an immune circuit necessary for Tfh and Bmem cell function to generate protective adaptive
immunity during CDI. (Left) With nonrecurrent cases, gut microbiota and epithelial cell-derived IL-33 and IL-25 induce Th2 responses and
innate lymphoid cells type 2 (ILC2s). ILC2s interact with T cells via MHC-II, CCL5, PD-1/PD-L1, OX-40/OX-40L, CD80, and CD86. ILC2s interact
with B cells via ICOS/ICOSL and IL-5, resulting in B cell activation, isotype switching, survival, self-renewal, and antibody secretion. Tfh and
Bmem cells collaborate in the mesenteric lymph nodes, homing to the site of infection, and produce the anti-TcdB neutralizing antibody
needed to contain CDI. In mesenteric lymph nodes or secondary lymphoid tissues, Tfh cells interact with B cells and favor the development
of plasma cells. Afterward, these plasma cells reach the colonic lamina propria where they are able to produce and release large amounts of
anti-TcdB neutralizing antibody leading to disease resolution. In the absence of appropriate gut microbiota, adaptive immune cells fail to
respond to infection to generate sufficient immunity for a recall response during recurrent disease. (Right) (Relapsed) patients with
recurrence episodes have a deficient memory B cell response. The reduction of these cells along with the failure in the production of IgA,
IgG, and IgM Abs allows C. difficile to replicate and induce epithelial damage. Also, the microbiota produces acetate by fermenting dietary
fibers that activate FFAR2 receptor signaling present on ILC3s. ILC3s promote T cell-dependent IgA production by regulating T cell homing
to the gut and may help in epithelial healing and protection from C. difficile through the release of IL-22.
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the human disease, a mixture of antibiotics in water (gentamicin, colistin, metronida-
zole, and vancomycin) is given to C57BL6 mice for 3 days. Furthermore, clindamycin
injections are given after 2 days of antibiotics treatment and 1 day before the C. difficile
challenge. A higher IL-33 level has been detected in human colonic biopsy specimens
and serum higher soluble IL-33 decoy receptor (sST2) was detected in human serum
samples in severe CDI patients (57). The decoy receptor neutralizes IL-33. IL-33-medi-
ated activation of ILC2s was found to improve CD81 T-cell-mediated tumor immunity
(119). On the other hand, less mortality and less tissue pathology have been observed
in the case of IL-25 irrespective of bacterial burden or toxin production (56). IL-25 was
also found to maintain the balance between type 2 and type 17 through IL-4-produc-
ing eosinophils (56). Data from our lab on a IL-5-treated C. difficile mice model showed
protection, whereas IL-13- and IL-4-treated mice showed faster recovery from CDI
(120). Taking these data together, we can postulate that IL-33 and IL-25 induce ILC2s
that interact with T cells and B cells to induce adaptive immune responses (Fig. 2).
Additionally, microbiota utilizes dietary fibers to produce acetate, which activates ILC3s
through FFAR receptor signaling. ILC3s can also induce T and B cells and help in mount-
ing adaptive responses. In the recurrence model (Fig. 2, right), antibiotics deplete micro-
biota, and hence, no ILC activation leads to less effective innate and adaptive responses.
Nevertheless, the question is whether ILCs interact with Tfh and Bmem cells to mount a
stable immune response. Essentially, external injections of IL-25/IL-33 may be helpful to
expand the Tfh cell compartment leading to the expansion in the Bmem cell compart-
ment leading to the production of class-switched IgG responses that can neutralize tox-
ins and cure CDI and rCDI. Leveraging CDI patient samples of recurrent and nonrecurrent
to deeply study Tfh and Bmem cells is warranted. In addition, these induced ILC2s also
produce IL-5, IL-4, and IL-13. The IL-5-derived eosinophils help with disease protection,

FIG 2 Microbiota-driven gut homeostasis. Commensal antigens induce tolerogenic DCs to produce TGF-b and retinoic acid, which contributes to Treg cell
differentiation. Treg cells inhibit Th1 and Th17 responses to maintain gut homeostasis. On the other hand, activation of commensal-induced ILC2 produces
IL-4, IL-5, and IL-13 and also activated the number of eosinophils that release IL-4, skewing the Th17 and Th1 to Th2 response that mediates protection.
Furthermore, IL-13 and IL-4 induce alternatively activated macrophages that help in epithelial repair and produce IL-10. IL-10 further inhibits type 3
responses and maintains gut homeostasis.
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whereas IL-4 and IL-13 help in recovery from CDI. IL-4 also inhibits the type 3 immune
response, and IL-13 induces alternatively activated macrophages that help in epithelial
recovery and inhibit type 3 immune response (Fig. 2).

ADAPTIVE IMMUNE RESPONSE TO Clostridioides difficile

Rag12/2 mice that lack T and B cells did not show any difference in recovery from
the acute phase of CDI but did show high CDI-associated mortality rates (83, 121).
Resolution of the acute phase may depend on the innate immune response, but for
rCDI, the inability to mount an effective adaptive immune response may also contrib-
ute (122). Interestingly, mice that lack CD4 showed protection from CDI and rCDI and
were able to produce toxin-specific mucosal and serum IgA antibodies (123), suggest-
ing CD4-independent antibody production in CDI. In contrast, mice, which lack MHC
class II molecules, were more susceptible to CDI and rCDI and were not able to pro-
duce toxin-specific serum or mucosal antibodies (123).

Immunoglobulin A (IgA), IgG, and IgM are the main antibodies involved in protection,
but in CDI, systemic IgG plays an important role in governing clinical outcomes (33). The
higher the IgG against toxin B, the lower will be the disease severity and lower the chan-
ces of disease recurrence (2, 124). Similarly, monoclonal antibodies against TcdB used in
the treatment of CDI are more effective than the monoclonal antibodies against TcdA,
suggesting TcdB is more toxic than TcdA. CDI patients with no or low circulating TcdB-
specific IgG were found to have multiple episodes of CDI (33, 125). However, it is worth
noting that higher antibodies against TcdA or TcdB could protect against the disease
and recurrence, but they did not prevent colonization by C. difficile.

Amani et al. (32) in rCDI murine models showed that the primary infection of VPI
10463 C. difficile had not induced an isotype-switched IgG response and during the
second infection had not recalled IgA or IgG responses. Furthermore, it was demon-
strated that toxinB-specific IgM and mucosal IgA did not protect against rCDI, but the
serum IgG response was protective. In contrast, the generation of toxin-specific serum
IgG, IgA, and mucosal IgA protected mice in the C. difficile model, while mucosal IgA
was capable but not required for disease protection as the mice (pIgR2/2), which lack
the receptor to transcytose polymeric Ab across the epithelium, were protected from
C. difficile-associated diseases (123). This finding suggests that serum IgG is the most
important toxin-specific antibody that protects CDI and rCDI and that IgA may be capa-
ble of protecting rCDI but is not essential for disease protection. The plausible explana-
tion for the contrasting results in the production of antibodies may be because of the
difference in the mouse microbiota.

INVOLVEMENT OF CD4+ T CELLS INCLUDING Tfh IN DISEASE RECURRENCE

Germinal center follicular helper (GC Tfh) cells govern the differentiation of activated
B cells into memory cells or plasma cells (126). They also have an important role in induc-
ing long-lasting and strong immunity. Albeit, nongerminal center Tfh cells present in the
follicle or extrafollicular regions may also help in early B cell responses (127). In CDI, data
showed that immunization with toxin B could produce toxin-specific memory, long-lived
plasma, and plasma cells that can produce toxin-specific antibodies and are found to
protect against disease. Upon infection, toxin-specific and nontoxin antibody responses
were low, and the initial infection failed to expand the Tfh cell compartment enough to
induce isotype-switched toxin-specific antibody responses compared with the expansion
seen by the immunization with the C-terminal domain of the toxin. Further expansion of
the memory B cell compartment also failed to mount a protective adaptive immune
response due to lower Tfh cell expansion (32).

Both toxin A and toxin B can decrease the motility of human T cells (128), which is
correlated with a reduction in the Tfh and Bmem cell compartment expansion (32). In
accordance, CDI patients could be distinguished from healthy individuals by the T cell
responses and not the antibody responses, as the frequency of TcdB-specific CD41

cells increased with repeated or severe CDI (129). In addition, disease severity in rCDI is
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correlated directly with T cell responses, with effective T cell immunity depending on
the development of the Th17 cell (129). In summary, it is suggested that in the genera-
tion of the protective immune response, Tfh cells play a crucial role. rCDI may occur in
the absence of efficient T and memory B cell responses.

There are many conflicts found in different studies related to CD41 cell responses in
CDI. One study showed that the ratio of Th1 to Th17 and Th1 to Th2 shifted in severe
patients (130); in contrast, higher Th1/Th2 and Th1/Th17 ratios were associated with
disease severity (131). Another study on CDI described the pathogenic role of Th17
cells (132). These functional dichotomies of Th17 response could be due to the timing
of the blood collection of infected individuals and influenced by the progression of the
disease. Hence, more studies are required to further elucidate the protective versus
pathogenic effects of Th17 cells in CDI and rCDI.

Along with the role of Tfh, Th1, Th2, and Th17 cells in CDI, mucosal-associated invar-
iant T (MAIT) cells, T regulatory (Treg), and gd T cells are also shown to have a role in
CDI. MAIT cells having antibacterial properties are present in lamina propria represent-
ing 10% of total T cells (133). MAIT cells are activated by C. difficile and do produce IFN-
g , perforins, and granzyme B. gd T cells were found to protect from CDI by producing
IL-17A/F in the mouse model and found to have a role in neonatal resistance to CDI
(134). Treg cells likely have a critical role in maintaining intestinal homeostasis by
checking innate and adaptive immune responses (135). In the case of CDI, there is not
much information describing the role of Treg cells; however, the deletion of Treg cells
from mice resulted in severe intestinal inflammation following CDI. Furthermore, these
mice also failed to resolve infection even after FMT engraftment, suggesting that the
Treg cells population is critical for FMT response (136). Immunoprofiling of peripheral
blood mononuclear cell (PBMCs) of rCDI-infected patients showed a higher CD31

CD41 Foxp31 Treg cells population (137); however, due to the small number of test
subjects in the study, it was hard to draw firm conclusions, and more studies are
required with a larger cohort. Further research on CD81 T cell contributions to bacterial
killing and clearance are also warranted. Additionally, more studies are needed to see
if inhibition in the cellular mechanism of B and T cells is responsible for the failed hu-
moral response.

ROLE OF B CELLS IN ANTIBODY PRODUCTION (IgG, IgA) ANDMEMORY B CELLS IN
DISEASE RECURRENCE

In CDI, the B cell response against toxins and nontoxin antigens likely regulates the
disease outcome to a great extent. There are many research studies describing the im-
portance of toxin B in disease pathology, which is already discussed in the
Introduction. Targeting TcdB may play a critical role in protection against rCDI (30).
However, for complete protection from rCDI, enough Bmem cell expansion, longevity,
induction, and reactivation are also required. Albeit, immunization with the C-terminal
domain of toxin B in mice showed protection against infection with C. difficile (55, 138).
But this protection is due to immunization-induced plasma cell-secreted antibody and
ongoing plasma cell response not because of the memory cells (32). However, this im-
munization could not expand enough memory B cell compartments due to failed Tfh
expansion (32). Thus, an effective vaccine is required that can expand enough Tfh cells
to induce B cells for protection against infection. Moreover, toxin immunization does
not clear colonization and hence can spread disease. Along with this information, with
age, the affinity of antibodies and survival of plasma cells decrease due to inadequate
germinal center responses (139). In this case, booster vaccination is required to main-
tain long-lived plasma cell responses to protect from initial or rCDI as Bmem cell com-
partment expansion may not be sufficient in old age (139). So far, all the work related
to rCDI is done by rechallenging with the same strain, although in the real world
relapse and reinfection with the same or different strains occur (140). There is a need
to replicate the relapse study on mice to see if the expansion of the Bmem cell and Tfh
cell compartment differ with a different rechallenge, for example with the hypervirulent
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B1/NAPI.027. Of note, a cystic fibrosis patient with previous CDI had enhanced and stable
antibodies and circulating memory B cells (125). This result suggests that the increased in-
testinal permeability in cystic fibrosis enabled a better induction of B cells or Tfh cell
expansion. In correlation with this suggestion, it was shown as shown that NAPI.027/B1
induces systemic anti-TcdB IgG and a non-027 strain induced a more prominent anti-TcdA
IgA mucosal response (141). One must not ignore that asymptomatic CDI patients have
higher toxin-specific antibodies (142). The severity of the disease is inversely correlated
with toxin-specific systemic IgG and mucosal IgA (142). Studies on patients revealed that
those with higher antitoxin serum IgG had less rCDI (143). In rCDI patients, anti-TcdB-
Bmem cells did not undergo isotype switching (30). Furthermore, the role of serum IgG in
rCDI prevention was demonstrated (30). Further work is required on recurrent versus non-
recurrent patients to compare the Bmem repertoire to provide critical insights into their
functions. It is also important to note that CDI can be prevented by colonizing the hamster
model with nontoxigenic strains of C. difficile (144). This result suggests that the host can
respond better when the toxin is inactive or absent (32).

THERAPEUTIC APPROACH TO C. difficile INFECTION

The current approved treatments for CDI are the antibiotics metronidazole, vancomy-
cin, and fidaxomicin (145). The first-line drug is fidaxomicin (146). Metronidazole was
found to be inferior to vancomycin in clinical trials (147). Fidaxomicin is used as an alter-
native drug to metronidazole and vancomycin as its treatment gives a lower recurrence
rate of C. difficle in patients (148). The recurrence rate of fidaxomicin is 15% and that of
vancomycin is 25% approximately (145). The major drawback of these antibiotics, espe-
cially metronidazole and vancomycin, is they kill a good portion of indigenous flora
along with C. difficile, but the narrower antimicrobial spectrum of fidaxomicin leads to
less dysbiosis (148). For the treatment of rCDI, an oral microbiome therapy, SER-109, has
come into the picture most recently (discussed in section “C. difficile Infection and the
Microbiome” too). Essentially, SER-109 is made up of firmicutes spores which are given
orally after finishing the standard-of-care of antibiotics to cure disease recurrence (81).
Some newer and untested approaches to combat CDI are available, including the use of
nanotechnology. For instance, gold nanoparticles showed great importance in targeting
the entire spore coat, denaturing the surface protein, and forming holes (149). The gold
nanoclusters can effectively kill C. difficile in vitro, but its role in CDI in vivo is still not
clear. Since it is not toxic to humans (150), a clinical trial could be anticipated to check
the efficacy of Ag or gold nanoparticles against CDI in humans.

ACTIVE AND PASSIVE IMMUNIZATION STATUS

To induce in an individual to produce antitoxin when exposed to CDI, active immu-
nization can be used (e.g., a vaccine). Passive immunization is to give neutralizing anti-
toxin antibodies to the patient directly. Passive immunization or other therapeutic
approaches are used to prevent rCDI. The U.S. Food and Drug Administration (FDA)
approved two human monoclonal antibodies, namely, one against toxin A (actoxumab;
MK-3415/GS-CDA1/CDA1) and the other against toxin B (bezlotoxumab; MK-6072/
MDX-1388/CDB1) (52). Bezlotoxumab showed approximately 26% more protection
against rCDI than actoxumab (151). Vaccines against C. difficile that failed in clinical tri-
als are by Sanofi and Pfizer. Also, vaccines by Valneva (NCT01296386) and Shire
(NCT01259726) are still in clinical trials (Fig. 3). Vaccines prepared by Sanofi contain for-
malin-inactivated preparations of toxin A and toxin B that were purified from the VPI
10463 strain of C. difficile mixed with alum adjuvant. The final immunization was
100mg total antigen given on days 0, 7, and 30 (152). However, prevention of the initial
infection failed to result in the halting of this vaccine program at phase III trials (153).
Pfizer vaccines had genetically and chemically detoxified TcdA and TcdB with alum ad-
juvant (154). Pfizer vaccines was terminated recently at phase III trials. Valneva vaccine
has a recombinant chimeric protein containing the C-terminal binding domain of both
toxins (TcdA, 15 of 31 repeats; TcdB, 23 of 24 repeats) linked with 12 amino acids (155).
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This vaccine had some drawbacks as it lacked several neutralizing epitopes like the epi-
topes present in the glucosyltransferase domain and binding regions present on TcdB
(88, 156). This vaccine may not be effective against different clinical isolates as different
TcdB subtypes may have amino acid substitution in the binding domain (157, 158).
Although, it is not clear if the substitution has some role in neutralizing or not. The
Shire vaccine has a live nontoxin strain of C. difficile that is delivered mucosally (159).
Albeit, there are several studies where a plasmid expressing the receptor-binding do-
main (RBD) of both TcdA and TcdB was tested in cells and animal models and was
shown to induce a B cell response and neutralizing antibody formation (160, 161), but
previously, we have already discussed how domain immunization does not expand Tfh
cell expansion. Details of the roadmap of vaccine strategies are illustrated in Fig. 3.

Along with the toxin-based active immunization studies, many studies also demon-
strated nontoxin immunizations that can help to prevent colonization, which cannot be
achieved by using toxin-based vaccines. Several spore core proteins like CotA, CotE,
CdeC, and CdeH have been targeted (162) for the vaccine. Moreover, polysaccharides PSI,
PSII, and PSIII have also been identified as potent vaccine candidates (163). Furthermore,
Flagellin FliC is also described as a potent candidate (164). Many other antigens like SlpA,
Cwp66, and Cwp84 have been tested preclinically (165) and showed immunogenicity but
failed to protect against colonization or CDI (164, 165). One more direction for C. difficile
vaccination is to make a genetically modified nontoxic C. difficile strain with a chimeric
protein that has a glucosyltransferese domain, a cystein protease domain, and the recep-
tor binding domain of both TcdA and TcdB (166–168). This modified bacterial vaccine
was found to protect from infection and colonization. Nevertheless, a potential problem
with this kind of vaccine is the possibility of genetic recombination with exogenous C. dif-
ficile. Another approach taken has been to express TcdA as an antigen in Bacillus subtilis
to generate a mucosal toxin A-specific antibody that cross-reacted with the coat of C. diffi-
cile spores and the cell surface of vegetative cells (169).

To summarize, an effective vaccine against CDI must have both toxin-neutralizing
capacities and protecting colonization abilities. It will be important that the vaccine
induce enough B cell expansion to get the class switched, somatic hypermutated, clo-
nally selected antibodies that should neutralize toxins.

AN OBSTACLE IN THE GENERATION OF VACCINES; KNOWLEDGE GAP

An ideal vaccine should protect against primary infection, intestinal colonization,
and toxicity from secreted toxins; must be able to work against different pathogenic

FIG 3 Past, present, and future of C. difficile vaccine in development. Two major phase III trials for C. difficile vaccines from Sanofi and Pfizer
were determined futile and halted. The vaccines from Shire are in a phase III trial and one from Valneva was phase II terminated. Many
vaccines have been tested at the murine model level by adding a third CDT toxin of C. difficile. Even nontoxinogenic strains with a
recombinant vector containing domains of toxin A and toxin B were tested as potent vaccine candidates.
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strains; should be able to protect the aged individual; should be long-lived by the T cell
and Bmem cell response; provide rapid activation of cellular and humoral response; and
possess the therapeutic potential to prevent rCDI. Upon infection, vaccines should be
able to provide immediate protection through toxin-specific antibodies and should be
able to stimulate Bmem and Tfh cells to make Ab-secreting plasma cells. Achieving this
goal is still warranted. The obstacle is selecting the appropriate antigen for the vaccine
to get a proper host immune response and the selection of appropriate vaccine adju-
vants, targeting aging populations with waning immunity and comorbidities. Also,
knowing the role of the microbiome in host immunity, the role of host immune response
toward bacteria, and the role of systemic and mucosal immunity in CDI will give us a
guide for developing an ideal vaccine.

Many antigens have been screened until now, namely, tcdA, tcdB, peptidoglycans, cell
wall proteins, polysaccharides, and even complete nonpathogenic C. difficile strains, to de-
velop a vaccine. All of them were found to be potent antigens (170). Among them, the vac-
cines based on the toxin antigens TcdA and TcdB were found to be more potent (170).
Moreover, TcdB is the most potent antigen candidate as it is responsible for the pathology
in animal models and less severe disease was found to correlate with high TcdB-specific se-
rum antibodies in CDI patients (33, 54). Additionally, in clinical trials, reduction in rCDI was
shown by using a monoclonal antibody against TcdB (52). However, we cannot ignore the
colonization of bacteria. Hence, toxin B plus a colonizing factor with an appropriate adju-
vant might be the best vaccine candidate to cure CDI and rCDI. An appropriate route of
vaccine administration is of concern to maximize the immune response.

The other most important point is the existence of different isotypes of toxin B.
Until now, 8 to 12 subtypes of toxin B have been identified (44, 47). The hypervirulent
strain 027 has a different toxin B, namely, TcdB2, than the classical strain TcdB1 with
92% similarity. A TcdB1-specific antibody failed to neutralize TcdB2 (171). In contrast,
both toxin B1 and B2 produce similar antibody subclass profiles (55), but long-term
Bmem cell response, neutralization, and resistance to in vivo toxin challenge were
found to be superior for TcdB1 (55). The 027 ribotype produces a third toxin CDT, and
concerning this topic, Secore et al. (172) showed that a tetravalent vaccine, taking
TcdA, TcdB, and both CDTa and CDTb, provided better protection than a bivalent vac-
cine (TcdA and TcdB).

Screening and selecting adjuvants are also essential ingredients of a vaccine. Alum
was used in both the failed clinical trials by Pfizer and Sanofi in the C. difficile vaccine.
Alum can provide good humoral immunity but may fail to stimulate enough cellular
immunity (173). In addition, the main knowledge gap from the previous clinical trials
on failed vaccines is the lack of knowledge of mucosal IgA, the role of Tfh in local and
systemic adaptive immune response, and the impact of the gut microbiome in shaping
the vaccine-mediated response. In this regard, it is suggested that new generation vac-
cines against C. difficilemay fill up these shortcomings.

CONCLUSIONS

In this review, we provided critical insight into the factors that influence CDI sever-
ity. While there is a growing understanding that the host immune response may play
an important role in skewing the balance during the infection, other factors, such as
the host microbiome and C. difficile toxins, can further determine the degree of suscep-
tibility of the host. The role of IL-33 and IL-25 in shaping type 2 immunity and protect-
ing from CDI is an additional key factor. Toxin B, the major virulence factor of C. difficile,
and its association with the disease were also described. We also defined the role of
microbiota in shaping host immunity in CDI. The current status of the C. difficile vaccine
and the obstacle in its generation was debated. We conclude that recurrent C. difficile
infection (CDI) is due to a microbiota-induced failure of innate priming of the acquired
immune response, leading to failure to protect from colonization and intoxication.

The contribution of CD8 T cell responses in C. difficile killing and clearance is poorly
understood. In addition, very fewer studies have focused on the role of Tfh cells that
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are essential for the Bmem cells and antibody-producing plasma cell response. Hence,
emphasis on studying T cell differentiation and activation against C. difficile is required.
In this regard, a single-cell analysis of Tfh and Bmem cells may offer critical insights for
developing an ideal vaccine for CDI and rCDI. Hence, more studies are needed to
understand the cross talk and interplay between microbiota, host immune system, C.
difficile, and disease outcome. Taken together, understanding both the adaptive and
humoral immune response to C. difficile is needed to develop an efficacious vaccine.
We believe our review will help researchers understand the key findings in the C. diffi-
cile field in recent years and point out knowledge gaps.
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