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ORIGINAL ARTICLE

Cross-Sectional Gene-Smoking Interaction 
Analysis in Relation to Subclinical Atherosclerosis-
Results From the IMPROVE Study
Buamina Maitusong, MD, PhD*; Federica Laguzzi , Pharma D, PhD* ; Rona J. Strawbridge , PhD; Damiano Baldassarre , PhD; 
Fabrizio Veglia , PhD; Steve E. Humphries , PhD; Kai Savonen , MD, PhD; Sudhir Kurl, MD, PhD; Matteo Pirro , MD, PhD; 
Andries J. Smit, MD, PhD; Philippe Giral , MD, PhD; Angela Silveira , PhD; Elena Tremoli , PhD; Anders Hamsten, MD, PhD; 
Ulf de Faire , MD, PhD; Bruna Gigante , MD, PhD; Karin Leander , PhD; on behalf of the IMPROVE Study group†

BACKGROUND: Smoking is associated with carotid intima-media thickness (C-IMT). However, knowledge about how genetics 
may influence this association is limited. We aimed to perform nonhypothesis driven gene-smoking interaction analyses to 
identify potential genetic variants, among those included in immune and metabolic platforms, that may modify the effect of 
smoking on carotid intima-media thickness.

METHODS: We used baseline data from 1551 men and 1700 women, aged 55 to 79, included in a European multi-center 
study. Carotid intima-media thickness maximum, the maximum of values measured at different locations of the carotid tree, 
was dichotomized with cut point values ≥75, respectively. Genetic data were retrieved through use of the Illumina Cardio-
Metabo- and Immuno- Chips. Gene-smoking interactions were evaluated through calculations of Synergy index (S). After 
adjustments for multiple testing, P values of <2.4×10−7 for S were considered significant. The models were adjusted for age, 
sex, education, physical activity, type of diet, and population stratification.

RESULTS: Our screening of 207 586 SNPs available for analysis, resulted in the identification of 47 significant gene-smoking 
synergistic interactions in relation to carotid intima-media thickness maximum. Among the significant SNPs, 28 were in 
protein coding genes, 2 in noncoding RNA and the remaining 17 in intergenic regions.

CONCLUSIONS: Through nonhypothesis-driven analyses of gene-smoking interactions, several significant results were observed. 
These may stimulate further research on the role of specific genes in the process that determines the effect of smoking 
habits on the development of carotid atherosclerosis.

Key Words: carotid intima-media thickness ◼ epidemiologic studies ◼ gene-environment interaction ◼ polymorphism, single nucleotide ◼ smoking

Subclinical atherosclerosis is an asymptomatic, 
chronic condition that is easily undiagnosed until 
a clinical event occurs, such as myocardial infarc-

tion or stroke.1 Carotid intima-media thickness (C-IMT), 
assessed with B-mode ultrasound, a noninvasive 
method, has been shown to be a valid surrogate marker 

for subclinical atherosclerosis,2 and a predictor for future 
cardiovascular disease (CVD).3,4

Previous studies indicate that genetic susceptibility 
plays an important role in the pathogenesis of atheroscle-
rosis.5–8 The reported proportions of heritability of carotid 
atherosclerosis vary between 2% and 78%.8 Part of this 
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heritability is likely to be explained by gene-environment 
interactions.8 There are hopes from the scientific com-
munity and healthcare that personalized medicine, such 
as knowledge of how genetic background can interact 
with modifiable factors and thereby influence cardiovas-
cular risk, will be able to contribute to improved preven-
tion of CVD.

Among the risk factors for premature atherosclero-
sis, smoking has been identified as a major determinant 
of atherosclerotic development.9–11 Studies have shown 
that smoking exposure and duration of smoking ces-
sation can affect carotid artery structure in all phases 
of atherosclerosis.12,13 In an earlier investigation based 
on data from a European multi-center study IMPROVE 
(Carotid Intima Media Thickness [IMT] and IMT-Pro-
gression as Predictors of Vascular Events in a High Risk 
European Population), smoking was found to be a major 
determinant of C-IMT.14

Previous studies that have investigated gene-smoking 
interactions behind carotid atherosclerosis were gener-
ally performed with a candidate gene approach, and the 
results are inconclusive.15–33 Only 2 studies evaluated 
gene-smoking interactions with an explorative approach, 
using the whole genome, one based on 669 Hispan-
ics, mainly women, residing in New York,34 and the other 
based on 1776 men from West Africa.35 These studies 
are insufficient to detect all important gene-smoking 
interactions due to their limited sample size. In addition, 
it is doubtful whether the results can be generalized to 
populations of other ancestries.

Hence, we aimed to explore gene-smoking interac-
tions behind carotid subclinical atherosclerosis in a multi-
center study including men and women of European 
ancestry. We limited the search for interactions to include 
genetic variants available via platforms for genetic stud-
ies of cardiovascular, metabolic, and immune traits.

METHODS
The data that support the findings of this study are available 
from the corresponding author upon reasonable request.

The Institutional review board at each recruitment center 
(Karolinska Institutet, Stockholm, Sweden; University of Milan, 
Milan, Italy; University of Kuopio and Kuopio Research Institute 
of Exercise Medicine, Kuopio, Finland; University Hospital 
Groningen, Groningen, The Netherlands; University of Perugia, 
Perugia, Italy; Groupe Hôpital Pitie-Salpetriere, Paris, France) 
approved the study. Written informed consents for general 
participation and for the genotyping were provided by all par-
ticipants. The study was performed in accordance with the 
Helsinki Declaration.

Full materials and methods are available in Supplemental 
Materials.

RESULTS
Baseline characteristics of all study participants and by 
their smoking status are presented in Table 1. The cur-
rent smokers were younger, less physically active, and 
educated than nonsmokers. Smokers had also higher 
levels of total cholesterol, triglycerides, LDL-C (low-
density lipoprotein cholesterol), blood glucose, and High-
sensitivity C-reactive protein. However, their level of uric 
acid and creatinine were lower than in nonsmokers.

In total, 207 586 genetic variants were available for 
analyses. Results from the main analysis investigating 
gene-smoking interaction in relation to C-IMTmax cut off 
at the 75th percentile are shown in Table 2. We found 
47 single nucleotide polymorphisms (SNPs) significant 
(P for Synergy index <2.4×10−7) after Bonferroni cor-
rection. All the aforementioned interaction results were 
synergistic, with Synergy index point estimates in the 
range between 3.3 and 5.8 (Table S1). Compared with 
the reference group of nonsmokers without the risk vari-
ant, the odds for having C-IMT >75th percentile associ-
ated with smoking and having the risk variant were ≈3 to 
4-fold higher (Table 2). Of the 47 significant SNPs, 28 
were in protein coding genes, 2 in noncoding RNA and 
the remaining 17 in intergenic regions (Table 3). None 
of the 47 SNPs involved in the interactions identified in 
our study were among the published quantitative trait 
locus data included in the Genotype-Tissue Expression 
(accessed March 25, 2022).

Additional analysis that used C-IMTmax cutoff at the 
50th percentile resulted in the identification of 146 SNPs 
for which a significant synergistic interaction with smok-
ing was observed (Table S2). Among those SNPs, 75 
were in protein coding genes, 21 in noncoding RNA, and 
the remaining 50 in intergenic regions (Table S3). Two of 
these significant SNPs (rs6032180 in LOC105372631 
and rs3744761 in PLCD3) were found both when using 
the 75th and the 50th percentile C-IMTmax cutoff values.

Analyses of gene-smoking interactions that also con-
sidered data where the number of observations for each 
of the possible combinations of the exposures consid-
ered are <10 resulted in the identification of additional 
significant results for the C-IMTmax, cutoff 75th percen-
tile (Table S4), and for C-IMTmax, cutoff 50th percentile  

Nonstandard Abbreviations and Acronyms

APOB apolipoprotein B
C-IMT carotid intima-media thickness
C-IMTmax  maximum of C-IMT values measured at 

different locations of the carotid tree
GWAS genome-wide association study
IMPROVE  Carotid Intima Media Thickness [IMT] 

and IMT-Progression as Predictors of 
Vascular Events in a High Risk Euro-
pean Population

SNP single nucleotide polymorphism
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Table 1. Characteristics of the IMPROVE Study Participants by Smoking Status

 Entire sample (N=3251) Current smokers (n=520) Nonsmokers (n=2731) 

Male; n (%) 1551 (47.7) 273 (52.5) 1278 (46.8)

Age, y, mean±SD 64.4±5.4 61.5±5.2 64.9±5.7

Geographic gradient, n (%)

  Kuopio 928 (28.5) 166 (31.9) 762 (27.9)

  Stockholm 488 (15.0) 63 (12.1) 425 (15.6)

  Groningen 400 (12.3) 77 (14.8) 323 (11.8)

  Paris 434 (13.3) 48 (9.2) 386 (14.1)

  Milan 517 (15.9) 93 (17.9) 424 (15.5)

  Perugia 484 (14.9) 73 (14.0) 411 (15.0)

Anthropometric variables, mean±SD

  BMI, kg/m2 26.7±4.3 26.3±4.2 26.7±4.6

  Waist/hip ratio 0.92±0.09 0.92±0.08 0.92±0.09

Blood pressure, mean±SD    

  Diastolic blood pressure, mm Hg 81±9 81±10 81±10

  Systolic blood pressure, mm Hg 140±19 140±18 140±18

Physical activity level, n (%)

  Low 613 (18.8) 114 (22.0) 499 (18.3)

  Medium 1453 (44.8) 234 (45.1) 1219 (44.7)

  High 1180 (36.4) 171 (32.9) 1009 (37.0)

Education, n (%)

 �≤9 y 1467 (45.6) 238 (46.6) 1229 (45.4)

  9–12 y 803 (25.0) 133 (26.0) 670 (24.7)

  >12 y 944 (29.3) 140 (27.4) 804 (29.7)

Mediterranean diet score,* n (%)

  0 316 (9.7) 68 (13.1) 248 (9.1)

  1 758 (23.3) 142 (27.3) 616 (22.6)

  2 930 (28.6) 159 (30.6) 771 (28.2)

  3 731 (22.5) 102 (19.6) 629 (23.0)

  4 427 (13.1) 42 (8.1) 385 (14.1)

  5 80 (2.5) 7 (1.3) 73 (2.7)

  6 9 (0.3) 0 (0.0) 9 (0.3)

Biochemical markers, mean±SD

  Total cholesterol, mmol/L 5.44±1.11 5.53±1.12 5.43±1.25

  HDL cholesterol, mmol/L 1.21±0.36 1.15±0.36 1.22±0.30

  Triglycerides, mmol/L 1.29±1.01 1.41±1.13 1.27±1.17

  LDL cholesterol, mmol/L 3.51±1.01 3.57±1.01 3.49±0.94

  Uric acid, µmol/L 313.8±71.6 309.0±72.0 314.7±71.5

  Blood glucose, mmol/L 5.50±1.54 5.60±1.45 5.50±1.42

  Creatinine, µmol/L 80.7±17.7 80.1±17.3 80.8±17.7

  C-reactive protein 2.79±4.30 2.98±3.60 2.76±4.42

Medical history and drug use, n (%)

  Hypercholesterolemia† 2299 (70.8) 337 (64.9) 1962 (71.9)

  Hypertriglyceridemia‡ 827 (25.5) 151 (29.0) 676 (24.8)

  Hypertension§ 2327 (71.6) 331 (63.6) 1996 (73.1)

  Diabetes‖ 775 (24.2) 125 (24.3) 650 (24.2)

  Statin use 1290 (39.7) 166 (31.9) 1124 (41.2)

Results are expressed as mean and SD for continuous variables and as count and proportion (%) for categorical variables. HDL indi-
cates high-density lipoprotein; IMPROVE, Carotid Intima Media Thickness [IMT] and IMT-Progression as Predictors of Vascular Events 
in a High Risk European Population; and LDL, low-density lipoprotein.

*The score indicates level of adherence; zero corresponds to the lowest level.
†Serum total cholesterol >5.17 mmol/L.
‡Serum triglycerides >1.7 mmol/L.
§Self-reported and use of antihypertensive drugs.
‖Self-reported and/or use of antidiabetic drugs.
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Table 2. Significant Gene-Smoking Interaction Results* After Bonferroni Adjustment for Multiple Testing in Relation to 
C-IMTmax With Cutoff at the 75th Percentile

 Number of observations     Odds ratio (95% CI)†   

 

Nonsmokers 
without the 
risk variant

Nonsmokers 
with the risk 
variant

Smokers 
without the 
risk variant

Smokers 
with the risk  
variant   

Reference group: nonsmokers without 
the risk variant  

 
Con-
trols Cases 

Con-
trols Cases 

Con-
trols Cases 

Con-
trols Cases 

Risk 
allele

MAF 
(%)

Nonsmok-
ers with 
the risk 
variant 

Smokers 
without the 
risk variant 

Smokers 
with the 
risk variant 

P Synergy 
index

Chr 1

rs12134420 1874 597 65 22 324 144 11 13 C 20 1.11  
(0.67–1.83)

1.62  
(1.29–2.03)

4.92  
(2.09–11.57)

4.43×10−14

rs2446622 1702 538 230 75 306 131 26 25 G 6 1.02  
(0.77–1.36)

1.56  
(1.23–1.98)

3.86  
(2.14–6.97)

9.17×10−18

rs72676073 1683 532 256 87 290 119 45 38 G 7 1.19  
(0.91–1.55)

1.50  
(1.17–1.92)

3.53  
(2.22–5.62)

8.51×10−15

rs73009101 1742 545 197 74 315 137 20 20 G 5 1.18  
(0.88–1.58)

1.60  
(1.27–2.02)

4.03  
(2.12–7.68)

5.96×10−13

Chr 2

rs6758414 1746 558 191 61 309 134 26 23 A 5 1.00  
(0.73–1.37)

1.56  
(1.23–1.97)

3.60  
(2.00–6.50)

6.51×10−15

rs9789490 1386 443 553 176 253 93 82 64 G 16 1.01  
(0.82–1.24)

1.33  
(1.01–1.74)

2.96  
(2.06–4.24)

4.34×10−17

Chr 3

rs9877192 1801 572 138 47 317 139 18 18 A 26 1.12  
(0.79–1.6)

1.6  
(1.27–2.02)

4.21  
(2.07–8.54)

1.48×10−13

Chr 4

rs11736632 1620 503 319 116 281 110 54 47 A 9 1.13  
(0.89–1.44)

1.48  
(1.15–1.9)

3.13  
(2.05–4.78)

9.51×10−13

Chr 5

rs13176964 1587 490 352 128 285 116 50 41 G 10 1.16  
(0.92–1.46)

1.52  
(1.18–1.94)

3.24  
(2.08–5.05)

9.03×10−13

rs2278392 1553 495 386 124 270 108 65 49 T 11 1.01  
(0.80–1.28)

1.44  
(1.12–1.87)

2.86  
(1.92–4.27)

7.74×10−13

rs4867490 1622 517 316 102 291 121 44 36 G 40 1.06  
(0.82–1.36)

1.50  
(1.17–1.91)

3.27  
(2.05–5.21)

8.27×10−15

rs7722352 1684 533 252 86 306 132 29 25 G 7 1.04  
(0.79–1.36)

1.56  
(1.23–1.98)

3.45  
(1.95–6.10)

3.08×10−13

Chr 7

rs28695838 1580 504 353 115 290 116 44 41 G 10 1.03  
(0.81–1.31)

1.43  
(1.12–1.84)

3.62  
(2.31–5.69)

2.21×10−23

Chr 8

rs12545167 1302 412 637 207 246 97 89 60 A 18 1.03  
(0.84–1.25)

1.37  
(1.05–1.80)

2.81  
(1.96–4.03)

8.11×10−14

rs4301463 1678 530 261 89 304 127 31 30 A 7 1.14  
(0.87–1.49)

1.54  
(1.21–1.96)

3.77  
(2.2–6.44)

9.53×10−16

rs6997802 1679 530 260 89 304 127 31 30 T 7 1.14  
(0.88–1.49)

1.54  
(1.21–1.96)

3.77  
(2.20–6.44)

1.13×10−15

rs752039 1266 404 673 215 242 93 93 64 A 19 1.01  
(0.83–1.23)

1.33  
(1.01–1.76)

2.82  
(1.98–4.02)

5.92×10−15

Chr 9

rs10810371 1414 430 509 185 258 97 72 58 G 15 1.17 0.95–
1.44)

1.43  
(1.10–1.88)

3.02  
(2.07–4.40)

4.91×10−13

rs143207461 1734 549 205 70 314 134 21 23 C 5 1.12  
(0.83–1.50)

1.57  
(1.24–1.99)

4.00  
(2.16–7.43)

2.16×10−15

Chr 10

rs12244483 1708 540 230 79 297 120 38 37 T 6 1.05  
(0.8–1.40)

1.51  
(1.18–1.92)

3.27  
(2.02–5.29)

1.20×10−13

(Continued )
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 Number of observations     Odds ratio (95% CI)†   

 

Nonsmokers 
without the 
risk variant

Nonsmokers 
with the risk 
variant

Smokers 
without the 
risk variant

Smokers 
with the risk  
variant   

Reference group: nonsmokers without 
the risk variant  

 
Con-
trols Cases 

Con-
trols Cases 

Con-
trols Cases 

Con-
trols Cases 

Risk 
allele

MAF 
(%)

Nonsmok-
ers with 
the risk 
variant 

Smokers 
without the 
risk variant 

Smokers 
with the 
risk variant 

P Synergy 
index

rs12251673 1721 545 217 74 304 127 31 30 C 6 1.01  
(0.75–1.35)

1.54  
(1.21–1.95)

3.24  
(1.91–5.49)

1.16×10−12

rs7068194 1722 545 217 74 304 127 31 30 T 6 1.01  
(0.75–1.35)

1.54  
(1.21–1.96)

3.25  
(1.92–5.50)

1.17×10−12

rs7092757 1708 541 231 77 296 120 39 37 G 6 1.01  
(0.76–1.35)

1.51  
(1.18–1.92)

3.19  
(1.98–5.13)

1.60×10−13

rs72826094 1847 589 91 28 321 145 12 12 A 20 1.02  
(0.65–1.59)

1.63  
(1.30–2.05)

4.55  
(1.92–10.81)

4.27×10−14

Chr 11

rs1002171 1716 535 223 84 306 128 29 29 G 6 1.10  
(0.84–1.46)

1.55  
(1.22–1.98)

3.46  
(2.02–5.94)

1.17×10−12

rs2434468 1654 515 285 103 307 129 28 27 C 8 1.06  
(0.82–1.37)

1.55  
(1.22–1.97)

3.55  
(2.04–6.18)

6.56×10−15

rs2511241 1658 526 281 93 301 124 34 33 C 8 1.06  
(0.82–1.38)

1.51  
(1.19–1.93)

3.69  
(2.21–6.16)

1.53×10−18

rs3741392 1630 520 309 99 295 117 39 40 C 8 1.01  
(0.78–1.30)

1.49  
(1.17–1.91)

3.16  
(1.97–5.05)

3.20×10−14

rs61899280 1726 546 213 73 310 134 25 23 C 6 1.07  
(0.80–1.43)

1.57  
(1.24–1.98)

3.96  
(2.18–7.19)

3.63×10−17

Chr 12

rs10506726 1733 537 206 81 317 135 17 22 T 6 1.22  
(0.92–1.62)

1.59  
(1.26–2.01)

5.04  
(2.57–9.86)

1.95×10−21

rs11171745 1494 470 445 149 266 106 69 51 A 12 1.08  
(0.87–1.34)

1.45  
(1.12–1.88)

2.91  
(1.97–4.30)

1.14×10−12

rs11171773 1691 536 248 83 302 128 33 29 A 7 1.06  
(0.81–1.40)

1.54  
(1.21–1.96)

3.33  
(1.98–5.61)

9.35×10−13

rs116378618 1718 545 219 74 307 131 28 26 A 6 1.09  
(0.81–1.45)

1.56  
(1.23–1.98)

3.50  
(2.01–6.11)

8.02×10−13

rs1689512 1494 470 445 149 266 106 69 51 G 12 1.08  
(0.87–1.34)

1.45  
(1.12–1.88)

2.91  
(1.97–4.30)

1.14×10−12

rs17118317 1478 469 461 150 265 106 70 51 C 13 1.03  
(0.83–1.28)

1.44  
(1.11–1.86)

2.85  
(1.93–4.21)

8.38×10−13

rs35436573 1604 507 335 112 288 119 47 38 A 9 1.03  
(0.81–1.32)

1.49  
(1.16–1.91)

3.13  
(1.99–4.92)

3.83×10−14

rs4762693 1788 571 151 48 319 141 16 16 G 27 1.03  
(0.73–1.45)

1.61  
(1.27–2.02)

3.90  
(1.89–8.05)

7.19×10−13

rs773643 1623 513 316 106 285 117 50 40 A 9 1.09  
(0.85–1.39)

1.49  
(1.16–1.91)

3.15  
(2.03–4.91)

2.49×10−13

rs7956913 1488 473 448 146 266 106 69 51 D 12 1.03  
(0.83–1.29)

1.43  
(1.10–1.85)

2.91  
(1.97–4.30)

8.69×10−14

Chr 13

rs12872592 1367 430 572 189 261 99 74 58 G 15 1.04  
(0.85–1.28)

1.39  
(1.07–1.81)

3.00  
(2.05–4.38)

5.58×10−16

Chr 14

rs4981312 1410 452 526 167 254 99 80 58 G 15 1.01  
(0.82–1.24)

1.39  
(1.06–1.81)

2.80  
(1.94–4.04)

1.15×10−13

rs7155978 1658 523 281 96 301 128 34 29 T 7 1.03  
(0.80–1.34)

1.54  
(1.21–1.96)

3.30  
(1.95–5.59)

2.69×10−13

rs915064 1746 553 193 66 311 135 24 22 C 5 1.05  
(0.77–1.42)

1.58  
(1.25–2.00)

3.59  
(1.96–6.59)

4.86×10−13

Table 2. Continued

(Continued )
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(Table S5). All the observed interactions were synergis-
tic. Of the SNPs that appeared in these results, 130 are 
located in protein coding genes, 43 in long noncoding 
RNA, and 84 in intergenic regions (Table S6).

We observed no significant results of interaction on 
the multiplicative scale.

DISCUSSION
In this population of European descent at high risk of 
CVD but free of clinical manifestations of CVD, our non-
hypothesis-based analyses of gene-smoking interactions 
resulted in the identification of several genetic variants 
that may have a role in the process behind the effects of 
smoking on the development of carotid atherosclerosis. 
Among the 47 SNPs identified in the main analyses, 8 
SNPs (Figure 1) are located in any of 7 coding genes 
that in previous research have been linked to athero-
sclerosis development: rs72676073 in the interleukin 23 
receptor (IL23R), rs9877192 in the LIM (Lin-11, Islet-1, 
and Mec-3) domain containing preferred translocation 
partner in lipoma (LPP), rs2278392 in the 5-hydroxytryp-
tamine receptor 4 (HTR4), rs10810371 in the tetratrico-
peptide repeat domain 39B (TTC39B), rs7068194 and 
rs12251673 in the 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase (PFKFB3), rs2511241 in the puri-
nergic receptor P2Y2 (P2RY2), and rs915064 in the 
potassium voltage-gated channel subfamily H member 5 
(KCNH5).36–42 None of these coding genes were identi-
fied in 2 previous studies that evaluated gene-smoking 
interactions with an explorative approach in relation to 

carotid atherosclerosis.34,35 These 2 studies were based 
on the whole genome and assessed interaction on the 
multiplicative scale only; significant findings of interaction 
with smoking were observed for a few genetic variants 
(rs112017404; rs144170770; rs4941649; rs1192824; 
rs77461169; rs3751383)34,35 that were not available in 
the Cardio-Metabo- and Immuno-Chips.

Scientific support for relevance of the IL23R gene 
seems to be emerging; it encodes for a protein, inter-
leukin 23 receptor, involved in the cascade of proinflam-
matory mediators which may in turn play a role in the 
development of atherosclerosis.36 Further, the IL23R 
gene has been previously related to autoimmune dis-
ease43,44 and smoking behavior.45 It has been found to 
synergically interact with smoking in relation to sarcoid-
osis, an autoimmune disease, in a Swedish population-
based case-control study.43 The HTR4 and P2RY2 genes 
may also possibly be of particular interest. These proteins 
belong to the family of serotonin and purinergic receptors, 
respectively. The activation of extracellular nucleotide 
purinergic receptors, such as ATP, has been suggested 
to stimulate inflammatory mediators46 and regulate the 
expression of vascular cell adhesion molecule, which is 
thought to be important for the pathogenesis of athero-
sclerosis.39 The HTR4 gene has been noted to associate 
to C-IMT in a previous study based on the IMPROVE 
study material using a candidate gene approach.41

Among the 47 SNPs identified in our main analysis of 
interaction as well as in our additional analyses that used 
the 50th percentile cutoff, there is a SNP (rs3744761), 
located in a protein coding gene, the phospholipase C 

 Number of observations     Odds ratio (95% CI)†   

 

Nonsmokers 
without the 
risk variant

Nonsmokers 
with the risk 
variant

Smokers 
without the 
risk variant

Smokers 
with the risk  
variant   

Reference group: nonsmokers without 
the risk variant  

 
Con-
trols Cases 

Con-
trols Cases 

Con-
trols Cases 

Con-
trols Cases 

Risk 
allele

MAF 
(%)

Nonsmok-
ers with 
the risk 
variant 

Smokers 
without the 
risk variant 

Smokers 
with the 
risk variant 

P Synergy 
index

Chr 16

rs1003341 1140 356 799 263 220 79 115 78 T 23 1.05  
(0.87–1.27)

1.29  
(0.96–1.73)

2.69  
(1.94–3.73)

6.22×10−13

Chr 17

rs3744761 1762 559 177 60 311 131 24 26 T 5 1.05  
(0.76–1.44)

1.57  
(1.24–1.98)

3.52  
(1.96–6.32)

1.15×10−12

rs4362432 1660 516 279 103 300 121 35 36 A 8 1.17  
(0.90–1.50)

1.53  
(1.20–1.95)

3.52  
(2.15–5.76)

4.68×10−14

Chr 20

rs6032180 1607 508 332 111 285 117 50 40 T 9 1.06  
(0.83–1.35)

1.48  
(1.16–1.90)

3.23  
(2.06–5.07)

4.64×10−15

A dominant genetic model was assumed.‡C-IMTmax indicates maximum of carotid intima media thickness values measured at different locations of the carotid tree; 
and MAF, minor allele frequency.

*Synergy index results were considered significant at P<2.4×10−7; minimum number of subjects in each group:10.
†Model adjusted for sex, age, education (categorical), physical activity (categorical), Mediterranean diet score, and population structure (multidimensional scaling-3 

continuous).
‡Individuals who carry either 1 or 2 copies of the risk allele are considered to carry the risk variant.

Table 2. Continued
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Table 3. Genes in Proximity to the Genetic Variants Included in the Significant Gene-Smoking 
Interaction Results Observed for C-IMTmax With Cutoff at the 75th Percentile

 Position Function 
Gene in proximity to the 
genetic variant 

Chr 1

  rs12134420 85272625 Intron variant BCL10

  rs2446622 161637183 Intergenic variant None

  rs72676073 67203930 Intron variant IL23R

  rs73009101 116825975 Intergenic variant None

Chr 2

  rs6758414 120538909 Intergenic variant  

  rs9789490 212992755 Upstream variant LOC102725082

Chr 3

  rs9877192 188708468 Intron variant LPP

Chr 4

  rs11736632 56306169 Intron variant CRACD; LOC105377664

Chr 5

  rs13176964 175407619 Intergenic variant None

  rs2278392 148548662 Intron variant; 
upstream variant

HTR4; LOC107986462; 
LOC105378221

  rs4867490 32919896 Intergenic variant None

  rs7722352 123450395 Intergenic variant None

Chr 7

  rs28695838 52527273 Intergenic variant None

Chr 8

  rs12545167 69595708 Intron variant SULF1

  rs752039 69601242 Intron variant SULF1

  rs4301463 130457363 Intergenic variant None

  rs6997802 130457843 Intergenic variant None

Chr 9

  rs10810371 15290344 Intron variant TTC39B

  rs143207461 133514431 Upstream variant MYMK

Chr 10

  rs12244483 30545968 Intergenic variant None

  rs12251673 6150108 Intron variant PFKFB3

  rs7068194 6149259 Intron variant PFKFB3

  rs7092757 30543292 Intergenic variant None

  rs72826094 113041729 Intron variant TCF7L2

Chr 11

  rs1002171 71506525 Intergenic variant None

  rs2434468 43936390 Intergenic variant None

  rs2511241 73234296 Missense variant P2RY2

  rs3741392 64933558 Intron variant PPP2R5B

  rs61899280 46945082 Intron variant C11orf49

Chr 12

  rs10506726 77073285 Intergenic variant None

  rs11171745 56118887 Intron variants ZC3H10

  rs11171773 56189702 Upstream variant SMARCC2; 
LOC107984468

  rs773643 56181404 Intron variant SMARCC2

  rs116378618 56166019 Intron variant SMARCC2

(Continued )



Maitusong et al Gene-Smoking Interactions and C-IMT

Circ Genom Precis Med. 2023;16:e003710. DOI: 10.1161/CIRCGEN.122.003710 June 2023 243

delta 3 (PLCD3) gene, which may be of particular inter-
est due to its link to hypertension. This gene has been 
identified in the Global Blood Pressure Genetics Consor-
tium genome-wide association study (GWAS) including 
>34 000 study participants, as one of 8 genes linked to 
hypertension.47 Hypertension, in turn, has been consis-
tently associated with increased C-IMT in several stud-
ies including the IMPROVE.14,48 The identification of the 
PLCD3 gene in the Global Blood Pressure Genetics was 
not confirmed in a later larger GWAS: the International 
Consortium for Blood Pressure (≈200 000 study par-
ticipants including also Global Blood Pressure Genetics 
participants).49 A possible explanation for this lack of repli-
cation may relate to underlying gene-smoking interaction.

Among the 146 significant interaction results gener-
ated from analyses that used the 50th percentile C-IMT-

max cutoff, 75 are in protein coding genes. Among those, 
perhaps the most interesting finding involves the APOB 
(apolipoprotein B) gene (rs550619 and rs570877). The 
APOB gene encodes for the well-known APOB protein 
involved in the transportation and metabolism of lipids 
such as LDL-C, which in turn seems to play a fundamen-
tal role in CVD pathophysiology.50 Findings from recent 
Mendelian randomization studies suggest APOB as the 
predominant lipoprotein trait that accounts for a causal 
mechanism that links LDL-C to CVD.51,52 Also, levels of 
APOB have been noted to increase in relation to smok-
ing tobacco,53 however, not consistently.54

The remaining significant results (not discussed above) 
from analyses based on the C-IMTmax 75th or 50th per-
centile cutoffs, involve SNPs located in genes previously 
discussed in relation to: (1) regulation of cardiometabolic 
factors and related diseases such as obesity, hypertension 
and diabetes (eg, COBLL1; HFM1, CXCR1; COL21A1, 
DOCK3; DGKB, BMP1; IDE; KCNQ1; and KCNQ1-AS1, 
ZC3H10),55–64 (2) endothelial inflammation and dysfunc-
tion (eg, TNFAIP8L1, CCNY, GSE1),65–67 (3) vascular 
smooth muscle cell proliferation (eg, VEGFA),68 (4) inflam-
matory diseases (eg, PSORS1C1),69 (5) risk of CVD hard 
end point such as atrial fibrillation and venous thromboem-
bolism (eg, ZFPM2; LMO7),70,71 and (6) addiction behavior 
including nicotine dependence (eg, SP140L, THSD7B).72,73

From the results of our analyses restricted to cell 
counts of 10 or below, the identification of a SNP located 
in the PIN2/TERF1 interacting, telomerase inhibitor 
1 (PINX1) gene is potentially interesting, because this 
gene was previously identified in GWAS of subclinical 
atherosclerosis6 and carotid plaque.7 However, it was 
not found to interact with smoking in a previous study 
on C-IMT using a candidate gene approach.33 The study 
addressed multiplicative interactions only.

An important advantage of our study is that we did not limit 
the gene-smoking interaction analyzes to involve SNPs iden-
tified in previous GWAS of C-IMT. It is possible that a gene 
itself is not associated with C-IMT but becomes important 
only when smoke exposure occurs. Interestingly, none of the 

 Position Function 
Gene in proximity to the 
genetic variant 

  rs1689512 56116853 Intron variant; 
upstream variant

RPL41; ZC3H10

  rs17118317 56126591 Prime UTR variant; up-
stream variant

ZC3H10; ESYT1

  rs7956913 56129931 Intron variant ESYT1

  rs35436573 56159225 Intron variant MYL6

  rs4762693 21009309 Intron variant SLCO1B3-SLCO1B7

Chr 13

  rs12872592 21154616 Prime UTRa variant SKA3

Chr 14

  rs4981312 20675000 Intergenic variant None

  rs7155978 68785538 Intergenic variant None

  rs915064 62710859 Intron variant KCNH5

Chr 16

  rs1003341 25537652 Intergenic variant None

  Chr 17

  rs3744761 45118646 Intron variant PLCD3

  rs4362432 45119179 Intron variant PLCD3

Chr 20

  rs6032180 45428246 Intron variant LOC105372631

C-IMTmax indicates maximum of carotid intima media thickness values measured at different locations of the carotid tree; 
and UT, untranslated region.

Table 3. Continued
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SNPs we have identified as significantly involved in smok-
ing interaction are among the significant findings reported in 
previous GWAS in relation to C-IMT or smoking behavior.5,7

Limitations
Our study, just like other exploratory studies, cannot 
determine which findings are truly positive, and as to 
whether there are other true effects we did not detect. 
However, we used the most conservative approach avail-
able to adjust for multiple testing, which increases the 
likelihood that reported findings are true positive. Fur-
ther, to our knowledge, our study is the largest to date 
investigating gene-smoking interaction in relation to 
subclinical atherosclerosis with an explorative approach. 
Interactions we may have failed to identify should be 
of a smaller magnitude than those we have identified. 
Concerning our positive findings, replication analyses 
using an external study material would have been a good 

complement. However, no suitable material for replica-
tion analyses was available. Another study limitation is 
that our genetic data were extracted from genetic chips 
which do not encompass the whole genome; our results 
are thus limited to genes related to cardiovascular and 
immunologic traits which means that some of the rel-
evant SNPs related to smoking predisposition may not 
have been included. An additional limitation is that our 
results may not be generalized to populations other than 
those with European ancestry and at high risk of CVD. 
Finally, there is also a limitation linked to the fact that 
our chosen method for interaction analyses requires 
dichotomization of exposure variables; the results may 
have been diluted because we included former smokers 
in the same category as the current smokers. However, 
smoking cessation is considered a risk factor for CVD.74 
Further, studies on the relation between smoking cessa-
tion and C-IMT have not shown any clear decreased risk 
of C-IMT progression.75

Figure 1. Visualization of 8 selected significant results from interaction analyzes.
The bars show odds ratio point estimates for the risk of having carotid intima-media thickness (C-IMT) above the 75th percentile associated 
with (a) the genetic risk variant without the presence of smoking, (b) smoking without the presence of the genetic risk variant, and (c) the 
genetic risk variant in combination with smoking. Reference category is nonsmoking without the presence of the genetic risk variant. These 8 
SNPs are located in coding genes previously linked to the development of atherosclerosis.
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Conclusions
In this European population at high risk of CVD, we iden-
tified several significant gene-smoking interactions in 
relation to C-IMT. Further research in this field is urged to 
build strong scientific evidence that may open new pos-
sibilities for improving cardiovascular prevention through 
personalized recommendations or drug development.
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