
MB-SupCon: Microbiome-based Predictive Models via 
Supervised Contrastive Learning

Sen Yang1, Shidan Wang2, Yiqing Wang1, Ruichen Rong2, Jiwoong Kim2, Bo Li3,4, Andrew 
Y. Koh3,5,6, Guanghua Xiao2, Qiwei Li7, Dajiang J. Liu8, Xiaowei Zhan1,2,9

1 -Department of Statistical Science, Southern Methodist University, Dallas, TX 75275, United 
States

2 -Quantitative Biomedical Research Center, Department of Population and Data Sciences, 
University of Texas Southwestern Medical Center, Dallas, TX 75390, United States

3 -Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, 
TX 75390, United States

4 -Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 
75390, United States

5 -Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 
75390, United States

6 -Department of Paediatrics, University of Texas Southwestern Medical Center, Dallas, TX 
75390, United States

7 -Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080, 
United States

8 -Department of Public Health Sciences, Pennsylvania State University, Hershey, PA 17033, 
United States

9 -Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, 
Dallas, TX 75390, United States

Abstract

Correspondence to Dajiang J. Liu and Xiaowei Zhan: dajiang.liu@psu.edu (D.J. Liu), Xiaowei.Zhan@UTSouthwestern.edu (X. 
Zhan), @dajiangliu81 (D.J. Liu), @zhanxw (X. Zhan). 

CRediT authorship contribution statement
Sen Yang: Conceptualization, Visualization, Data curation, Formal analysis, Methodology, Software, Validation, Writing – original 
draft. Shidan Wang:Conceptualization, Formal analysis, Software, Writing – original draft. Yiqing Wang: Writing – original 
draft. Ruichen Rong: Conceptualization, Writing – original draft. Jiwoong Kim: Data curation, Writing – original draft. Bo Li: 
Writing – original draft. Andrew Y. Koh: Conceptualization, Writing – original draft. Guanghua Xiao:Writing – original draft, 
Conceptualization, Funding acquisition. Qiwei Li: Conceptualization, Writing – original draft. Dajiang Liu: Funding acquisition, 
Methodology, Supervision, Validation, Visualization, Writing – original draft. Xiaowei Zhan: Visualization, Data curation, Funding 
acquisition, Methodology, Supervision, Validation, Writing – original draft.

DECLARATION OF COMPETING INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Appendix A. Supplementary Data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.jmb.2022.167693.

HHS Public Access
Author manuscript
J Mol Biol. Author manuscript; available in PMC 2023 June 21.

Published in final edited form as:
J Mol Biol. 2022 August 15; 434(15): 167693. doi:10.1016/j.jmb.2022.167693.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://@dajiangliu81
http://@zhanxw


Human microbiome consists of trillions of microorganisms. Microbiota can modulate the 

host physiology through molecule and metabolite interactions. Integrating microbiome and 

metabolomics data have the potential to predict different diseases more accurately. Yet, most 

datasets only measure microbiome data but without paired metabolome data. Here, we propose 

a novel integrative modeling framework, Microbiome-based Supervised Contrastive Learning 

Framework (MB-SupCon). MB-SupCon integrates microbiome and metabolome data to generate 

microbiome embeddings, which can be used to improve the prediction accuracy in datasets that 

only measure microbiome data. As a proof of concept, we applied MB-SupCon on 720 samples 

with paired 16S microbiome data and metabolomics data from patients with type 2 diabetes. 

MB-SupCon outperformed existing prediction methods and achieved high average prediction 

accuracies for insulin resistance status (84.62%), sex (78.98%), and race (80.04%). Moreover, 

the microbiome embeddings form separable clusters for different covariate groups in the lower-

dimensional space, which enhances data visualization. We also applied MB-SupCon on a large 

inflammatory bowel disease study and observed similar advantages. Thus, MB-SupCon could be 

broadly applicable to improve microbiome prediction models in multi-omics disease studies.
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Introduction

The human microbiome is a collection of living microorganisms cohabitating in distinct 

body niches.1-2 The microbiome significantly impacts human health, including diseases and 

treatments.3 Accordingly, it is possible to use microbiome measurements to predict host 

physiologic conditions non-invasively. Creating microbiome-based prediction models has 

great benefits for medical research.4

Earlier work on microbiome-based prediction models using microbiome abundances 

includes random forest, and support vector machines models.5 While identification and 

quantification of microbiome taxa using microbiome data alone lead to associative and 

correlative insights, multi-omics can offer mechanistic insights and potentially improve 

prediction accuracy over models based on microbiomes alone. For example, in colorectal 

cancer, specific bacterial species has been associated with increased disease risk.6 Follow-

up mechanistic studies further elucidated the functions of the pathogenic species through 

multi-omics data analysis.7-8 Similar multi-omics approaches, especially in microbiome and 

metabolomics, have been applied to other diseases.9-10 To leverage multi-omics data features 

and unleash the potential of non-invasive microbiome biomarkers, we aim to develop a 

general framework for phenotype prediction using microbiome data.

Statistical learning and artificial intelligence research have advanced microbiome-based 

prediction models. Earlier work utilized taxonomic abundance data and linear or logistic 

regression models with penalties (e.g., LASSO model, and elastic net model).11 More 

recent approaches integrate multi-omics data using partial least squares (PLS), partial least 

squares-discriminant analysis (PLS-DA), or canonical correlation analysis (CCA).12 These 
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models rely on linear transformations of original features in supervised or unsupervised 

learning. Recently, contrastive learning has been introduced in the analysis of the multi-

omics data13 that can capture non-linear relationships between features. For example, 

a simple framework for unsupervised contrastive learning (simCLR) achieves state-of-

the-art prediction performance.14 Supervised contrastive learning (SupCon) in computer 

vision tasks also demonstrated superior robustness and prediction accuracies,15 and these 

advantages have solid theoretical support.16 Inspired by the success of these approaches, 

we propose a novel supervised-learning framework (MB-SupCon) based on nonlinear 

transformations of multi-omics datasets, which achieve robust and accurate prediction 

performance. Our method architecture is intuitive and requires only modest-sized multi-

omics training data. We demonstrate MB-SupCon’s utility using data from a published type 

2 diabetes study where MB-SupCon-based model improves prediction accuracies by a large 

margin. Another independent application of MB-SupCon to an Inflammatory Bowel Disease 

(IBD) study also produced consistent improvements. Moreover, we demonstrated that the 

microbiome embeddings from MB-SupCon can better separate different phenotype groups 

and lead to more informative visualizations of data. We posit that our microbiome-based 

prediction model can easily be applied to other disease types and used to integrate data from 

a variety of omics technologies.

Results

MB-SupCon: Microbiome-based prediction model via supervised contrastive learning

The main goal of MB-SupCon is to improve the prediction of phenotype or clinical 

covariates via supervised contrastive learning. An overall workflow is shown in Figure 

1. The model input includes gut microbiome and metabolome data, phenotype information 

and/or clinical covariates. We then train a supervised contrastive learning model to obtain 

the weights of the encoder networks. Finally, we apply the predictive model to independent 

test datasets to assess its accuracy. The microbiome embedding is critically useful for 

downstream analysis tasks, including 1) predicting phenotypic outcomes and covariates 

and 2) visualizing the lower-dimensional representation. We show that approaches using 

microbiome embedding from MB-SupCon often have better performance than approaches 

using raw microbiome abundances.

MB-SupCon improved categorical outcome prediction in type 2 diabetes study

We trained MB-SupCon using real human gut microbiome and metabolome data 

obtained in a host-microbe dynamics study by Zhou and et al.17 The omics data were 

collected longitudinally from subjects with prediabetes over approximately four years. Gut 

microbiome data were obtained from stool samples, and host metabolome data was obtained 

from blood samples at each visit of subjects. We subset both datasets and retained 720 

samples with both 16S gut microbiome and metabolome data. Microbiome data is encoded 

as a matrix of 720 × 96 dimension with entries having values between [0,1), (i.e., [0, 

1)720×96), and each of the 96 features represents the relative abundance of one microbial 

taxon from 5 taxonomic levels - phylum, class, order, family, and genus. Metabolome data 

is encoded as a matrix of dimension 720 × 724, with each entry taking values from non-

negative real numbers, (i.e., ℝ+
720 × 724), and each of the 724 features represents the abundance 
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of one metabolite. Standardization was applied to both datasets before model fitting so 

that each feature has a mean value of zero and unit variance. In addition, at each visit, 

demographic or clinical covariates (e.g., sex, age, insulin resistant/insulin sensitive, BMI, 

etc.) were also recorded for all subjects. We also attempted to predict the covariates using 

microbiome and metabolome data to evaluate different predictive models. To evaluate the 

predictive performance for each machine learning model, we applied 12 random splitting of 

training (70%), validation (15%), and testing (15%) to the data. For each split, the training 

and validation sets were used for model fitting and hyperparameter tuning (Supplementary 

texts: Training and tuning procedure), and the testing set was used for benchmarking.

To illustrate the advantage of MB-SupCon, we used:

• a logistic regression with elastic net regularization (EN),

• a multi-layer perceptron (MLP),

• a support vector machine classifier (SVM),

• a random forest classifier (RF)

to analyze and compare their performance on.

• the original microbiome abundances,

• the embedding of supervised contrastive learning (MB-SupCon).

We also compared MB-SupCon with a method that uses a logistic regression model to 

analyze unsupervised embeddings (MB-simCLR).

To distinguish analyses using original abundance and embeddings, we denote methods that 

analyze embeddings with prefix “MB-SupCon” e.g., MB-SupCon + MLP represents using 

MLP to analyze MB-SupCon embeddings.

We listed the details in Supplementary texts: Calculation of the microbiome embedding 

on obtaining microbiome embeddings in unsupervised or supervised learning. To evaluate 

prediction accuracy, we compute the fraction of correctly predicted labels for each model. 

Since we create multiple splits of the data for training, validation, and testing, the average 

prediction accuracy using different test folds are reported.

MB-SupCon embeddings, compared with the original data, lead to improved prediction 

accuracies in logistic regression with an elastic net penalty, SVM, MB-simCLR. The 

methods using MB-SupCon embedding almost always outperform RF and MLP models 

using raw microbiome abundance, which are two of the most accurate methods (Table 1, 

Figure 3). For the prediction of insulin resistance, methods using MB-SupCon embeddings 

achieved 84.62% average accuracy (MB-SupCon + Logistic, MB-SupCon + SVM, MB-

SupCon + RF, and MB-SupCon + MLP), which is better than methods that uses raw 

abundances, i.e., the elastic net logistic regression (76.69%), SVM (79.46%), MB-simCLR 

(65.67%), and similar to RF (83.93%) and MLP (83.73%). Similarly, for predicting sex, 

MB-SupCon also has good average prediction accuracy (78.98%). For predicting race, a 

four-category outcome, approaches using MB-SupCon embeddings reaches the lead average 

accuracy (80.04%), and their advantage is consistent over the other methods, including 
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RF (77.90%) and MLP (75.60%). More importantly, MB-SupCon embedding leads to a 

near-best prediction accuracy regardless of the choice of machine learning algorithms, which 

demonstrated its utility and robustness.

MB-SupCon better visualized embeddings in independent datasets

In addition to improving prediction accuracy, MB-SupCon embeddings in lower dimensional 

spaces can be useful for visualizations. In Figure 2(A), we applied PCA on 1) raw 

abundance data, 2) embeddings from MB-simCLR, and 3) embeddings from MB-SupCon 

in an independent test data. We placed the samples of test datasets onto the principal 

component 2 (PC2) vs 1 (PC1) scatterplot using a random seed of 1. In addition, we 

also compared MB-SupCon to three other methods, i.e., Sparse Partial Least Squares 

Discriminant Analysis (sPLS-DA),18 Sparse Partial Least Squares (sPLS),19 and Data 

Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO),20 for 

their capability to distinguish different groups of covariates. sPLS-DA18 predicts covariates 

using microbiome data only. The other two methods are based on integrative modeling 

of both microbiome and metabolome data. sPLS19 uses microbiome data as predictors 

and metabolome data as responses. DIABLO20 uses multiple omics data from the same 

samples to be blocks and covariate values to be the outcome. All three methods can be 

implemented under the “mixOmics”12 framework. In Figure 2(B), we compared the lower-

dimensional scatterplots (Component 2 vs. Component 1) on the same testing data for each 

method to those of MB-SupCon in Figure 2(A). Only the embedding from MB-SupCon 

leads to separable clusters from distinct covariate groups, whereas the other established 

methods failed to separate different categories of covariates. This result confirms that the 

improvements in prediction accuracy of MB-SupCon can be attributable to better feature 

embeddings.

MB-SupCon analysis of an inflammatory bowel disease study

To further evaluate the performance of MB-SupCon, we applied it to another independent 

multi-omics Inflammatory Bowel Disease (IBD) study with both metagenomics and 

metabolomics data9 (detailed in Supplementary texts: Network architecture and training 

of MB-SupCon model for IBD study). With “diagnosis” of IBD status as the covariate, 

we trained, validated and tested our model using 12 different random splits similar to 

the diabetes study. For each model, we evaluated the model performance on testing data. 

As shown in Table 2 and Figure 4, the results remained consistent with the T2D study. 

Approaches using MB-SupCon embeddings achieved significantly better average prediction 

accuracies (74.04%) compared to approaches using original data directly, including logistic 

regression (67.79%) and SVM (52.70%). When RF or MLP is used, predictions based 

on MB-SupCon embedding was comparable to the predictions using original abundance 

information, although MB-SupCon + RF had a slightly smaller variance compared to RF 

and has a marginal advantage compared to MLP. This validated the reliability and extensive 

applicability of MB-SupCon.
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Discussion

A reliable microbiome-based prediction model could have immediate values in disease 

diagnosis and treatment responses prediction.6,21-22 Here, we propose a novel method, MB-

SupCon, to improve those models by utilizing increasingly accessible multi-omics datasets. 

The method leverages the strengths of contrastive learning, which were first established 

in computer vision tasks.14-16,23 MB-SupCon performs the nonlinear transformation of 

microbiome abundance and produces useful embeddings, which lead to improved prediction 

accuracies and more informative visual representations. We demonstrate these advantages 

of MB-SupCon utilizing existing published data from a diabetes study and an inflammatory 

bowel disease study. We showed that the improved microbiome prediction model using 

MB-SupCon embeddings is more accurate than elastic net logistic regression, support vector 

machine, and unsupervised contrastive learning model, and can achieve comparable or better 

performance of random forest and multi-layer perceptron.

Like all other deep learning models, MB-SupCon has limitations. One drawback is 

that it does not explicitly offer biological interpretations between the microbiome and 

metabolomics. This “blackbox” nature of the deep learning model often leads to criticisms. 

Developing more interpretable machine learning models can potentially address the 

emerging biological questions. Another limitation is that MB-SupCon does not explicitly 

model sample relatedness. Specifically, as paired longitudinal data is relatively infrequent, 

MB-SupCon does not incorporate features that could account for correlations among 

longitudinal samples. A better solution to explore in the future is to change the current 

MLP encoders to mixed effect neural networks24-25 so that variation within subjects for 

longitudinal data could be better modeled and explained.

There are numerous future applications and extensions of MB-SupCon. MB-SupCon is 

not restricted to the microbiome and metabolomic data analysis. It can be applied to any 

omics technology (e.g., proteomics, host transcriptomics, host methylome, etc.). Moreover, 

MB-SupCon can be extended to integrate more than two types of omics data. This can be 

achieved by adding pairwise supervised contrastive losses.

In summary, we believe MB-SupCon and encoder-based on the neural network in general 

have advantage in approximating non-linear functions and modeling high-dimensional data. 

MB-SupCon framework can be applicable in broad multi-omics settings and improves 

microbiome-based prediction models.

Methods

Contrastive learning aims to maximize the similarities between microbiome embedding 

and metabolome embedding from a pair of samples. Let Xg and Xm be the standardized 

microbiome and metabolome data. Suppose there are n samples in a minibatch. For a 

single sample i (i = 1, 2, ⋯, n), we denote the associated microbial and metabolic data 

as xi
g and xi

m, respectively. Let the microbiome (or metabolome) encoder network be a 

multi-layer perceptron fg (·) (or fm(·)). The encoded features (embeddings) of microbiome 

and metabolome for sample i are zi
g = fg(xi

g) and zi
m = fm(xi

m), respectively. We define the 
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similarity between the encoded vectors zi
g, zj

m for i, j ∈ S = {1, 2, ⋯, n} in the latent space by 

the cosine similarity,

sim zi
g, zj

m = zi
g ⋅ zj

m

‖zi
g‖‖zj

m‖ for i, j ∈ S = {1, 2, ⋯, n}

where · denotes the dot product of two vectors and ∥x∥ denotes the Euclidean norm of a 

vector x.

We first introduce MB-SimCLR, an unsupervised contrastive learning approach: if a 

pair of microbiome and metabolome samples are from the same sample, we define the 

corresponding data {xi
g, xi

m} as a “positive pair”. Otherwise, we define the pair of data 

{xi
g, xj

m}(i ≠ j) as a “negative pair”. Given n pairs of microbiome and metabolome samples, 

if we set the embedding vector of microbiome zi
g as an anchor, the loss of unsupervised 

contrastive learning is.

Lossunsup
g, m = − Ei ∈ S log exp{sim(zi

g, zi
m) ∕ τ}

∑j = 1
n exp{sim zi

g, zj
m ∕ τ}

where i ∈ S = {1, 2, ⋯, n}, τ ∈ ℝ+ is the temperature parameter.

Symmetrically, by anchoring the embedding of the metabolome we can get loss Lossunsup
m, g . The 

total loss will be the sum of these two parts: . Lossunsup = Lossunsup
g, m + Lossunsup

m, g

Improved upon MB-SimCLR, we describe a supervised contrastive learning method, MB-

SupCon, where we incorporate labels in calculating the loss function. Given a specific 

categorical label yi from sample i, P(yi) denotes the index set of samples with label yi. Any 

pairs of microbiome and metabolome vectors {xk
g, xl

m} with k, l ∈ P(yi) are treated as “positive 

pairs”. Otherwise, they are “negative pairs”. Suppose we set microbiome embedding zi
g for i 

∈ S with label yi as an anchor. Then supervised contrastive loss15 is defined as.

Lossg, m = − Ei ∈ S
1

∣ P (yi) ∣ ∑I ∈ P (yi) log exp{sim(zi
g, zl

m) ∕ τ}
∑j = 1

n exp{sim zi
g, zj

m ∕ τ}

where ∣P(yi)∣ is the cardinality of index set P(yi), τ ∈ ℝ+ is the temperature parameter.

By anchoring metabolome embedding, we can get Lossm,g. The total loss is still the sum of 

Lossg,m and Lossm,g.

In all, the difference between supervised contrastive learning and unsupervised contrastive 

learning is the definition of positive and negative sample pairs. Once the loss is determined, 

we can update the weights of encoder networks using the stochastic gradient descent (SGD) 

method. Embedding can be calculated as the network outputs. Details are provided in the 

Supplemental Texts: Network Architecture and Training.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the MB-SupCon framework. Step 1 - Data Collection: Microbiome, 

metabolome, phenotype/covariates are collected; Step 2 – Contrastive Learning – MB-

SupCon is applied, and two encoder networks are trained; Step 3 – Predictive Model – 

microbiome encoder network can be applied to new microbiome data to obtain microbiome 

embeddings. The embeddings lead to an improved microbiome-based prediction model and 

lower-dimensional representation.
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Figure 2. 
Scatter plots of test data on lower-dimensional space (T2D study). Panel A: Scatter plots 

of test data (random seed 1) on a 2-dimensional space by PCA. 1st row: the first two 

principal components for the embeddings learned from MB-SupCon; 2nd row: the first two 

principal components for the original data; 3rd row: the first two principal components 

for the embeddings learned from MB-simCLR. Acronyms: PCA - Principal component 

analysis. Panel B: Scatter plots of test data (random seed 1) on 2-dimensional space by other 

methods. 1st row: the first two components learned from sPLSDA on original data; 2nd 

row: the first two components learned from sPLS on original data; 3rd row: the first two 

principal components learned from DIABLO on original data. Acronyms: PCA - Principal 

component analysis. sPLS-DA - Sparse Partial Least Squares Discriminant Analysis; sPLS - 

Sparse Partial Least Squares; DIABLO - Data Integration Analysis for Biomarker discovery 

using Latent cOmponents.
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Figure 3. 
Scatter plot of average prediction accuracies on test data from 12 random training-

validation-testing splits, using different methods for categorical covariates (T2D study). 

Green triangles and red points represent predictions based on MB-SupCon embeddings. 

Orange squares and blue points represent predictions based on original microbiome data. 

Panel A: Insulin resistant/sensitive; Panel B: Sex; Panel C: Race. Acronyms: LOGISTIC - 

logistic regression with elastic net penalty; SVM - support vector machine classifier; RF - 

random forest classifier; MLP - multi-layer perceptron.
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Figure 4. 
Scatter plots of average prediction accuracies for diagnosis on testing data from 12 random 

training-validation-testing splits, by using different methods for categorical covariates 

(IBD study). Green triangles and red points represent predictions based on MB-SupCon 

embeddings. Orange squares and blue points represent predictions based on original 

microbiome data. Acronyms: LOGISTIC - logistic regression with elastic net penalty; 

SVM - support vector machine classifier; RF - random forest classifier; MLP - multi-layer 

perceptron.
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Table 1.
Average prediction accuracies on testing data from 12 random training-validation-testing 
splits, by using different methods for categorical covariates (T2D study).

Acronyms: Logistic - logistic regression with elastic net penalty using original data; SVM - support vector 

machine classifier using original data; RF - random forest classifier using original data; MLP multi-layer 

perceptron using original data; MB-simCLR - logistic regression model with elastic net penalty using 

microbiome embeddings learned from unsupervised contrastive learning; MB-SupCon + Logistic - logistic 

regression model with elastic net penalty using microbiome embeddings learned from supervised contrastive 

learning. MB-SupCon + SVM: support vector machine classifier using microbiome embeddings learned from 

supervised contrastive learning; MB-SupCon + RF: random forest classifier using microbiome embeddings 

learned from supervised contrastive learning; MB-SupCon + MLP: multi-layer perceptron using microbiome 

embeddings learned from supervised contrastive learning; Avg. Acc. based on MB-SupCon: average 

accuracies among MB-SupCon + Logistic, MB-SupCon + SVM, MB-SupCon + RF and MB-SupCon + MLP.

Prediction
Task Logistic SVM RF MLP MB-simCLR

Insulin resistance 76.69% 79.46% 83.93% 83.73% 65.67%

Sex 65.61% 69.02% 80.38% 78.94% 59.85%

Race 72.99% 72.17% 77.90% 75.60% 68.38%

 

Prediction
Task

MB-SupCon
+ Logistic

MB-SupCon
+ SVM

MB-SupCon
+ RF

MB-SupCon
+ MLP

Avg. Acc.
based on
MB-SupCon

Insulin resistance 84.42% 85.12% 84.62% 84.33% 84.62%

Sex 78.94% 79.02% 79.24% 78.71% 78.98%

Race 80.73% 80.36% 79.91% 79.17% 80.04%
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Table 2.
Average prediction accuracies on testing data from 12 random training-validation-testing 
splits, by using different methods for categorical covariates (IBD study).

Acronyms are defined the same as those from Table 1.

Prediction
Task Logistic SVM RF MLP

diagnosis 67.79% 52.70% 74.32% 73.20%

 

Prediction
Task

MB-SupCon
+ Logistic

MB-SupCon
+ SVM

MB-SupCon
+ RF

MB-SupCon
+ MLP

Avg. Acc.
based on
MB-SupCon

diagnosis 74.21% 74.21% 73.99% 73.76% 74.04%
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