Skip to main content
. 2023 Apr 4;157(1):11–21. doi: 10.4103/ijmr.IJMR_555_20

Table II.

Characteristics of included studies

Study Type of study 1st author country Study site (Country) Cancer studied Type of lesions studied AI/ML protocol Name of the device/technology No of patients Male, n (%) Female, n (%) Mean Age (years) No of lesions studied
Kok et al13, 1996 Prospective, observational Netherlands Netherlands Cervical Cancer (Screening) Cervical smear ANN-based DS tool PAPNET 91,294 0 91,294 (100) NA 91,294
Chang et al14, 1999 Prospective, observational Taiwan Taiwan Prostate cancer Multiple parameters Multifactorial DS system PCES 43 43 (100) 0 67 43
Nieminen et al15, 2002 Randomized, Prospective, observational Finland Finland Cervical Cancer (Screening) Cervical smear ANN-based DS tool PAPNET 108,686 0 108,686 (100) 44±10.3 108,686
de Veld et al16, 2004 Prospective, observational Netherlands Netherlands Cancer of Oral Cavity Oral mucosal lesion PCA; ANN Autofluorescence spectroscopy 155 NA NA 57±1 176
Dreiseitl et al9, 2009 Prospective, observational Austria Austria Skin cancer PSL ANN-based DS tool MoleMax II instrument with added decision support system 458 NA NA NA 3,021
Lucidarme et al17, 2010 Prospective, observational France Multiple* Ovarian cancer TVS image of ovary Not specified OVHS 264 0 264 (100) 57 (Median) 375
Fink et al18, 2017 Prospective, observational Germany Germany Skin cancer PSL Not specified MelaFind device 111 59 (53.2) 52 (46.8) 45±17.3 346
Mori et al8, 2018 Prospective, observational Japan Japan Colorectal cancer Colorectal Polyps Machine learning, SVM Real-time automatic polyp detection system 325 235 (72.3) 90 (27.7) 67 (Median) 466
Walker et al19, 2019 Prospective, observational USA Israel Skin cancer PSL CNN, Deep learning NA 63 34 (54.0) 29 (46.0) 50.4±14.9 63
Wang et al20, 2019 Randomized, Prospective, observational China China Colorectal cancer Colorectal Polyps Deep learning architecture Real-time automatic polyp detection system 1,058 512 (48.4) 546 (51.6) 49.9±13.8 767
Su et al21, 2019 Randomized, Prospective, observational China China Colorectal cancer Colorectal polyps CNN, Deep learning AQCS-aided colonoscopy 623 307 (49.3) 316 (50.7) NA 442
Li et al22, 2019 Prospective, observational China China Lung cancer Lung nodules CNN, Deep learning DL-CAD 346 221 (63.9) 125 (36.1) 51.0±10.2 1916
Hollon et al23, 2020 Prospective, observational USA USA Brain cancer Intraoperative surgical specimen CNN, Deep learning NA 278 NA NA NA 278
Wang et al24, 2020 Randomized, Prospective, observational China China Colorectal cancer Colorectal polyps Deep learning CADe colonoscopy system 369 179 (48.5) 190 (51.5) NA 811
Repici et al25, 2020 Randomized, Prospective, observational Italy Italy Colorectal cancer Colorectal polyps CNN, Deep learning CADe colonoscopy system 685 337 (49.2) 348 (50.8) 61.3±10.2 493
Gong et al26, 2020 Randomized, Prospective, observational China China Colorectal cancer Colorectal polyps CNN, Deep learning ENDOANGEL- assisted colonoscopy 704 345 (49.0) 359 (51.0) NA 369
Wang et al27, 2020 Randomized, Prospective, observational China China Colorectal cancer Colorectal polyps Deep learning CADe colonoscopy system 962 495 (51.5) 467 (48.5) NA 809
Liu et al28, 2020 Randomized, Prospective, observational China China Colorectal cancer Colorectal polyps CNN, Deep learning CADe colonoscopy system 1026 551 (53.7) 475 (46.3) NA 734

*Patients were recruited in five countries: France, Sweden, Italy, Germany, and Israel. AI/ML: artificial intelligence/machine learning; ANN: artificial neural network; AQCS: automatic quality control system; CADe: computer-aided detection; CNN: convoluted neural network; DL-CAD: Deep-learning based computer-aided diagnosis; DS: decision support; OVHS: ovarian histoscanning; PCA: principal component analysis; PCES: prostate cancer expert system; PSL: pigmented skin lesion; SVM: support vector machine; TVS: transvaginal scan. ENDOANGEL is a proprietary name