Table A1.
Parameter | Estimate | Est.Error | l-95% CI | u-95% CI | Rhat | Bulk ESS | Tail ESS |
---|---|---|---|---|---|---|---|
Intercept[k = 1] | 3.135⁎ | 0.763 | 1.655 | 4.643 | 1.00 | 7045 | 6760 |
Intercept[k = 2] | 1.672 | 0.919 | −0.118 | 3.476 | 1.00 | 7287 | 6025 |
Intercept[k = 3] | 3.249⁎ | 0.982 | 1.323 | 5.195 | 1.00 | 7816 | 6863 |
Intercept[k = 4] | 2.647⁎ | 1.09 | 0.483 | 4.797 | 1.00 | 7712 | 6723 |
Population density (1000 pers./km2) | 0.833⁎ | 0.267 | 0.312 | 1.36 | 1.00 | 8298 | 7686 |
Cycling strongly associated with municipality (yes = 1/no = 0) | 0.917 | 0.491 | −0.03 | 1.868 | 1.00 | 9178 | 8437 |
Needs for ATM before Covid-19 (high = 1/low = 0) | 0.973 | 0.574 | −0.1 | 2.147 | 1.00 | 12697 | 6224 |
Quality of cycling infrstr. before Covid-19 (good = 1/poor = 0) | −0.036 | 0.367 | −0.76 | 0.684 | 1.00 | 11025 | 8058 |
Temp. measures made permanent (yes = 1/no = 0) | −0.263 | 0.73 | −1.654 | 1.168 | 1.00 | 10378 | 8315 |
Temp. cycling infrastructure is resource intensive (yes = 1/no = 0) | 0.497 | 0.356 | −0.209 | 1.193 | 1.00 | 13908 | 7853 |
Benefit of temporary measures is overestimated (yes = 1/no = 0) | 1.607⁎ | 0.415 | 0.8 | 2.443 | 1.00 | 9296 | 7485 |
Benefit overestimated:made permanent | 1.681⁎ | 0.494 | 0.723 | 2.657 | 1.00 | 8064 | 7954 |
Covid-19 increased need for cycling infrstr. (yes = 1/no = 0) | 0.034 | 0.351 | −0.661 | 0.728 | 1.00 | 11211 | 7756 |
Covid-19 window[k = 1] | 1.261⁎ | 0.405 | 0.487 | 2.072 | 1.00 | 13646 | 7815 |
Covid-19 window[k = 2] | −0.283 | 0.675 | −1.613 | 1.009 | 1.00 | 9294 | 7375 |
Covid-19 window[k = 3] | −0.764 | 0.786 | −2.306 | 0.748 | 1.00 | 10852 | 7187 |
Covid-19 window[k = 4] | −2.156⁎ | 1.089 | −4.365 | −0.078 | 1.00 | 9938 | 7631 |
sd(RegioStaR7) | 0.706⁎ | 0.423 | 0.097 | 1.766 | 1.00 | 2616 | 2581 |
sd(State) | 0.847⁎ | 0.33 | 0.32 | 1.609 | 1.00 | 3388 | 4994 |
95% Bayesian confidence interval excludes 0.