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Abstract
Plants’ requirement of Phosphorus (P) as an essential macronutrient is obligatory for their normal growth and metabolism. 
Besides restricting plants’ primary growth, P depletion affects both primary and secondary metabolism and leads to altered 
levels of sugars, metabolites, amino acids, and other secondary compounds. Such metabolic shifts help plants optimize their 
metabolism and growth under P limited conditions. Under P deprivation, both sugar levels and their mobilization change 
that influences the expression of Pi starvation-inducible genes. Increased sugar repartitioning from shoot to root help root 
growth and organic acids secretion that in turn promotes phosphate (Pi) uptake from the soil. Other metabolic changes such 
as lipid remodeling or P reallocation from older to younger leaves release the P from its bound forms in the cell. In this 
review, we summarize the metabolic footprinting of Pi-starved plants with respect to the benefits offered by such metabolic 
changes to intracellular Pi homeostasis.

Keywords Acid phosphatases · Metabolic adaptations · Mineral nutrition · Organic acids · Phosphorus starvation · Root 
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Introduction

Phosphorus (P) is an elementary macronutrient for nor-
mal plant growth and development. Roots absorb P in its 
inorganic phosphate (Pi) or orthophosphate form. P partici-
pates in virtually all metabolic processes and contributes 
to about 0.2% of the dry weight of plants (Sulieman and 
Tran 2017). In the cellular context, its unimpeded availabil-
ity is crucial to structural integrity (phospholipids in the 
cell membrane), nucleic acids (DNA and RNA) conserva-
tion, energy production (ATP), phosphorylated metabolites 
production, and nitrogen metabolism (Lambers and Plax-
ton 2015). Due to its widespread involvement in cellular 
activities, Pi starvation often compromises plant growth 

and hampers crop production, yield, and quality of prod-
ucts (Srivastava et al. 2021a). For example, Li et al. (2021) 
recently demonstrated the impact of P starvation on tomato 
fruit quality. They reported enhanced lycopene levels but 
lower starch and glucose levels in the fruits of Pi-starved 
plants than the Pi-sufficient counterparts. Application of Pi 
fertilizers in farmlands is a popular approach to replenish 
soil P levels. Unfortunately, the rock phosphate reserves, 
mined to produce chemical Pi fertilizers, are a finite resource 
and are expected to persist for only a few hundred years 
(Cordell et al. 2009; Walan et al. 2014). Although the several 
decades-long high fertilization practices in agriculture have 
yielded enhanced crop yields globally, the prolonged use of 
Pi-fertilizers has its side effects as it led to the development 
of high-yielding crop varieties with poor nutrient acquisition 
and use efficiency.

Due to its highly reactive nature, Pi remains unstable in 
the rhizosphere and is rapidly converted into its inorganic 
mineral complexes (mineral-P) with metal ions such as alu-
minium (Al), iron (Fe), or calcium (Ca) in a pH-dependent 
manner. Additionally, Pi is taken up by soil microorganisms 
and converted into organic Pi-monoesters (Po) compounds 
which may constitute up to 80% of total soil P (Feder et al. 
2020). Only 20–30% of the externally applied P, in the form 
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of chemical Pi fertilizers, is estimated to remain in bioavail-
able form. The remaining P is precipitated in the soils in 
its inorganic forms and Po or runs off into aquatic ecosys-
tems, creating a perpetual Pi starvation situation for plants. 
Enzymes such as acid phosphatases, secreted by plants or 
soil microbes, are known to mineralize mineral-P complexes 
or Po to release Pi in the soils, followed by its uptake by the 
root epidermal cells through their plasma-membrane local-
ized Pi transporters (Richardson et al. 2011). To enhance 
plant efficiency, plants can either increase PAE (phosphorus-
acquisition-efficiency) or PUE (phosphorus-use-efficiency). 
PAE is defined as the capability of plant roots to obtain the 
freely available Pi from the soil, while PUE is the internal 
utilization and distribution inside the plant. Experts have 
recommended improving these traits to reduce Pi fertilizers 
usage in farming systems.

The adaptive strategy plants adopt to mitigate Pi star-
vation is called Pi-starvation response (PSR). It comprises 
morphological, physiological, biochemical, and molecular 
alterations to adjust their growth and survival under Pi-
deficient environments. At the morphological levels, stunted 
shoot growth, reprogrammed root system architecture 
(RSA), increased root-to-shoot ratio, and longer and denser 
root hairs are the characteristic features of Pi-deficient plants 
(Fig. 1). These Pi-starved plants also develop denser and 
shorter lateral roots with shallower root growth angles to 
improve PAE (Strock et al. 2018). Cluster root (CR) for-
mation in the members of several different families (e.g., 
Proteaceae, Casuarinaceae, Fabaceae, and Myricaceae) is 
another magnificent strategy to mobilize Pi from its enriched 
patches in the soil (Peret et al. 2014). Overall, the repro-
grammed RSA is meant to increase the nutrient-scavenging 
ability of roots from topsoil layers, which is a significant 
source of Po due to the contribution of the decaying organic 
matter.

Regarding cellular Po pools, ribosomal RNAs have the 
largest share (~ 50%), followed by P-lipids, P-esters, DNA, 
RNA, and phosphoproteins (Wang et al. 2021). Plant metab-
olism is greatly affected by depleting Pi levels in the cell. 
When Pi is scarce, intracellular ATP, ADP, and associated 
nucleoside levels decline, and Pi allocation between cytosol 
and organelles changes (Wang et al. 2021). Vacuole is the 
primary reservoir of the Pi pool and can store up to 95% 
of the total cellular Pi of a Pi-replete plant cell (Yang et al. 
2017). The severe depletion of cytoplasmic Pi levels causes 
vacuolar Pi to be mobilized to the cytosol (Liu et al. 2015). 
Such mobilization is mediated by vacuolar phosphate trans-
porters (VPTs) activation. In rice, OsSPX-MSF3 (SYG1, 
PHO81, and Xpr1-Major Facilitator Superfamily 3) seems 
to facilitate Pi efflux from the vacuole to the cytoplasm (Liu 
et al. 2016). Overexpression of this gene led to lower Pi 
retention in the vacuole, causing a low vacuolar-to-cytosolic 
Pi ratio in transgenic rice plants. Luan et al. (2019) recently 

reported a more dominant role of VPT1 over VPT3 in main-
taining cytosol-to-vacuole Pi partitioning in Arabidopsis. 
The loss of function of these genes in the leaves disturbed 
the Pi partitioning to different organs as excessive Pi moves 
to flowers, most likely at the expense of leaf vacuolar Pi, 
causing a significant decline in the leaf’s Pi levels in the 
mutant. Besides VPTs, PHT members involved in Pi trans-
port across the membranes of other organelles have also 
been identified. For example, PHT2;1 facilitates Pi import in 
chloroplasts. Mutation in this low-affinity transporter caused 
reduced intracellular Pi levels, disturbing plant growth and 
photosynthetic rates in the ospht2;1 plants. Interestingly, the 
mutant plants accumulated lower levels of flavonoids and 
their precursor, phenylalanine (Liu et al. 2020). AtPHT4;1, 
a thylakoid Pi transporter, is vital for ATP synthesis and 
plant growth in Arabidopsis seedlings (Karlsson et al. 2015). 
Another PHT, AtPHT4;6, is localized to the Golgi appara-
tus and facilitates Pi efflux for sugar-nucleotide metabolism 
(Cubero et al. 2009). Similarly, PHT3 members facilitate Pi 
transport across inner mitochondrial membranes for ATP 
synthesis (Zhu and Miao 2012). Jia et al. (2015) reported 
that mitochondrial membrane-localized phosphate trans-
porter (AtMPT3) plays a critical role in ATP synthesis, ROS 
accumulation, and programmed cell death (PCD) and thus 
regulates the growth and development of Arabidopsis plants.

Under chronic Pi starvation conditions, when vacuolar 
and cytoplasmic Pi pools deplete considerably, the cellular 
Po pool is dramatically reduced (Del-Saz et al. 2018; Luo 
et al. 2020). It is anticipated that under such extreme condi-
tions, Pi homeostasis becomes incompatible with plant PSR, 
and a more pronounced response to free Pi from additional 
Po sources, such as membrane PLs, is initiated (Lambers 
and Plaxton 2015). Thus, biochemical events such as the 
conversion of phospholipids to galactolipids in cell mem-
branes, Pi-scavenging from nucleic acids, remobilization of 
Pi from older to younger organs, differential allocation of the 
available Pi to different organelles, ATP-dependent bypass 
enzymes and repartitioning of photosynthesis-derived sugars 
from shoots to roots are central to the metabolic adaptations 
in Pi-deficient plants. All these changes are well coordinated 
in plants and help them adopt an energy-saving strategy 
to cope with Pi starvation. This review summarizes these 
well-coordinated metabolic events underlying the plants’ 
response to Pi starvation.

During Pi starvation, the primary 
metabolic pathways undergo a transition 
toward Pi‑independent processes

Primary metabolism is necessary for plant survival and 
growth, including photosynthesis, respiration, and synthe-
sizing essential molecules such as AAs, sugars, and lipids. 
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Conversely, secondary metabolism involves specialized 
pathways that allow plants to produce various bioactive 
compounds that contribute to their adaptation to different 
environments. One notable effect of Pi starvation is the re-
prioritization of Pi from its conjugates, resulting in a change 
in phosphorylated metabolites. Pi starvation also impacts 

numerous energy-intensive activities, such as carbon metab-
olism, by decreasing the proportion of phosphorylated to 
non-phosphorylated polysaccharides (Ashihara et al. 1988). 
Substantial decreases in cellular Pi and adenylate concentra-
tions activate alternative glycolytic carbon flow and mito-
chondrial electron transport mechanisms (Dissanayaka et al. 

Fig. 1  Schematic representation of the adaptive response of plants 
under P-limited conditions. Plants undergo morpho-physiological, 
biochemical, and molecular changes to cope with the depleted Pi 
levels. Altered root system architecture and its interaction with dif-
ferent microbial species, such as fungi (including mycorrhizal asso-
ciation) and plant growth-promoting rhizobacteria, help in increas-
ing Pi accessibility for root uptake in the soil. The release of organic 
acids, phosphatases, and ribonucleases also facilitates the hydrolysis 
of organic P to release Pi in the rhizosphere. Membrane phospho-
lipids are converted into glycolipids to free Pi from organic P com-
pounds. Enhanced sucrose mobilization from shoots to roots support-
ing the reprogramming of root system architecture, the secretory acid 
phosphatase activity, and the robust activation of sucrose-dependent 

Pi starvation-induced genes such as high-affinity Pi transporters and 
purple acid phosphatases jointly contribute to the plant adaptation to 
low P availability. AMF Arbuscular mycorrhizal fungi, APase acidic 
phosphatase, DAG Diacylglycerol, GDPD Glycerophosphodiester 
phosphodiesterase, G3P Glycerol-3-phosphate, GLs Glycerolipids, P 
Phosphorus, PA Phosphatidic acid, PAPs Purple acid phosphatases, 
PC Phosphatidylcholine, PE Phosphatidylethanolamine, PHR Phos-
phate starvation response, PHTs Phosphate transporters, Pi Inorganic 
phosphate, PI Phosphatidylinositol, PLA Phospholipase A, PLs Phos-
pholipids, Po Organic P, PM Plasma membrane, PPi Pyrophosphate, 
PSI Phosphate starvation-induced, MGDG Monogalactosyl-diacylg-
lycerol, SPX; SYG1, PHO81, and Xpr1, SQDG Sulfoquinovosyl-dia-
cylglycerol
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2021). The most striking evidence of the activation of these 
alternate metabolic routes has come from transcriptome 
and proteome studies where several genes encoding crucial 
enzymes of the alternate pathway, such as Phosphoenolpyru-
vate carboxylase (PEPC) and PEPC kinase (PEPCK) based 
glycolytic bypass in Arabidopsis, rice, white lupin, orange 
(Citrus sinensis L.) and melon (Cucumis melo L.) have been 
reported (Liang et al. 2014). Among the upregulated ones, 
triose phosphate isomerase (TPI), glucose-6-phosphate 
1-epimerase (PGEM), glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) are known to favor neoglucogenesis 
in Lotus corniculatus (Zhao et al. 2023).

Similarly, the improved glutathione metabolism through 
higher protein abundance of glutathione S-transferase in 
wheat also supports the activation of alternate metabolic 
routes in Pi-starved plants (Zheng et al. 2023). Interestingly, 
while cellular ATP pools are tightly regulated with the Pi 
levels, the pyrophosphate (PPi) level is relatively insensitive 
to Pi starvation (Ferjani et al. 2012). Most of the enzymes 
of the alternate routes can utilize PPi in place of ATP to 
catalyze the reaction. Thus the depleted cellular Pi levels 
incite the activation of several bypass enzymes, such as 
pyrophosphate-dependent phosphofructokinase in white 
lupin (Uhde-Stone et al. 2003), pyruvate phosphate dikinase 
in Zea mays (Li et al. 2007), UDP-sugar pyrophosphory-
lase in Arabidopsis (Okazaki et al. 2009), and mitochon-
drial alternative oxidases in white lupin (Florez-Sarasa et al. 
2014) that depend on inorganic pyrophosphate (PPi) for their 
activity. PPi-dependent glycolysis helps plants maintain the 
carbon flow down to the citric acid cycle. In this scheme, 
activation of mitochondrial alternative oxidases is critical as 
their enhanced activity helps sustain the boosted production 
of organic acids with minimal ATP consumption, which is 
critical for respiration to maintain cellular activity, espe-
cially under depleted Pi levels.

These Pi and adenylate reductions disturb the inter-
change of Pi and phosphorylated sugars between the 
cytosol and the chloroplast stroma, resulting in starch 
deposition and a drop in photosynthesis rate. During Pi 
starvation, significant changes in the allocation of pho-
tosynthates to phosphorylated and non-phosphorylated 
carbon metabolites and decreased hexokinase activity 
have been observed (Karthikeyan et al. 2007). Over-accu-
mulation of starch in HXK-antisense plants (Veramendi 
et al. 1999) and the onset of Pi toxicity symptoms in HXK 
over-expressing plants (Dai et al. 1999) endorse the link 
between Pi homeostasis and hexokinase activity (Briat 
et  al. 2015). This linkage is further supported by the 
hexokinase I gene knockout (gin2) mutant of Arabidop-
sis, where a significant reduction of glucose-6-phosphate 
is coupled with the decrease in the transcripts of several 
PSI genes, namely Pht1;1, Pht1;4, INDUCED BY PHOS-
PHATE STARVATION (At4, AtIPS1), and RNase2. Earlier, 

Müller et al. (2015) also discovered a significant drop 
in sugar P conjugates in white lupin due to cellular Pi 
deficit. In both shoots and roots, phosphorylated metabo-
lites such as glucose-6-phosphate, fructose-6-phosphate, 
myo-inositol-phosphate, and glycerol-3-phosphate were 
decreased from 14 to 22 days post-Pi starvation. This dec-
rement can be justified as an early reaction to Pi starva-
tion, where the altered carbohydrate allocation between 
the shoot and root supports the reprogramming and expan-
sion of the root system. Santosh et al. (2018) reported 
directional changes in sugar conjugates, i.e., drastically 
increased fructose and glucose in leaves, and glucose, 
D-xylose, and gluconate in the root. In a recent study by 
Iqbal et al. (2023), the authors found differential behavior 
of Pi-inexpensive pathways in tolerant (Jimian169) and 
sensitive (DES926) cotton varieties. This study reported 
an enhanced TCA cycle in Jimian169, especially in roots, 
to support higher root biomass production upon Pi star-
vation. Contrarily, glucose, fructose, and ribose levels 
declined more severely in roots of DES926 compared to 
Jimian169, suggesting better carbohydrate metabolism in 
the latter variety for improving low Pi tolerance.

Pi remobilization from external and internal 
nucleic acids sources contributes to the PAE 
and PUE of Pi‑starved plants

The Po pools are the predominant form of P in the soils 
(Anderson 2015). Two major forms where P is fixed in soil 
Po pools are nucleotides (contributed by decaying organic 
matter) and Pi-monoesters such as phytic acid (Bünemann 
et al. 2008). P-deficient plants secrete ribonuclease and 
acid phosphatase enzymes to mineralize Po compounds 
and mobilize Pi in the soils. The plants’ ability to survive 
on nucleotides as the sole P source has been elegantly dem-
onstrated in Arabidopsis seedlings (Robinson et al. 2012). 
A recent report demonstrating rapid Pi uptake by roots of 
the sedge Carex flacca from 33P-labeled DNA than other 
species in a mixed plant community highlights the impor-
tance of species-specific preference to different P sources, 
including nucleotides sources, for Pi acquisition in the 
same habitat (Phoenix et al. 2020). Metabolic studies have 
shown increased levels of adenosine, a constituent of ATP, 
NADPH, and RNA, in P-deficient tissues in Lupinus albus 
L. (Müller et al. 2015). CRs are also found to over-accu-
mulate three metabolites, adenosine, adenine, and ribose, 
under Pi starvation. Recently, Luo et al. (2020) reported a 
decrease in the concentrations of 11 out of 14P-containing 
nucleotides in Stylosanthes roots exposed to Pi starvation. 
The authors reported sharply declined levels of nicotinic 
acid mononucleotide, cytidylic acid, uridine 5′-diphos-
pho-D-glucose, uridine 5′-monophosphate, nicotinic acid 
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adenine dinucleotide and adenosine monophosphate in 
Pi-deficient Stylosanthes roots, indicating that nucleo-
tides level inside plant also changes under Pi starvation. 
For example, degradation of organellar DNA, such as that 
of mitochondria by exonuclease DEFECTIVE IN POL-
LEN ORGANELLE DNA DEGRADATION1 (DPD1) in 
senescent leaves, improve the PUE and fitness of Arabi-
dopsis seedlings (Takami et al. 2018). As ~ 80% of cellular 
nucleic acids Po pool exists as rRNA, autophagy-mediated 
delivery of rRNA to the vacuole for recycling of Pi plays a 
profound role in plant growth under Pi-starvation (Stigter 
and Plaxton 2015; Bassham and MacIntosh 2017). Vacu-
olar PSI RNases and phosphodiesterases first metabolize 
rRNA to nucleotide monophosphates, which release Pi 
upon the subsequent action of PSI purple acid phosphatases 
(PAPs). Then VPTs transport Pi to the cytosol to synthe-
size organic compounds such as ATP (Floyd et al. 2015, 
2017; Bassham and MacIntosh 2017). A similar mechanism 
operates in senescing organs where Pi-mobilizing enzymes 
such as RNases and PAPs are activated, linking senescence 
with Pi stress signaling cascades (Shane et al. 2014; Yang 
et al. 2017). One of the best examples of highly efficient Pi 
remobilization from senescing organs has been observed in 
Harsh hakea, a Proteaceae species that is well adapted to 
the highly P-impoverished habitats of Western Australia. 
These species can remobilize up to 90% of total Pi from the 
senescent leaf to younger organs by activating vacuolar and 
cell-wall-localized RNases and PAPs (Lambers and Plaxton 
2015; Shane et al. 2014).

Phosphatases, majorly PAPs, play a vital role in enabling 
plants to adapt to Pi starvation as these enzymes facilitate 
the dephosphorylation of Po compounds into inorganic 
orthophosphate in the rhizosphere and intracellular compart-
ments to release Pi (Feder et al. 2020; Srivastava et al. 2020). 
This process is particularly crucial for plants facing short-
term Pi starvation, as observed in species such as Arabidopsis 
(AtPAP26) (Veljanovski et al. 2006), rice (OsACP1) (Deng 
et al. 2022), (OsPAP26) (Gao et al. 2017). AtPAP26, on the 
other hand, possesses a dual-targeted property, being present 
in both the vacuole and apoplast. As a result, it is consid-
ered a key player in both intracellular and extracellular phos-
phatase activity, thereby aiding in Pi remobilization within 
plants (Robinson et al. 2012; Shane et al. 2014). Nevertheless, 
extracellular acid phosphatases, such as PAP3b, OsPAP10c, 
and OsPAP10a, are secreted by roots into the rhizosphere, 
primarily aiding nutrient acquisition. These enzymes have 
been shown to enhance plant growth by increasing P avail-
ability from organic P compounds under specific environ-
mental stimuli (Tian et al. 2012). In soybean, GmPAP4, 
GmPAP14, GmPAP7a, and GmPAP7b have been demon-
strated to enhance the utilization of extracellular phytate and 
ATP. As GmPAP4 and GmPAP14 are induced upon organic 
P treatment, overexpression of these enzymes promotes the 

breakdown of organic P through increased acid phosphatase 
activity (Kong et al. 2014, 2018; Zhu et al. 2020).

Carbon repartitioning is crucial 
for differential growth and biochemical 
responses of Pi‑starved plants

Sugars are ambidextrous as they act as a source of energy 
and signaling molecules under stress. As sucrose is the most 
abundant plant storage product with limited chemical activ-
ity, it is the primary carbohydrate transported through the 
phloem (Gangola and Ramadoss 2018). Due to the differ-
ential growth of roots under P-starved conditions, the sink 
tissues’ equilibrium shifts towards the underground parts. 
Sucrose plays a vital role in P starvation as its enhanced 
shoot-to-root mobilization is critical to support the repro-
gramming of RSA in Pi-deficient plants (Hammond and 
White 2008) (Fig. 1). Lei et al. (2011), in an elegant study, 
demonstrated the dynamic role of a SUCROSE TRANS-
PORTER 2 (SUC2) gene in bidirectional sucrose trans-
port between root and shoot in Arabidopsis seedlings. The 
authors reported that overexpression of SUC2 in a hyper-
sensitive to phosphate starvation 1 (hps1) mutant conferred 
greater sensitivity to mutant plants in almost all aspects 
of PSR. It was suggested that enhanced sucrose levels are 
responsible for such an exacerbated response. Consequent 
microarray analysis showed that 73% of the PSI genes are 
transcriptionally overactive under Pi-sufficient conditions 
in SUC2 overexpressing hps1 mutant plants. Sucrose levels 
influence PSR in the root, such as increased root-associated 
acid phosphatase activity (Srivastava et al. 2020), denser 
root hairs, and an increased number of lateral roots. How-
ever, at the molecular level, it has a role in the induction of 
PSI genes like those encoding PHTs, PAPs, and ROOT HAIR 
DEFECTIVE 6-LIKE (RSLs). Enhanced conversion of starch 
to sucrose and other carbohydrates also induces a myriad 
of PSI genes (Karthikeyan et al. 2007). Sucrose-induced 
expression of PSI genes in Arabidopsis has found support 
in several recently published studies in tomato and barley, 
where an external supply of sucrose has been found to acti-
vate PHT1 transporters in barley (Srivastava et al. 2021b), as 
well as several Snf1-Related protein kinases (Khurana and 
Akash 2021), and F-box family members (Akash et al. 2021) 
in tomato. The enhanced sucrose level has also been found to 
activate the AtMYB75 transcription factor to influence higher 
anthocyanin accumulation, one of the characteristic PSR, in 
Pi-starved Arabidopsis seedlings (Li et al. 2014).

In a recent study  by Xiao et al. (2022), new insights 
have emerged regarding an additional function of SHR, 
a GRAS transcription factor known to play a vital role in 
various aspects of plant development, such as determin-
ing root patterning and cell fate. Notably, mutants like shr 
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and scarecrow (scr) have already been recognized for their 
impact on sugar metabolism (Cui et al. 2012). The mutants 
exhibit increased sugar accumulation, mainly sucrose, glu-
cose, and fructose, suggesting that shr and scr have dis-
tinct, independent functions in regulating sugar responses. 
This study also suggests that SHR may also be involved in 
regulating the allocation of Pi in plants. The findings upon 
Pi starvation have unveiled that inhibiting SHR in roots 
impedes phosphate redistribution to shoots in Arabidopsis. 
Another recent study by Agrawal et al. (2023) highlights the 
crucial role of a sucrose-inducible MEDIATOR SUBUNIT17 
(MED17) as a node, connecting sucrose and auxin signaling. 
MED17 plays a critical role in conveying the transcriptional 
signal from sucrose to auxin-responsive and cell-cycle genes 
to regulate RSA, emphasizing the role of MED proteins as 
the transcriptional processor for optimum root system design 
in Arabidopsis. Another MEDIATOR protein MED16 has 
been found to control RSA remodeling in Arabidopsis Pi-
deficient roots (Raya-Gonzalez et al. 2021). Transcriptome 
analysis of root tip showed that MED16 influences transcript 
levels of a large set of low-phosphate-induced genes involved 
in local and systemic signaling. Considering the conserved 
function of MED proteins in regulating gene expression and 
the involvement of MED16 in root PSR, a prominent role of 
MED17 in the reprogramming of RSA under Pi starvation 
cannot be ruled out. Overall, the evidence suggests that car-
bon remobilization under Pi starvation plays a critical role 
in determining PSR in plants.

Organic acids are critical in enhancing PAE 
under Pi‑depleted conditions

Roots of Pi-deficient plants secrete organic acids (OAs) and 
protons to liberate Pi from its bound forms in soils (Srivas-
tava et al. 2021a). Radioactive labeling of  CO2 indicates that 
plants make a considerable investment in translocating their 
photosynthetically fixed carbon (approximately 20–40%), 
generally in the form of sucrose, to roots for supporting the 
exudation of OAs and small molecular compounds. The con-
centration of OAs in soil ranges from 0 to 50 µM for di/tri-
carboxylic acid, while for monocarboxylic acids, its concen-
tration remains between 0 and 1 mM (Adeleke et al. 2017). 
Two main OAs secreted by Pi-deficient roots are malate and 
citrate, often called carboxylates. Citrate is the most effec-
tive OA at mobilizing Pi from the soil in Alfisols, followed 
by piscidic acid and malate (Zhu et al. 2022).

In addition to these two main OAs, isocitrate, oxoglu-
tarate, citramalic acid, and polyhydroxy acids have also 
been reported to accumulate differentially in Pi-deficient 
roots and shoot tissues in tomato (Sung et  al. 2015). 
This study reported gradually declined α-ketoglutarate, 

fumarate, and malate levels in Pi-deficient plants’ shoot 
and root tissues. In contrast, citrate accumulation was 
enhanced in both tissues. In another study, the amount 
of carboxylates in the cucumber xylem and phloem sap 
has been reported to increase under Pi starvation (Sun 
et al. 2022). Several studies that assessed the level of 
OAs secretion and its impact on PAE discovered it to be 
a highly variable species-specific trait, most likely due 
to varying ‘carbon’ cost versus the altered enhanced Pi 
uptake. The published literature shows that some spe-
cies/cultivars have evolved to produce more OAs than 
others. For example, soybean genotypes and white lupin 
release more OAs than monocots with fibrous root sys-
tems, such as maize and wheat (Lyu et al. 2016). Simi-
larly, Pi-tolerant varieties of maize secrete a more con-
siderable amount of OAs than the sensitive ones (Luo 
et al. 2019). A positive correlation between root width 
and OAs exudation has also been reported, as species 
with thicker roots tend to release a higher amount of 
OAs than the plant species with thinner roots (Wen et al. 
2020). Recent evidence also indicates the beneficial roles 
of higher OAs-secreting species in helping the growth 
of other non-Pi-mobilizing cohabitating species in Pi-
depleted soils (Yu et al. 2020). Exudation of carboxy-
late secretion from proteoid roots by white lupin under 
P-deficient conditions enhanced the release of inorganic 
Pi from phosphorylated ferric hydroxide and from soil P 
(Uhde-stone et al. 2003).

The exudation of OAs is mainly associated with the 
increased activity of three main enzymes: malate dehy-
drogenase, citrate synthase, and PEP carboxylase (Ligaba 
et al. 2004). As anticipated, overexpression of these genes 
has been shown to improve both Pi acquisition and plant 
biomass in different plant species under P-deficient condi-
tions (Koyama et al. 2000; Vance et al. 2003). Cytoplas-
mic PEP carboxylase is a peculiar enzyme in this scheme 
due to its central position in plant metabolism. Evidence 
suggests that PEPC-catalyzed anaplerotic  CO2 fixation 
can contribute almost a third of the released carboxylates 
by white lupin CRs (Shane et al. 2016). The described 
experimental procedures in the published literature indi-
cate that most studies have focused on their short-term 
effects in the rhizosphere, and the long-term advantages 
of the secreted OAs remain obscure, which warrants fur-
ther investigations. Besides their direct roles in releasing 
Pi from its bound forms in the rhizosphere, the excre-
tion of OAs also facilitates the recruitment of beneficial 
rhizobacteria, such as Pseudomonas fluorescens, to the 
root surface, thus activating the integrated stress response 
including adaptive changes in the root system architecture 
for enhanced Pi uptake (Fig. 1) (Wu et al. 2018; Srivas-
tava et al. 2021a).
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Differential regulation of amino acids is vital 
for altered metabolic fluxes and growth 
response under Pi starvation

While AAs are best recognized as protein building blocks, 
their potential for stress tolerance at cellular and physi-
ological levels is sometimes underestimated. In plants, 
amino acid metabolism is connected to carbohydrate and 
secondary metabolism. Energy depletion in a cell is a seri-
ous concern during Pi starvation because of the decreased 
biosynthesis of the primary energy source ATP. The cel-
lular pool of AAs is prone to change because of the need 
for a paradigm shift from growth to defense in various 
biotic and abiotic stressful situations. Hildebrandt (2018) 
showed that the proteome shift produces a free amino acid 
pool from which specific AAs are directed to be the pre-
cursor of defensive mechanisms depending on the needs. 
Stress may also necessitate favoring the growth of specific 
organs over others, resulting in a local energy shortage. 
For example, the reprogrammed root development for a 
larger surface area, at the expense of flowers or leaves in 
plants’ aerial parts, may enhance plants’ Pi uptake ability 
to survive short Pi starvation exposure (Batista-Silva et al. 
2019). The osmoprotectant role of one of the best-studied 
AAs, proline (Pro), that stabilizes sub-cellular structures 
under drought, salinity, low temperature, heavy metal 
exposure, and UV radiations is well known (Hayat et al. 
2012). A recent report by Zhang et al. (2021) revealed that 
Pro metabolism genes are activated under exogenous sili-
con application to revive low Pi-deprived tomato plants’ 
fitness.

The synthesis of 4-hydroxyproline from Pro is well 
recognized for its function during abiotic stress toler-
ance (Santosh et al. 2018). Pro hydroxylation by prolyl 
4-hydroxylase (P4H) might be a central metabolic pathway 
in P-deficient plants. Under Pi starvation in tea (Camellia 
sinensis) plants, hydroxyproline levels build up through 
P4H expression stimulation (Santosh et al. 2018). The 
authors also found elevated amounts of other AAs, such 
as alanine (Ala), tryptophan (Trp), and tyrosine (Tyr), in 
the roots and shoots of P-deficient tea plants. In another 
study on white lupin, Müller et al. (2015) reported a higher 
abundance of Trp, followed by asparagine (Asn) and leu-
cine (Leu), Phe, and Tyr in CRs compared to regular roots. 
Thus elevated production of free Trp, a precursor of aux-
ins (Mano and Nemoto 2012), under Pi starvation may be 
directly correlated with the enhanced localized production 
of auxin in roots to reprogram RSA in rice (Shen et al. 
2013; Wang et al. 2015). Monogalactosyldiacylglycerol, 
found in chloroplast membranes, is a molecule that plays 
a vital role in connecting and maintaining the activity of 
these membranes. It contains specific Trp residues that are 

essential for its function. The enhanced Trp levels may be 
required in Pi-starved roots to support glycolipids (GLs) 
biosynthesis (Ge et al. 2011). The cellular buildup of free 
Phe and Tyr, precursors of the flavanone naringenin, a 
well-known raw material for anthocyanin biosynthesis, 
also supports the significance of the changes in AAs levels 
for plant PSR in Pi-deficient plants (Nezamivand-Chegini 
et al. 2023).

In contrast to the commonly upregulated Ala, Trp, and 
Tyr AAs in roots, Hernández et  al. (2009) reported an 
opposite pattern of amino acid buildup in common bean 
root nodules under Pi starvation. Non-targeted metabolic 
profiles indicated a considerable decrease in AAs and other 
nitrogen metabolites such as glycine (Gly), serine (Ser), Thr, 
and glutamate (Glu). While, numerous other AAs such as 
β-alanine, Asn, and Phe increased significantly. This drop 
in AAs levels was linked to the reduced expression of three 
aminoacyl-tRNA enzymes causing significant inhibition of 
this biosynthetic pathway. These findings highlight the vari-
ations in the metabolic response of non-colonized and colo-
nized P-stressed bean roots (Hernández et al. 2007), which 
showed a considerable increase in amino acid content and 
suggested that metabolic response in roots subjected to Pi-
starvation is dynamic. Additionally, nucleotide metabolism 
was overrepresented among the inhibited cellular activities 
of Pi-starved nodules, which might be exploited to prioritize 
the expression of specific PSI genes.

Chronic Pi starvation alters glycerolipid 
metabolism in Pi‑deficient plants

The significant components of plant lipidome are glyc-
erolipids (GLs) which can be further categorized into 
phospholipids (PLs) and GLs, the central polar lipids, and 
triacylglycerol (TAG), a neutral lipid. Concerning lipids, 
membranes in plants are unique since plasma membranes 
are rich in PLs, but the chloroplast envelope and thylakoid 
membranes are rich in GLs. PLs, are one of the most cen-
tral targets for remodeling under chronic Pi starvation to 
facilitate Pi solubilization, as they contribute about 1/3 of 
plants’ total organic P content (Nakamura 2013). The con-
version of PLs to GLs for producing free Pi is considered a 
prominent adaptation under PSR (Okazaki et al. 2017). The 
reduction in PLs allows Pi to be consumed for other prior-
itized cell functions and provides lipid moiety diacylglycerol 
(DAG) accessible for GL biosynthesis under Pi starvation 
(Li et al. 2006). Multiple PLs-hydrolysing enzymes, such 
as phospholipase D (PLD) and phospholipase C (PLC), 
mediate their conversion to GLs, predominantly monoga-
lactosyl-diacylglycerol (MGDG), a dihexosylglycerolipid, 
digalactosyl-diacylglycerol (DGDG) and a sulfolipid, 
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sulfoquinovosyl-diacylglycerol (SQDG) (Benning and 
Ohta 2005). MGDG and DGDG are nonionic lipids and are 
assumed to operate mainly as structural lipids for the crea-
tion of the lipid bilayer, whereas SQDG and PG are acidic 
lipids and are presumably necessary to maintain the balance 
of negative charges in the thylakoid membranes (Nakajima 
et al. 2018). Declined PLs intensities in Pi-deprived con-
ditions were first observed in a non-photosynthetic bacte-
rium, Pseudomonas diminuta (Minnikin et al. 1974). Due 
to a lengthy fatty acid (FA) moiety, GLs may be categorized 
based on their carbon numbers. Whereas 34-C DGDGs can 
be prokaryotic or eukaryotic in origin, 36-carbon DGDGs 
have been demonstrated to be only eukaryotic in origin (Här-
tel et al. 2000). Pi starvation also changes the cell mem-
branes’ FA composition. Härtel et al. (2000) reported the 
unique nature of Pi starvation -induced DGDG by demon-
strating an abundance of 16-carbon FAs in the C-1 position 
of the DGDG glycerol backbone. The FA content and posi-
tion are assumed to be diagnostic for DGDG genesis via the 
plastid or ER pathways under Pi starvation in Arabidopsis. 
The spatial development, whether plants are grown in a con-
trolled laboratory environment or in nature, can also impact 
lipid remodeling. Recently, Li et al. (2023b) revealed com-
mon and unique patterns in leaf lipid remodeling in a natural 
environment compared to laboratory conditions. In field-
grown plants, high levels of plastidic lipids were observed, 
which might result from high levels of sunlight.

Furthermore, Pi starvation altered the composition of FAs 
in the seed of Camelina, a popular oil-seed crop. It increased 
monounsaturated FAs (MUFAs), namely oleic (18:1) and 
eicosenoic (20:1) acids, and decreased saturated FAs lev-
els. Polyunsaturated fatty acids (PUFAs), especially (18:2) 
and (18:3) species, rise proportionately with the degree of 
Pi depletion, subsequently penalising overall seed yield to 
10–15 times lower, indicating the adverse effect of Pi star-
vation on seed production in Camelina. While a temporary 
increase in PC (phosphatidylcholine) upon Pi starvation has 
also been reported in Arabidopsis (Jouhet et al. 2003), it was 
compensated by the decrease in the levels of minor lipids, 
such as phosphatidic acid (PA), phosphatidyl-Ser (PS), 
lysophosphatidylcholine (lysoPC), lysophosphatidylethan-
olamine (lysoPE), and lysophosphatidylglycerol (lysoPG) 
in rosettes and roots. The lysoPC levels are significantly 
reduced to 37% in rosettes and 64% in roots in Arabidopsis 
seedlings under Pi starvation (Li et al. 2006). Recent evi-
dence also suggests that the changes associated with lipid-
omic amendment under Pi starvation may differ in the shoot 
and root tissues of the same plant. Pfaff et al. (2020), showed 
mutually exclusive changes in membrane lipids in shoot and 
root tissues of Pi-deficient tomato seedlings. While leaves 
majorly accumulate polyunsaturated TAG, roots predomi-
nantly accumulate GLs. The detailed analysis of FA profiles 
revealed that the molecular species conversion was more 

prominent in Pi-deprived roots than leaves, as evident from 
a considerable increase in 34:2, 34:3, and 36:4 GLs species. 
The authors also demonstrated that the differential degrada-
tion of PLs into subsequent TAGs and GLs is not regulated 
at the transcriptional level. Supported by the unaltered tran-
scriptional induction of fatty acid biosynthesis, PLs biosyn-
thesis, or GLs biosynthesis genes from plastidic pathways in 
this study confirms the lipid remodeling, rather than de-novo 
biosynthesis, as the primary mechanism for plants to adapt 
under Pi starvation.

The physiological necessity of lipid remodeling under Pi 
starvation has been addressed using several loss-of-function 
mutants. A particular emphasis has been given to the genes 
that engage in the process of SQDG biosynthesis pathway, 
namely SQD-B in Thermosynechococcus elongatus, SQD1 
and UDP-glucose pyrophosphorylase3 (UGP3) in A. thali-
ana (Nakajima et al. 2018), genes responsible for enhanced 
GL biosynthesis, namely MGD synthase 1 (MGD1), and 
Phospholipase C5 (NPC5) in Arabidopsis (Gaude et al. 
2008), MGD synthase 3 (MGD3) in rice (Verma et al. 2022) 
and also the genes liable for the degradation of PLs espe-
cially Glycerophosphodiester phosphodiesterases (GDPDs), 
in Arabidopsis (Cheng et  al. 2011). Evidence suggests 
that lipid remodeling in Arabidopsis sqd2 mutants is spa-
tially controlled, with increased chlorophyll breakdown in 
mature older leaves. In soybean, glucuronosyldiacyl-glycerol 
(GlcADG) accumulation dominates SQDG upon Pi starva-
tion (Okazaki et al. 2017). GlcADG is considered one of the 
products of the same SQDG synthase. It does not seem to be 
restricted to only soybean and may function as a preferential 
alternative over SQDG plausibly in Pi-deficient plants of 
other dicot species (Okazaki et al. 2017).

The contribution of a less-traveled route, mediated by 
lipid acyl hydrolase (LAH) and GDPD enzymes during GLs 
remodeling under Pi starvation, remains far lesser known 
and is yet to be adequately scrutinized. This pathway works 
upon the hydrolyzation of PLs into free fatty acids and glyc-
erophosphodiester (GPD) by LAH and subsequent hydro-
lyzation to glycerol-3-phosphate (G3P) and corresponding 
alcohols (Pfaff et al. 2020). However, this metabolic pathway 
is economically expensive and does not yield free Pi (Mehra 
et al. 2019). Recent investigations have yielded fresh per-
spectives and understanding regarding the role of OsGDPD2 
and AtGDPD6 in plant growth and development. In a study 
by Mehra et al. (2019), it was found that rice PHOSPHATE 
STARVATION RESPONSE2 (OsPHR2) directly targets 
OsGDPD2 for transcriptional activation, and overexpression 
of this gene in rice plants led to several beneficial effects. 
The transgenic lines exhibited increased GDPD activity, 
Pi content, root development, and biomass accumulation 
compared to the wild-type plants. Additionally, these lines 
showed contrasting morpho-physiological and biochemical 
characteristics. Interestingly, the overexpression lines had 
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elevated levels of various phosphorus-containing metabo-
lites, including fatty acids (FAs), suggesting a potential role 
of OsGDPD2 in the de novo biosynthesis of GLs. Similarly, 
Ngo and Nakamura (2022) characterized AtGDPD6 and 
found that its overexpression in Arabidopsis plants resulted 
in significantly longer roots than the wild type and Atgdpd 
mutants. Notably, the cell morphology in the roots’ matura-
tion, elongation, and meristem zones remained unaffected, 
indicating that the increased root length did not cause any 
abnormalities in root cell architecture. Taken together, these 
results clearly indicate the beneficial impact of GDPDs on 
root growth under differential Pi availability. These studies 
shed light on plant growth regulation’s molecular mecha-
nisms and provide potential targets for improving crop pro-
ductivity and nutrient utilization.

Altered flavonoid levels are an essential 
aspect of PSR

Flavonoids play diverse roles in plant protection against biotic 
and abiotic stresses. Flavonoids reduce reactive oxygen spe-
cies (ROS) production by inhibiting enzymes that generate 
ROS and suppressing singlet oxygen. Around 10,000 struc-
tural variations of flavonoids have been found in plants so far. 
Based on their fundamental structures, flavonoids are classi-
fied as flavones, flavanones, flavonols, isoflavones, anthocya-
nins, and chalcones (Panche et al. 2016). In Arabidopsis, the 
concentration of many phenylpropanoids, flavonoids, and their 
derivatives increased in both roots and shoots during P-star-
vation (Pant et al. 2015). Flavonoids such as benzoxazinoids 
were strongly decreased in the roots of Pi-resistant accessions 
in maize. In contrast, the flavonoid quercetin-3,4-O-di-beta-
glucopyranoside was preferentially accumulated in the leaves 
of Pi-sensitive genotypes (Luo et al. 2019). Similarly, the con-
centration of C-glycosylflavones was significantly high under 
P-limited conditions in melon roots (Akiyama et al. 2002). 
Accumulation of quercetin in melon roots also promoted 
mycorrhizal colonization and helped plants’ fitness by indi-
rectly increasing the availability of micronutrients. Similarly, 
flavonoid exudates such as phenylamide, phenolic acid, and 
piscidic acid from white lupin, Stylosanthes, and Cajanus 
cajan roots was also reported causing a rise in P acquisition 
via facilitating Pi remobilization and roots interaction with 
microorganisms (Fig. 1) (Luo et al. 2020).

Flavonols have been observed to accumulate in Stylosan-
thes during Pi starvation (Luo et al. 2020). In this work, Pi 
starvation increased the amount of 41 out of 54 differently 
accumulated flavonoids in Stylosanthes roots. The quanti-
ties of kaempferol and its flavonol glycoside derivatives 
were considerably increased at low Pi conditions. Mo et al. 
(2021) recently reported that Pi starvation increased tran-
scripts of COP9 signalosome subunit (GmCSN5A/B) in both 

young and old soybean leaves. Additionally, overexpression of 
these genes results in the activation of anthocyanin biosynthe-
sis pathway genes, resulting in more significant accumulation 
in shoots under Pi starvation. Apart from their role as negative 
regulators of a subset of PSI genes in Arabidopsis and tomato 
(Osorio et al. 2019; Singh et al. 2023), SPX4 and SPX1/2 also 
interact with certain genes involved in the biosynthesis of fla-
vonoids. For example, He et al. (2021) recently revealed that 
SPX4 directly interacts with the dihydroflavonol 4-reductase 
(DFR) gene, which is the rate-limiting step in anthocyanin 
biosynthesis, as demonstrated by significantly greater tran-
script levels in spx4 mutants and a 40% decrease in antho-
cyanin accumulation in SPX4-OE lines. Besides, Wang et al. 
(2022) discovered that chalcone synthase (PtCHS), chalcone 
isomerase (PtCHI), and flavonoid 3-hydroxylase (PtF3H) 
genes are overexpressed in Pinellia ternata under Pi starva-
tion, leading to increased accumulation of total flavonoids. A 
recent study from Li et al. (2023a) revalidated the vital role of 
MYB-bHLH-WD40 (MBW) complex coupled with the tran-
scription factor (TF) MYB75 and Production of Anthocyanin 
Pigments1 (PAP1) in the regulation of anthocyanin synthesis 
in Arabidopsis (He et al. 2021; Meng et al. 2021). Besides 
that, PHR1 is physically coupled with transcription factors 
engaged in anthocyanidin biosynthesis, such as PAP1/MYB75, 
MYB DOMAIN PROTEIN 113 (MYB113), and TRANSPAR-
ENT TESTA 8 (TT8) (Li et al. 2023a). These findings allow 
a novel mechanistic understanding of how P-deficient signal-
ing depends on endogenous anthocyanins synthesis pathway, 
mediated by TFs, to enhance anthocyanins accumulation 
under Pi starvation.

Conclusions and perspectives

Plant acclimation to P starvation is a multifaceted process 
that comprises intertwined local and systemic signaling 
pathways (Li et al. 2022). Several efforts have been made 
to adapt the model systems for plant growth studies under 
a controlled environment to address the crosstalk between 
two or more stress factors. For instance, specific metabolic 
adaptations have been observed in conditions of varying 
light intensity and P supply (KC et al. 2021) or combined 
iron and Pi starvation (Kaur et al. 2021). It should be noted 
that the advances in plant systems biology already allow 
the concomitant analysis of the transcriptome, proteome, 
and metabolome in the same plant sample, which provides 
a comprehensive overview of the affected cellular processes 
upon Pi starvation. However, as outlined by (Dissanayaka 
et al. 2021), the protein interactome, the post-translational 
modifications, and the intracellular compartmentalization of 
key PSR-related players are other essential aspects of the 
plant response to P stress that remain largely unexplored 
to date. Still, identifying P stress-specific metabolomic 
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signatures per se could bring valuable information about 
the Pi use efficiency of a genotype of interest, allowing the 
prediction of its adaptive potential (Watanabe et al. 2020). 
Here, discrimination between genotype-specific adaptive 
mechanisms and general stress responses to Pi starvation is 
a significant challenge. A paramount goal of such studies is 
identifying metabolic markers for selecting low Pi-tolerant 
crops. In most cases, the reproducibility of experimental 
results in search of novel metabolite markers is hampered by 
reported differences in the model plant growth conditions, 
dose and duration of the applied stress factor. Nevertheless, 
the thorough metabolome dissection emerges as a powerful 
source of knowledge that fuels novel strategies for improving 
crop resilience to low Pi availability.
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