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Joint inference of exclusivity patterns and
recurrent trajectories from tumor
mutation trees

Xiang Ge Luo 1,2, Jack Kuipers 1,2 & Niko Beerenwinkel 1,2

Cancer progression is an evolutionary process shaped by both deterministic
and stochastic forces. Multi-region and single-cell sequencing of tumors
enable high-resolution reconstruction of themutational history of each tumor
and highlight the extensive diversity across tumors and patients. Resolving the
interactions among mutations and recovering recurrent evolutionary pro-
cesses may offer greater opportunities for successful therapeutic strategies.
To this end, we present a novel probabilistic framework, called TreeMHN, for
the joint inference of exclusivity patterns and recurrent trajectories from a
cohort of intra-tumor phylogenetic trees. Through simulations, we show that
TreeMHN outperforms existing alternatives that can only focus on one aspect
of the task. By analyzing datasets of blood, lung, and breast cancers, we find
the most likely evolutionary trajectories and mutational patterns, consistent
with and enriching our current understanding of tumorigenesis. Moreover,
TreeMHN facilitates the prediction of tumor evolution and provides prob-
abilistic measures on the next mutational events given a tumor tree, a pre-
requisite for evolution-guided treatment strategies.

Tumors emerge and develop malignancy through a somatic evolu-
tionaryprocess of accumulating selectively advantageousmutations in
cells1. The genetic and phenotypic clonal diversity within a tumor, also
known as intratumor heterogeneity (ITH), enables tumor cells to
quickly adapt to micro-environmental changes, including those
induced by treatment, often leading to lethal outcomes due to
metastases or drug resistance2,3. Despite the inherent stochasticity of
tumor evolution, recent evidence supported by increasingly available
data and new computational methods has revealed at least some
repeated features in tumor progression, such as frequently mutated
genes4, specific order constraints on mutations5,6, and repeated evo-
lutionary trajectories7–10. The ability to recover reproducible features
of cancer evolution, and more importantly, to make reliable predic-
tions of future evolutionary steps, is crucial for the development of
successful therapeutic interventions11–14.

Recent advances in multi-region sequencing15,16, single-cell
sequencing17, and phylogenetic tree inference18,19 enable more precise

characterization of clonal architecture and provide a clearer picture of
tumor evolution. However, the increased resolution further sub-
stantiates the extensive variability in the subclonal compositions and
mutational histories between tumors, making it more challenging to
infer repeatable elements. For example, two parallel studies of acute
myeloid leukemia (AML) using single-cell panel sequencing20,21 show
that the reconstructed trees typically contained a small number of
clones basedon the specificdrivermutations thatwerepart of thepanel
and that they varied considerably between any two patients. In parti-
cular, both studies report over-represented pairs of co-occurring or
clonally exclusive mutations in the subclones. These relationships have
recently been examined with a customized statistical test, called
GeneAccord22, which is designed for evolutionary-related samples from
the same tumor. Mutations that co-occur more frequently in the same
clonal lineage may indicate synergistic effects on cell proliferation and
survival4. Clonally exclusive mutations, on the other hand, occur more
frequently in different lineages. They may suggest either clonal
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cooperation, where cell populations harboring complementary sets of
mutations collaborate to promote tumor growth23, or synthetic leth-
ality, meaning that acquiring both mutations on the same genome will
significantly reduce the viability of the clone24. Since clonal interactions
have a major impact on intratumor heterogeneity and the observed
evolutionary trajectories, it would be natural to incorporate mutational
interdependencies within and between subclones when modeling
tumor progression.

For cross-sectional bulk sequencing data, where each tumor is
summarized by a binary genotype, a collection of probabilistic meth-
ods for inferring the temporal order of mutations and predicting
tumor progression is called cancer progression models (CPMs)25,26. In
light of the observation that mutually exclusive mutations are often
associated with genes in the same functional pathway, Raphael &
Vandin developed the first CPM that jointly infers sets of mutually
exclusivemutations and the temporal order among themusing a chain
model27. Later, pathTiMEx28 generalized the linear structure with a
continuous-time Conjunctive Bayesian Network (CBN)29. A recent
method, called Mutual Hazard Networks (MHNs), does not explicitly
group exclusive mutations but re-parameterizes mutational waiting
times using a matrix that encodes both co-occurrence and
exclusivity30. However, thesemethods require independent samples of
binary genotypes as input. As such, they have not been designed for
tree-structured data as they cannot capture the subclonal structure
and dependencies within a tumor nor utilize the existing order infor-
mation from the tumor phylogenies. In addition, mutual exclusivity is
defined at the patient level, whereas clonal exclusivity refers to pairs of
mutations that occur less frequently in the same subclone but can still
co-exist in the same tumor22. Hence, the consensus genotype of a
tumor can contain some or all of the clonally exclusive mutations, but
the above CPMs will treat them as evidence of co-occurrence.

First efforts have been made to infer recurrent evolutionary tra-
jectories in a cohort of tumor phylogenies reconstructed from bulk,
multi-region, or single-cell sequencing data. Based on transfer learn-
ing, REVOLVER7 infers the phylogenetic trees for a cohort of patients
simultaneously and reconciles the heterogeneous trees using a matrix
summarizing the frequencies of all pairwise ancestor-descendant
relationships across tumors and outputs the trees having the smallest
distance to the matrix. The entries in the normalized matrix are
empirical estimates of the probability of one mutation being the
ancestor of another mutation, which can be used to compute the
probability of a possible evolutionary trajectory. HINTRA8 extends the
idea of REVOLVER by relaxing the assumption that the occurrence of a
mutation depends only on its direct ancestor. It considers all possible
sets of ancestors, allowing for more complex dependencies. However,
the number of rows of the modified count matrix is exponential in the
number of mutations, which limits the scalability of the algorithm9.
Another direction is to find deterministic patterns from the mutation
trees. RECAP solves an optimization problem that simultaneously
clusters the patients into subgroups and selects one consensus tree for
each cluster9. CONETT10 andMASTRO31 are computationalmethods to
identify significantly conserved evolutionary trajectories by expanding
the tumor trees into graphs that satisfy all partial order relations
among the mutations. The former searches for a single conserved
evolutionary trajectory tree that can describe the pattern in as many
tumors as possible, whereas the latter outputs all such trajectory trees
observed in at least a certain number of tumors. These deterministic
methods do not provide probabilistic measures of future events given
a trajectory or a tree and thus cannot be easily adapted for evolu-
tionary predictions.

Here, we present a novel CPM, called TreeMHN, for simultaneous
inference of patterns of clonal exclusivity and co-occurrence and
repeated evolutionary trajectories from a cohort of intra-tumor phy-
logenetic trees. Unlike classical CPMs, including the genotype MHN
method30, TreeMHN considers the complete mutational histories of

tumors and the dependencies between their subclonal structures
represented by the intra-tumor mutation tree rather than the overall
presence and absence ofmutations. Compared to current state-of-the-
art methods for detecting recurrent trajectories, TreeMHN is prob-
abilistic and explicitly incorporates the exclusivity patterns of muta-
tions. Using simulated data,we demonstrate the superior performance
of TreeMHN in estimating the clonal exclusivity parameters and the
probability distribution of evolutionary trajectories as compared to
the genotype MHN method30, REVOLVER7, and HINTRA8. We then
apply TreeMHN to three cancer cohorts: acute myeloid leukemia
(AML)21, non-small-cell lung cancer (NSCLC)15, and breast cancer32. Our
estimated exclusivity patterns and most probable evolutionary tra-
jectories notonly confirmprevious biologicalfindings but alsoprovide
new insights into the interdependencies of mutations, which could be
informative for clinical decisions. With longitudinal tumor samples,
TreeMHN provides improved predictions on the next mutational
events given a tumor tree over alternative methods, which highlights
the potential for evolution-based precision treatment plans.

Results
TreeMHN overview
We developed TreeMHN, a probabilistic model for inferring exclusivity
patterns of mutations and recurrent evolutionary trajectories from
tumor mutation trees. A tumor mutation tree T is a rooted tree that
encodes the evolutionary history of a tumor33. The root corresponds to
the start of the evolutionary process with no mutations (gray nodes in
Fig. 1). The nodes represent the mutations connected according to the
order in which they occur and fixate in the cell population (colored
nodes in Fig. 1). Each path from the root to a node in the tree constitutes
an evolutionary trajectory π, which characterizes the successive accu-
mulation ofmutations and uniquely defines a subclone. Starting froman
existing subclone π, we assume that the time until a new mutation i
occurs and fixates, resulting in a new subclone (π, i), follows an expo-
nential distribution with its rate dependent on not only mutation i but
also all ancestor mutations in π. We parameterize the rates using a
Mutual Hazard Network (MHN) Θ= eθij

� �
i, j2½n� 2 Rn×n, where n is the

number of mutations. The diagonal entries fΘiigi2½n� are the baseline
rates of evolution, indicating how quickly each mutation will occur and
fixate in a subclone independent of the other mutations. Mutations can
have positive (co-occurring), negative (exclusive), or zero (no) effects on
the rates of further downstream mutations. This is encoded by the off-
diagonal entries fθijgi, j2½n� with an equivalent graphical structure
(Fig. 1). If θij is positive, mutation j increases the rate of mutation i
(denoted by an edge j→ i). If θij is negative, mutation j decreases the rate
of mutation i, (denoted j⊣i). The topology of a mutation tree is jointly
determined by the waiting times of the subclones and an independent
sampling time, which is also exponentially distributed. Only subclones
acquired before the sampling time are observable in a tree. Therefore,
the marginal probability of observing a tree T given Θ is equal to the
probability that all observed mutational events happen before the
sampling event, and all unobserved events that could happen next do
not happen before the sampling event.

To perform inference with TreeMHN, the input is a set of N
independent tumormutation treeswith a total number ofnmutations,
which can be constructed from bulk, multi-region, or single-cell
sequencing data using phylogenetic methods. The output is Θ̂, an
estimated MHN describing the exclusivity and co-occurrence patterns
of mutations for the given cohort. With our efficient parameter esti-
mation scheme based on regularized maximum likelihood estimation
and a hybrid Monte Carlo expectation-maximization algorithm, the
computational complexity depends on the maximum tree size, which
is typicallymuchsmaller than thenumber ofmutations.Thenumberof
parameters to estimate (n2) often exceeds the number of observations
(N). To prevent model overfitting, we can run TreeMHN with stability
selection34, where the parameters in Θ are estimated over many
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subsamples of the trees, and only those having a high probability of
being non-zero are kept. This procedure can significantly improve the
precision of identifying the true relationships among the mutations.
Furthermore, the estimated model allows us to compute the prob-
abilities of different evolutionary trajectories or evaluate the most
likely next mutational events given a tumor tree. We provide an
overview of the inference procedure in Fig. 1 and more technical
details can be found in Methods and Supplementary Materials.

Performance assessment on simulated data
Through simulations, we assess the performance of TreeMHN in
comparison to alternative methods in estimating exclusivity patterns
and associated distributions of evolutionary trajectories from muta-
tion trees. For each simulation run, we randomly generate a ground
truth networkΘ with nmutations and a set of Nmutation trees. Using
the N simulated trees as input, we run TreeMHN along with the gen-
otype MHN method30, REVOLVER7, and HINTRA8. We consider differ-
ent configurations of simulation experiments, including varying the
number of mutations n and the number of trees N. For each config-
uration, we perform 100 repetitions. More simulation details are pro-
vided in the Methods.

We first evaluate how well TreeMHN can estimate the patterns of
clonal co-occurrence and exclusivity by computing the structural dif-
ferences between the estimated network Θ̂ and the ground-truth
network Θ. Specifically, we measure the precision and recall of iden-
tifying the true edges in Θ. An estimated off-diagonal entry in Θ̂ is a
true positive if and only if it is non-zero and has the correct sign
(Supplementary Fig. S3). We compare TreeMHN to the genotypeMHN
method, the only previously published cancer progression model that
can estimate Θ (Fig. 2).

In all cases, TreeMHN clearly and consistently outperforms the
genotypeMHNapproach in termsof both average precision and recall.
This is because the problem of inferring an MHN from binary geno-
types is in general underspecified, meaning that multiple different
MHNs share similar likelihoods35, which cannot be alleviated by taking
subclonal genotypes directly as input. This result highlights the benefit
of utilizing the existing ordering information encoded in the trees to
resolve the underlying network. In fact, this benefit is maintained even
if high levels of noise are added to the trees (Supplementary Figs. S5
and S6), as well as for varying proportions of zero entries (Supple-
mentary Fig. S7) andnegative entries inΘ (Supplementary Fig. S8). The

difference between the networks estimated using MLE and MC-EM is
small and decreases with increasing number of Monte Carlo samples
(Supplementary Fig. S9).

For TreeMHN and genotype MHN, we additionally implemented
the stability selection procedure over a set of regularization para-
meters γ∈ {0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3}, where larger values of
γ promote sparser network structures and prevent model overfitting
(Methods). The performance of both methods improves as the num-
ber of trees increases and the number of mutations decreases. At the
same regularization level, the solutions with stability selection achieve
much higher precision although at the cost of lower recall. By sorting
the rows and columns of Θ̂ by descending baseline rates, we
notice that both methods perform better in recovering the pairwise
interactions between mutations with higher baseline rates than those
with lower baseline rates (Supplementary Fig. S4). The reason is that
interactions between rare mutations can hardly be observed in the
trees, leading to a lack of statistical power to correctly estimate the
corresponding entries in Θ. This limitation is in general method-
independent.

Next, we assess the performance of TreeMHN in estimating
trajectory probabilities (Fig. 3). For comparison we also include
REVOLVER and HINTRA, two probabilistic approaches for detecting
repeated trajectories. Across different numbers of mutations and
trees, TreeMHN outperforms all alternatives. HINTRA has the worst
performance, possibly because of over-parameterization given the
limited number of observations for every possible ancestry set.
REVOLVER has similar performance as genotype MHNs even though
it does not explicitly model co-occurrence and exclusivity between
mutations. The genotype MHN method is unable to handle the case
n = 30 due to exponentially increasing space and time complexity30.
For TreeMHN, the runtime and memory are instead limited by
the tree with the maximum number of subtrees (Supplementary
Fig. S10).

Application to acute myeloid leukemia data
We apply TreeMHN to the cohort of N = 123 AML patient samples
analyzed in ref. 21 by high-throughput single-cell panel sequencing,
which involves 543 somatic mutations in n = 31 cancer-associated
genes and does not include any synonymous mutations. We assume
that the mutation trees reconstructed by SCITE33, a single-cell phylo-
genetic method, represent the complete evolutionary histories of the

Fig. 1 | Inference with TreeMHN. The middle panel is a Mutual Hazard Network
(MHN) for three distinctmutations (colored differently) represented as a network
and equivalently as a matrix. The edges represent the co-occurring (→) or
exclusive (⊣) stochastic dependencies among the mutations, corresponding to
positive and negative off-diagonal entries in thematrix respectively. The diagonal
entries are the baseline rates of fixation and have no influence on the network

structure (therefore depicted as dots). Given a set of heterogeneous tumor
mutation trees (left panel), we estimate the dependency parameters of an
unknown underlying MHN. From the estimated MHN, we can compute the
probability and the expected waiting time of any evolutionary trajectory (upper
right panel). Additionally, we can compute the most probable next mutational
events given an existing tree (lower right panel).
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tumors. Assuming all point mutations in the same gene have similar
effects, we summarize the mutations at the gene level and observe
many mutated genes appearing more than once in two separately
evolved subclones of the same tree, such as FLT3, KRAS, and PTPN1121

(Supplementary Section E.1). This recurrence increases the statistical
power for detecting recurrent gene-level trajectories and patterns of
clonal exclusivity.

To avoid overfitting, we train TreeMHN with stability selection
and obtain a network over the 15 mutated genes which have non-zero
off-diagonal entries (Fig. 4 and Supplementary Fig. S11). The sparse-
ness of the network is because the number of observations for the
pairwise interactions between rare events is so small that the corre-
sponding entries are filtered out during stability selection. In this case,
even if an interaction exists, there may not be enough power to
detect it.

Among the 31 AML genes, DNMT3A has the highest baseline
rate, followed by IDH2, FLT3, NRAS, NPM1, and TET2, which are
known to be more frequently mutated in AML patients36. However,
these genes do not necessarily appear in every mutation tree or are
the initiating events, since the appearance of a mutation depends
not only on the baseline rate but also on whether other mutations
happened upstream with promoting or inhibiting effects, which

further explains the high degree of heterogeneity in the trees. By
comparing the off-diagonal entries against the list of gene pairs
found by GeneAccord22 on the same dataset, we observe highly
consistent but more informative results. In particular, most sig-
nificant pairs of co-occurring or exclusive genes can be confirmed in
the estimated network with additional directional strengths. For
example, GeneAccord identifies NRAS and FLT3 as significantly
clonally exclusive. TreeMHN further reveals that the effect of FLT3
inhibiting the occurrence of NRAS in the same lineage is much
stronger than the other way around. In other words, if a subclone has
already acquired mutations in FLT3, then it is less likely to accu-
mulate another mutation in NRAS, which may still occur in
separately-evolved subclones. On the contrary, subclones that
acquire mutations in NRAS first are still relatively likely to hit FLT3
subsequently. Apart from with NRAS, such a relationship also
appears with PTPN11 and IDH2. This observation aligns with previous
studies37, where some patients (e.g., 3/11 in ref. 38 and 15/41 in
ref. 39) developed secondary resistance to FLT3 inhibitors due to
off-target mutations (e.g., genes in the RAS pathways), which were
present in small cell populations prior to treatment.

Next, we infer the most probable evolutionary trajectories from
the estimated network (Methods and Fig. 5), which are consistent with

Method Genotype MHN Genotype MHN (stability selection) TreeMHN TreeMHN (stability selection)
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Fig. 2 | Performance of TreeMHN and the genotype MHN method (with and
without stability selection) in estimating the truenetworkΘonsimulateddata
for n∈ {10, 15, 20} mutations and N∈ {100, 200, 300, 500} samples. The pre-
cision and recall curves averaged over 100 simulation runs are plotted for the top
half of mutations ranked by baseline rates. Each point on the curves corresponds

to a penalization level γ∈ {0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3}. The dash lines indicate the
performance of randomly guessing the edge directions in Θ. The curves for
genotype MHN with stability selection are omitted for n = 20 due to excessive
computation time. Source data are provided as a Source Data file.
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the significantly conserved ones identified by CONETT10 and
MASTRO31 (Supplementary Figs. S12 and S13). In comparison to alter-
native methods, the probabilities estimated by TreeMHNmatch closer
in rankings with the relative frequencies of the observed AML trajec-
tories (Supplementary Figs. S14 and S15). Mutations inDNMT3A,NPM1,
and FLT3 often co-occur with a relatively high probability. This three-
way interaction is found to be associatedwith poor prognosis40,41. With

DNMT3A→NPM1 and NPM1 ⊣ DNMT3A, the ordering between them is
more likely to be DNMT3A first followed by NPM1, which has been
reported in previous studies42,43.

Moreover, conditioned on the estimated network and a given
tumor tree, we can predict the most probable next mutational
event (Methods). To evaluate TreeMHN predictions, we perform
both retrospective predictions on the rooted subtrees of the 123

SRSF2

PTPN11

ASXL1

IDH1

SF3B1

RUNX1

WT1

TP53

KRAS

TET2

NPM1

NRAS

FLT3

IDH2

DNMT3A

−5.0

−4.5

−4.0

−3.5

−3.0

Baseline rates

DNMT3A

IDH2

FLT3

NRAS

NPM1

TET2

KRAS

TP53

WT1

RUNX1

SF3B1

IDH1

ASXL1

PTPN11

SRSF2

ancestor

de
sc

en
da

nt

−4.0

−2.0

0.0

2.0

4.0

Pattern of exclusivity and co−occurrence

Fig. 4 | PartialMutualHazardNetwork for the 123AMLpatient samples.The full
network is shown in Supplementary Fig. S11, and only mutations with non-zero off-
diagonal entries are shown here. The columns and rows of the matrix are ordered
by decreasing baseline rates, which are shown on the left in yellow scale. The empty

off-diagonal entries represent the case ofno effect (θij=0),meaning that there is no
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stronger the effects. Source data are provided as a Source Data file.
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data are provided as a Source Data file.
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primary tumor trees and forward predictions using the long-
itudinal samples in the same dataset (Fig. 9). A comparative ana-
lysis against five alternatives (TreeMHN that estimates only the
baseline rates of mutations, genotype MHN on consensus geno-
types, genotype MHN on weighted subclonal genotypes, REVOL-
VER, and a frequency-based model that predicts the next events
using the relative frequencies of the mutations in the cohort)
reveals better predictive performance of TreeMHN. For the
majority of the 123 primary tumor trees, TreeMHN assigns higher
rankings to the events that actually happened downstream of any
of the rooted subtrees (Fig. 6 & Supplementary Fig. S17). Under
TreeMHN, seven out of nine new events in consecutive long-
itudinal samples have higher predicted probabilities than over 94%
of the other possible mutational events, whereas alternative
methods give varying predictions which are worse on average than
TreeMHN (Table 1 and Supplementary Fig. S18). For instance, given
the tree of patient sample AML-38-002, TreeMHN successfully
identifies the two relapse events (Root→ NPM1 → IDH2 → PTPN11
and Root → NPM1→ IDH1 → FLT3 in AML-38-003) in the top 5% most
probable mutational events. With treatment effects drastically
altering the fitness landscape44, it is possible that subclones that
were too small to detect at diagnosis became more abundant in a
relapse. The consistent predictions highlight the ability of
TreeMHN to unravel the interplay among the mutational events
from the heterogeneous mutation trees, offering opportunities for
evolution-guided treatment strategies.

Application to non-small-cell lung cancer data
Next, we analyze the TRACERx NSCLC multi-region whole-exome
sequencing data for N = 99 patients15. By applying TreeMHN to the
phylogenetic trees with n = 79 driver mutations from ref. 7 (Supple-
mentary Section F.1), we detect stable signals of interdependencies
among 18 mutations (Fig. 7 and Supplementary Fig. S19). The
majority of these interactions are from KRAS, TP53, and EGFR to other
genes, suggesting their essential roles as recurrent initial events in
tumorigenesis and progression6,15. In particular, the exclusive rela-
tionship between the oncogenic drivers KRAS and EGFR aligns with
previous studies and could be associated with different clinical fea-
tures (e.g., smoking exposure) between KRAS-mutant and EGFR-
mutant subgroups45,46. Each of these two mutations is co-occurring
with TP53, one of the most commonly mutated tumor suppressor
genes in NSCLC47. EGFR-mutant tumors with co-occurring TP53 were
found to have higher degrees of genomic instability and shorter
progression-free survival after EGFR TKI therapy48. Co-mutations in
KRAS/TP53, on the other hand, are predictive for favorable clinical
response to PD-1 inhibitors49. Moreover, existing EGFR mutations
may encourage the occurrence of mutations in TERT and PIK3CA,
where the former can influence telomere maintenance mechanisms
in tumor cells50, and the latter promotes cellular invasion and
migration in vitro46. Both are associated with poor overall
survival46,50. These observations indicate that the tumor progression
processes leading to the observed co-occurrence of the genes may
have direct clinical consequences.
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Fig. 5 | Top 40 most probable evolutionary trajectories inferred from the
partialMutual Hazard Network of the AMLdataset (Fig. 4). Each row represents
an evolutionary trajectory, labeled and ordered by trajectory probabilities, and the

horizontal positions of the mutations correspond to their expected waiting times
relative to the sampling rate of λs = 1 (Methods). Source data are provided as a
Source Data file.
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Without reconciling the trees or clustering the trees into sub-
groups, the most probable evolutionary trajectories inferred by
TreeMHN capture most of the repeated trajectories found by REVOL-
VER (Supplementary Fig. S20). Notably, we recover 7 of the 10
REVOLVER clusters (C2, C3, C4, C6, C7, C9, C10) in the top 50 trajec-
tories (Supplementary Fig. S21), underlining the ability of TreeMHN to
disentangle noisy signals. For cluster C7, TreeMHN assigns a higher
probability to the trajectory KRAS→ TP53→MGA as compared to
TP53→KRAS→MGA, whereas REVOLVER cannot tell them apart.
Interestingly, the trajectory CDKN2A→ TP53 in cluster C5, identified as
highly robust by REVOLVER, has a lower probability than TP53→
CDKN2A, where the ordering is reversed. As pointed out in ref. 15,most
of the mutations in TP53 were clonal for both adenocarcinoma and
squamous-cell carcinoma in the TRACERx dataset, whereas mutations
inCDKN2A appearedmostly in the latter subtype andoften late. Hence,
it is more likely that mutations in TP53 precede those in CDKN2A,
hinting at how they cooperate on cell-cycle deregulation.

Application to breast cancer data
Finally, TreeMHN is not restricted to tumor trees reconstructed from
single-cell or multi-region sequencing data, and we analyze a bulk
sequencing dataset of 1918 tumors for 1756 advanced breast cancer
patients, where clinical data is also available32. Based on hormone
receptor and HER2 status (HR+/HER2+, HR+/HER2-, HR-/HER2+, Triple
Negative) and sample type (treatment-free primary vs. metastasis), we
can segregate the patients into eight subgroups. Considering only
copy-neutral autosomal regions,we restrict the analysis to the unionof

SNVs that appear in at least 10% of the patients in each subgroup. In
total we have n = 19 mutations and N = 1152 patients with 1232 phylo-
genetic trees inferred by SPRUCE51, a phylogenetic method based on
bulk mixture deconvolution (Supplementary Section G.1).

The estimated network on all trees captures combined signals,
which are mainly driven by the largest subgroups with HR+/HER2-
status (Supplementary Fig. S22). We observe that mutations in TP53
and PIK3CA, which were identified as early clonal events6,8,32, have the
highest baseline rates of mutations and are co-occurring. We also
detect exclusivity between PIK3CA and PIK3R1, suggesting that muta-
tions in one of these driversmay suffice to trigger abnormal regulation
of PI3Kactivation inbreast cancer52.While there are no largedeviations
from the combined network, we obtain some subgroup-specific
interdependencies by applying TreeMHN separately to each sub-
group (Supplementary Figs. S23 and S24). For example,NF1mutations,
which are found to be associated with endocrine resistance32, have
higher baseline rates in hormone receptor-negative tumors and co-
occurwithTP53more frequently inmetastatic samples. Also, wedetect
co-occurrence of PIK3CA and GATA3 in hormone receptor-positive
tumors but not in the negative ones. It has been observed that tumors
with GATA3 mutations depend more on estrogen level and may be
predictive for positive response to aromatase inhibitors53. The
subgroup-level most probable evolutionary trajectories not only con-
firm existing findings reported by HINTRA8 and RECAP9, such as
CDH1→ PIK3CA for the HR+/HER2- samples, but also provide new
insights (Supplementary Figs. S25–S28). For instance, the combination
of TP53, PTEN, and PIK3CA/PIK3R1 ranks higher in themetastatic triple-
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Fig. 6 | Performance assessment on retrospective predictions for the AML
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downstream events, enumerated from the 123 independent primary tumor trees.
The box represents the interquartile range (IQR) with the median inside, while the

whiskers extend to theminimumandmaximumvalueswithin 1.5 times the IQR, and
any data outside the whiskers are shown as individual points. The p-values with
Bonferroni correction for the two-sided Wilcoxon signed-rank tests between
TreeMHNand alternativemethods are alsodisplayed. Sourcedata are provided as a
Source Data file.
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negative subgroup than in other subgroups. Cooperatively, these
mutations can lead to hyperactivation of the PI3K-AKT pathway and
uncontrolled proliferation of cells, ultimately reducing the overall
survival rate54. Therefore, TreeMHN is capable of extracting key pat-
terns related to clinical outcome from highly heterogeneous tumor
mutation histories.

Discussion
We have developed TreeMHN, a novel cancer progression model for
the joint inference of repeated evolutionary trajectories and patterns
of clonal co-occurrence or exclusivity from a cohort of intra-tumor
phylogenetic trees. Unlike Mutual Hazard Networks30, TreeMHN can
take as input heterogeneous tree structures estimated from multi-
region, single-cell, or bulk sequencing data, rather than per-tumor or
per-clone consensus genotypes. Importantly, with our efficient para-
meter estimation procedure, it is the maximum tree size, rather than
the total, typically much larger, number of mutations, that limits the
computation time of TreeMHN.

Through simulation studies, we have demonstrated the superior
performance of TreeMHN in estimating both patterns of clonal
exclusivity or co-occurrence and trajectory probabilities in compar-
ison with MHNs, REVOLVER, and HINTRA. Moreover, we have shown
that TreeMHN is robust against uncertainty in the phylogenetic trees
for varyingnoise levels. Alternatively, onemayhandle suchuncertainty
by sampling the trees for each patient proportionally to their posterior
probabilities and taking them as weighted inputs to TreeMHN. By
exploiting the evidence of temporal ordering among mutations con-
tained in the tree topologies and properly accounting for clonal
dependencies, TreeMHN can better resolve the underlying network
structure. Given the estimated parameters, TreeMHN allows us to
compute the probabilities of different evolutionary trajectories and
the expected waiting times between mutational events. However, in
general, these waiting times cannot be interpreted as real calendar
time since they are with respect to the unknown sampling times and
the scaling factor is therefore unknown. One remedy is to use long-
itudinal data, where the sampling time is either provided or can be
inferred from data. Including observed sampling times is technically
possible55, but such data are often difficult to obtain without having
treatment interventions. Modeling drug response data is a crucial but
challenging direction to explore, for which TreeMHN may serve as
a basis.

Unlike REVOLVER and HINTRA, our method embraces the het-
erogeneity among the trees and incorporates clonal exclusivity and co-
occurrence into the analysis of recurrent evolutionary processes. Also,
TreeMHN does not rely on any particular phylogenetic method. It is
possible to combine different phylogenies from various sources (e.g.,
refs. 33,56,57) to take into account different modeling assumptions.
Future developments in phylogenetic methods together with more
available data can further improve the estimate of TreeMHN. Another
advantage of TreeMHN is the ability to model parallel mutations in
distinct lineages,which are not uncommon in real data21, whilemanyof
the existing alternatives require the infinite sites assumption. Like all
other progression models, however, TreeMHN currently does not
consider back mutations, i.e., situations in which a mutation is
acquired at first but subsequently lost58,59. A possible extension along
this line is to include additional parameters and use as input phylo-
genetic trees inferred by methods such as SCARLET60, which views a
decrease in copy numbers that overlap a mutated locus as evidence of
back mutations. Moreover, TreeMHN is not designed for a specific
type of mutation, such as SNVs. In other words, it is possible to detect
recurrent trajectories at the level of copy number alterations61, mixed
types of mutations62, or even functional pathways63.

Nevertheless, TreeMHN does not take into account the subclone
sizes, which can be viewed as consequences of clonal selection64. As
noted by ref. 65, inferringmutation rates and fitness values jointlymayTa
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have promise but is challenging. On the one hand, larger subclone
sizes can be attributed to both their earlier appearance or higher
fitness65. On the other hand, the mutation rates in cancer progression
models are rates of evolution, which implicitly involve subclone fit-
ness. Thus, any attempts tomodify TreeMHN tomodel clonal selection
need to be taken with caution. In this work, we assumed all trees in the
same cohort are generated from one MHN, but it is possible to extend
TreeMHN to perform model-based unsupervised clustering akin
to ref. 66.

We have applied TreeMHN to data of three different cancer types
and demonstrated its practicality and flexibility. Beyond reproducing
existing results, TreeMHN provides additional insights, including
baseline rates of mutational events, directional strengths of the pro-
moting or inhibiting effects, as well as probabilistic measures of evo-
lutionary trajectories. In particular, we find good overlap between the
longitudinal AML data21 and our predictions of the next mutational
events. The application and results of TreeMHN may therefore be
useful for prioritizing personalized treatments.

Methods
TreeMHN generative model
TreeMHN models mutation trees using a tree-generating process.
Consider N mutation trees T= fT1, . . . ,TNg with a total number of n
mutations. Each tree Tl corresponds to the mutational history of a
tumor and contains a subset of mutations from [n]≔ {1,…, n}. We
assume that the trees are realizations of a Markov process with the
transition rate matrix parameterized by a Mutual Hazard Network
Θ 2 Rn ×n. We denote each subclone in a tree by the evolutionary
trajectory π that runs from the root 0 to the node where the subclone
is attached. In other words, a subcloneπ is a sequence (0, σ1,…,σd) with
0 ≤ d ≤ n, and σi∈ [n] are non-duplicated elements. Let Π denote the
space of all subclones, or equivalently, the space of all evolutionary

trajectories. The tree-generating process is defined as follows (Fig. 8,
Supplementary Sections A.1 and A.2):

1. The initial wild-type subclone is π = (0) at time T(0) = 0. For each
subclone π, the set of mutations that could happen next is [n]⧹π.

2. The waiting time until a new subclone (π, i) with i∈ [n]⧹π is born
from π is an exponentially distributed random variable,

T ðπ,iÞ ∼Tπ +Expðλðπ,iÞÞ, λðπ,iÞ = exp θii +
X
j2π

θij

 !
=Θii

Y
j2π

Θij ð1Þ

where θii = logΘii is the baseline rate of mutation i, and θij = logΘij

determines the positive (denoted j→ i), negative (j⊣i) or zero effect of
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the matrix are ordered by decreasing baseline rates. Source data are provided as a
Source Data file.
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Fig. 8 | TreeMHN as a probabilistic graphical model. The waiting times of sub-
clones T= fTπgπ2Π are exponentially distributed random variables parameterized
by an MHN Θ= ðeθij Þi,j2½n�. The tree structureT is jointly determined by T and an
independent sampling time Ts, which is also an exponential random variable with
rate λs. Both T and Ts are hidden variables. The random variables inside the plate
replicate N times, which generate N independent and identically-distributed
mutation trees.
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an existing mutation j on mutation i30. If both θij< 0 and θji <0 (i.e.,
j⊢⊣i), then the two mutations are called clonally exclusive, and if both
signs are positive (i.e., j↔ i), we say that the mutations are co-
occurring. The collection of all waiting times is denoted byT= fTπgπ2Π.
3. The observed tree structure T is co-determined by an indepen-

dent sampling event S with time Ts ∼ ExpðλsÞ. Typically, we
assume λs = 1 for identifiability29. An edge from π to (π, i) exists in
T if and only if T(π, i) < Ts, i.e., if mutation i happened before
sampling the tumor cells.

4. The process iterates until all subclones that could emerge next
have a longer waiting time than the sampling time.We denote the
augmented tree structure by AðTÞ, which includes the edges
pointing towards the events right after sampling (Supplementary
Fig. S1b). Events further downstream are not considered as they
cannot influence the observed tree structure.

One advantage of this formulation is that the same mutational
event can appear in different lineages of a tree. For computational
convenience, many of the alternatives capable of inferring repeated
evolutionary trajectories (e.g., REVOLVER, HINTRA, RECAP) require
the infinite sites assumption (ISA), i.e., each mutational event (e.g., an
SNV) is gained at most once. However, it has been shown that allowing
parallel mutations is, in general, a more realistic assumption58. Even
assuming the ISA for individual genomic bases, when summarizing at
the gene level the same gene may be affected in parallel lineages. In
results, we demonstrated the applicability of TreeMHN using the AML
dataset which contains parallel mutations. Due to the introduction of
clonally exclusive mutations, another advantage is the possibility to
generate very distinct trees from given mutual hazards. Therefore,
TreeMHN can model extensive intra-tumor and inter-tumor hetero-
geneity, while capturing common, re-occurring features.

Parameter estimation
The marginal probability of observing a tree T conditioned on an
MHN Θ is given by (Supplementary Fig. S1),

pðT∣ΘÞ=P max
π2T

Tπ<Ts< min
π0=2T

π02AðTÞ

Tπ0 ∣ Θ

0
B@

1
CA: ð2Þ

Both pðT∣ΘÞ and its gradients ∂pðT∣ΘÞ=∂λπ can be computed
efficiently by inverting specific triangular matrices, which are con-
structed using the rates associated with the events in AðTÞ, and the

dimensions dependonly on thenumberof subtrees inT (seeTheorem
1 and 2 in Supplementary Section A.2 and the derivations in Supple-
mentary Section A.3). Given N mutation trees T= fT1, . . . ,TNg, we
follow30 and estimate Θ by maximizing the penalized log-likelihood,

Θ̂= argmax
Θ

XN
l = 1

logpðTl ∣ΘÞ � γ
X
i≠j

∣ logΘij ∣

 !
, ð3Þ

where γ >0 controls the sparsity of Θ in order to mitigate overfitting.
When someor all of the trees inT havemany subtrees (e.g., more

than 500 subtrees), the MLE procedure can still be very slow or even
infeasible. In this case, we resort to a hybrid EM and Monte Carlo EM
algorithm based on importance sampling as follows (see also Supple-
mentary Section A.4). In the E step, given the observed treesT and the
current estimate Θ(k) for iteration k∈ {0, 1, 2,… }, we compute the
expected value of the complete-data log-likelihoodwith respect to the
unobserved collection of waiting times as

gðΘ,ΘðkÞÞ=
XN
l = 1

Xn
i= 1

X
π2Tl :ðπ,iÞ2AðTl Þ

logΘii +
X
j2π

logΘij �Θii

Y
j2π

ΘijET l ,Tl
s ∣T

l ,ΘðkÞ ðTl
ðπ,iÞ � Tl

πÞ
" #

+C,

ð4Þ

where C is a constant. For small trees, we can calculate the expected
time difference in exact form,

ET ,Ts ∣T,Θ½T ðπ,iÞ � Tπ �=
1

λðπ,iÞ
� 1

PðT∣ΘÞ
∂PðT∣ΘÞ
∂λðπ,iÞ

: ð5Þ

For large trees, we approximate the expectation by drawing M
samples from the following proposal distribution. First, the sampling
time Ts ∼ ExpðλsÞ with λs = 1 is drawn independently. Using the equa-
tion T(π, i) = Tπ + Z(π, i), we then follow the topological order in T and
sample the difference in waiting times between subclones π and (π, i)
recursively as

Z ðπ,iÞ ∼
TExpðλðπ,iÞ, 0, ts � tπÞ if ðπ, iÞ 2 T

TExpðλðπ,iÞ, ts � tπ ,1Þ if ðπ, iÞ 2 AðTÞ nT

(
ð6Þ

where TExpðλ,a,bÞ is the truncated exponential distribution with
parameter λ and bounds 0≤ a < b <∞. Thus, the timepoints t(m) and tðmÞ

s

Fig. 9 | A schematic representation of evaluating the predictions of next events
givena tree structure.AML-83-001 is a tumor sample, and the associatedmutation
tree is a chain with two mutations. Given this tree, we can retrospectively enu-
merate all its rooted subtrees and compute the probability of the existing

downstream events. AML-83-002 is a consecutive sample available for the same
patient, with which we can perform forward prediction and validate the result. The
root node is in gray, the events that are common from a preceding tree are in blue,
and the new events are in pink.
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for m = 1,…,M generated from our proposal distribution are by defi-
nition compatible with the tree structure. The approximation is then

ET ,Ts ∣T,Θ½T ðπ,iÞ � Tπ �≈
1
M

PM

m= 1
wðmÞ ðtðmÞ

ðπ,iÞ�tðmÞ
π Þ

1
M

PM

m= 1
wðmÞ

,

wðmÞ =
Qn
i = 1

Q
ðπ,iÞ2T

ð1� e�λðπ,iÞ ðtðmÞ
s �tðmÞ

π ÞÞ× Q
ðπ,iÞ=2T

ðπ,iÞ2AðTÞ

e�λðπ,iÞ ðtðmÞ
s �tðmÞ

π Þ

2
64

3
75: ð7Þ

In theM step, we updateΘ bymaximizing the penalized expected
complete-data log-likelihood

gðΘ,ΘðkÞÞ � γ
X
i≠j

∣ logΘij ∣: ð8Þ

To prevent overfitting, we run TreeMHN with stability selection34

such that the parameters inΘ are estimated over many subsamples of
the treesT, andonly thosehaving a highprobability of being non-zero
are kept (see also Supplementary Section B). The choice of parameter
estimation method is automatically determined by a pre-specified
number of subtrees: if the maximum number of subtrees of all trees in
the set is below this threshold, thenMLE is used. Otherwise, we use the
hybrid MC-EM method instead. By default, the threshold is set to be
500 subtrees, and the number of Monte Carlo samples is M = 300.

Probability and expected waiting time of a trajectory
We consider the set of evolutionary trajectories that end with the
sampling event S,

ΠS : = fð0,σ1, . . . ,σd , SÞ∣σi 2 ½n�non-duplicated ,0≤d ≤ng: ð9Þ

Given Θ and λs, we can compute the probability of a trajectory
π∈ΠS as the product of competing exponentials,

PΘðπÞ=
Yd
i = 1

λðπi�1 ,σiÞ
λs +

P
j2½n�nπi�1

λðπi�1 ,jÞ

 !
×

λs
λs +

P
j2½n�nπλðπ,jÞ

, ð10Þ

where πi = (0, σ1,…,σi)⊂π. It follows that ðPΘðπÞÞπ2ΠS
is the probability

distribution over ΠS with respect to Θ, since
P

π2ΠS
PΘðπÞ= 1. Likewise,

the expected waiting time of π∈ΠS is the sum of the expected time
interval lengths along the trajectory,

EΘ½Tπ �=
Xd
i= 1

1
λs +

P
j2½n�nπi�1

λðπi�1 ,jÞ

 !
+

1
λs +

P
j2½n�nπλðπ,jÞ

: ð11Þ

However, computing PΘ(π) for all π∈ΠS is computationally
infeasible for large n, since the number of trajectories in ΠS is factorial
in n. Instead, we can enumerate the most probable trajectories that
have at least one mutation with dynamic programming following the
pseudocode in Supplementary Algorithm 2, the complexity of which is
linear in n.

To compare with alternative methods that do not contain a
sampling event, such as REVOLVER7 and HINTRA8, we can use another
formulationwithΠd⊆Π, which is the set of evolutionary trajectories of
a fixed length d for 1 ≤ d ≤ n. The probability of a trajectory π∈Πd can
be computed similarly as

PΘðπÞ=
Yd
i = 1

λðπi�1 ,σiÞP
j2½n�nπi�1

λðπi�1 ,jÞ
, ð12Þ

and
P

π2Πd
PΘðπÞ= 1. Note that in this formulation, trajectories of dif-

ferent lengths are not directly comparable, but it is still useful as a tool
to validate an estimated trajectory probability distribution. SupposeQ
is another probability distribution over Πd, then the Kullback-Leibler

(KL) divergence from Q to PΘ,

DKLðPΘ k QÞ=
X
π2Πd

PΘðπÞ log
PΘðπÞ
QðπÞ ð13Þ

measures the distance between the two distributions. In particular
DKL(PΘ∥Q) = 0 if and only if PΘ =Q.

Probability of a downstream event given a tree
Given a tree structureT and an estimated networkΘ, we can compute
the probabilities of the next mutational events. The events that could
happen next are all events in the augmented treeAðTÞ but not inT. By
competing exponentials, we calculate the probability of an event π
happens before all the other events in AðTÞ nT as

pðπ∣T,ΘÞ= λπP
π02AðTÞnTλπ0

×1fπ 2 AðTÞ nTg, ð14Þ

where λπ is the rate associated with event π (Eq. (1)). Then, we can rank
all events π 2 AðTÞ nT by their probabilities. We evaluate TreeMHN
predictions on the AML dataset21. We perform both retrospective
predictions on the rooted subtrees of the 123 primary tumor trees and
forward predictions using the longitudinal samples from 15 patients in
the same dataset (Fig. 9). For retrospective predictions, we first take a
primary tumor tree and exclude it from training. Then, we enumerate
all its rooted subtrees and their corresponding downstream events,
followed by computing the probability of each downstream event
conditioned on a parent subtree and the estimated network (Eq. (14)).
For forward predictions, on the other hand, we take the longitudinal
samples and consider only those tree pairs on consecutive time points,
where the second tree has mutations not present in the first tree. We
compute the probabilities for the new events using the matrix esti-
mated from the 123 primary tumor trees (i.e., longitudinal samples are
excluded from training). While TreeMHN is unique in this task, we
adapt five alternative methods for comparison (see also Supplemen-
tary Section C.2):

• TreeMHN (baseline): Here, we run TreeMHNwith the restriction
that all off-diagonal elements in the estimated network are zero
and keep only the baseline rates. This approach assumes that all
mutations are independent of each other while respecting the
tree structures. Theway to compute the probabilities of the next
mutational events given a tree stays the same.

• MHN (consensus): We estimate Θ̂MHN using the genotype MHN
method30 on the consensus genotypes of the patient samples. A
consensus genotype of a tumor is obtained by keeping the
mutations that appear in more than 50% of the cell population.
Given Θ̂MHN, we compute the probabilities of the next events
using Eq. (14).

• MHN (weighted): This method is the same as MHN (consensus)
except for using the subclonal genotypes weighted by the sub-
clone sizes as input to train Θ̂MHN.

• REVOLVER:We first convert the subclonal genotypes into cancer
cell fractions, the proportion of cancer cells having a specific
mutation, followed by running REVOLVER to obtain the infor-
mation transfer matrixw (Supplementary Fig. S16). An entry wij

is the number of timesmutation i occurs beforemutation j in the
patients. By row-normalizing w, we can obtain the empirical
probability ofmutation jbeing thedescendant ofmutation i. The
probability of a new event with mutation j can be computed as
the probability of randomly selecting a node to place the new
event multiplied by the entry wij if the direct ancestor is
mutation i.

• Frequency: The simplest benchmark is to predict the next
mutational events using the relative frequencies of the muta-
tions in the cohort. The probability of a new event with
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mutation j can be computed as the probability of randomly
selecting a node to place the new event multiplied by the
relative frequency of j.

For the last two approaches, normalization is required to ensure
that the probabilities sumup to 1 over all possible events.We say that a
method has better predictive performance if the event that actually
happened ranks higher by thatmethod compared to all other possible
events.We, therefore, compare the percentile ranks of the next events.
In the case of ties, we take the average percentile rank of the tied
events.

Simulations
We use simulation studies to assess the performance of TreeMHN in
estimating the network parameters Θ and the probabilities of evolu-
tionary trajectories from a set of mutation trees. Following30, we first
randomly generate a ground truth network Θ with n mutations. The
diagonal entries logΘii are drawn from a uniform distribution ranging
from −6 to −1. A random half of the off-diagonal entries logΘij are set
to zero, and another half are sampled from a Gamma distribution
Γ(α, β) with α = 4 and β = 2.5. The non-zero entries are then multiplied
by −1 with a 50% chance. These values are chosen to mimick the AML
dataset. Given Θ, we then generate Nmutation trees (see pseudocode
in Supplementary Algorithm 1), from which we can obtain an estimate
Θ̂ using TreeMHN. In addition to varying the number of mutations n
and the number of treesN, we also consider different levels of network
sparsity (proportion of zero entries inΘ) and the ratio of positive and
negative entries in Θ. Moreover, the tree generating process assumes
that each generated tree represents the true mutational history of a
tumor. In practice, however, the trees estimated by phylogenetic
methods are often noisy. To evaluate the robustness of TreeMHN
against the uncertainty in the input tree topologies, we introduce a
noise level ϵ∈ {1%, 5%, 10%, 20%}, the probability of perturbing indi-
vidual nodes in the simulated trees, and run TreeMHN on the per-
turbed trees (Supplementary Section D.3).

We first compute the precision and recall of identifying the edges
( j i, j → i, j⊣i) in Θ. Specifically, we call an off-diagonal entry in Θ̂ true
positive if and only if it is non-zero and has the correct sign (Supple-
mentary Section D.1). For this metric, we compare TreeMHN against
the genotypeMHNmethod, which cannot handle tree structures, since
the input is one consensus genotype per tumor. As such, we use the
subclonal genotypes as input, weighted by the number of subclones
within a tree. Even though the subclonal structure is lost, using mul-
tiple genotypes per tumor is still more informative for the genotype
MHN method than a consensus genotype.

To benchmark the accuracy of TreeMHN in recovering the tra-
jectory probabilities, we include additionally REVOLVER and HINTRA
for comparison. Since these two methods do not have a notion of a
sampling event, we use theKLdivergence froman estimated trajectory
distribution PΘ̂ to the true distribution PΘ over Πd with d = 4 (Eqs. (12)
and (13)). Note that longer trajectory lengths can dramatically increase
the computational complexity as the number of trajectories in Πd is

n!
ðn�dÞ!. Since these two alternatives do not output an estimate of Θ, we
compute their keymatrices (denotedw inREVOLVERand β inHINTRA)
using the edge frequencies directly from the trees, followed by con-
structing the probability distributions over Πd with the matrix ele-
ments (Supplementary Section D.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The original sequencing data for the AML dataset21 are available at
NCBI BioProject ID PRJNA648656, and the associated mutation trees
are provided with this paper. The original sequencing data for the

NSCLC dataset15 are available at the European Genome-Phenome
Archive under accession code EGAS00001002247, and the asso-
ciated mutation trees are obtained from the R package evoverse.
datasets (v0.1.0)67. The original somatic mutational and clinical data
for the breast cancer dataset32 are available at the cBioPortal for
Cancer Genomics with study ID breast_msk_2018, and the associated
mutation trees9 are obtained from https://github.com/elkebir-group/
RECAP/tree/master/data/breast_Razavi. All simulation data, pro-
cessed mutation trees, and other relevant data are available as
Source Data files at Zenodo (https://doi.org/10.5281/zenodo.
7817793). Source data are provided with this paper.

Code availability
The R package for TreeMHN (v0.1.0) and the analysis code are
available at both GitHub (https://github.com/cbg-ethz/TreeMHN) and
Zenodo (https://doi.org/10.5281/zenodo.7816776)68.
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