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Peripheral blood cellular dynamics 
of rheumatoid arthritis treatment 
informs about efficacy of response 
to disease modifying drugs
Åsa K. Hedman 1,4,8, Eitan Winter 6,8, Niyaz Yoosuf 1,2,3, Yair Benita 6, Louise Berg 1,2, 
Boel Brynedal 2, Lasse Folkersen 1, Lars Klareskog 1,2, Mateusz Maciejewski 4, 
Alexandra Sirota‑Madi 6, Yael Spector 6, Daniel Ziemek 5, Leonid Padyukov 1,2, 
Shai S. Shen‑Orr 6,7 & Scott A. Jelinsky 4*

Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic inflammation and 
is mediated by multiple immune cell types. In this work, we aimed to determine the relevance of 
changes in cell proportions in peripheral blood mononuclear cells (PBMCs) during the development of 
disease and following treatment. Samples from healthy blood donors, newly diagnosed RA patients, 
and established RA patients that had an inadequate response to MTX and were about to start tumor 
necrosis factor inhibitors (TNFi) treatment were collected before and after 3 months of treatment. 
We used in parallel a computational deconvolution approach based on RNA expression and flow 
cytometry to determine the relative cell-type frequencies. Cell-type frequencies from deconvolution 
of gene expression indicate that monocytes (both classical and non-classical) and CD4+ cells (Th1 and 
Th2) were increased in RA patients compared to controls, while NK cells and B cells (naïve and mature) 
were significantly decreased in RA patients. Treatment with MTX caused a decrease in B cells (memory 
and plasma cell), and a decrease in CD4 Th cells (Th1 and Th17), while treatment with TNFi resulted in a 
significant increase in the population of B cells. Characterization of the RNA expression patterns found 
that most of the differentially expressed genes in RA subjects after treatment can be explained by 
changes in cell frequencies (98% and 74% respectively for MTX and TNFi). 
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AUC​	� Area under the curve
PR	� Precision recall
GEO	� Gene Expression Omnibus

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints and syno-
vial hyperplasia leading to bone and cartilage destruction. RA can result in progressive disability including 
arthralgia, swelling, redness, and eventually limiting the range of motion. RA is an autoimmune and inflamma-
tory disease and is strongly associated with the alteration of several immune cell populations1 which is directly or 
indirectly involved in inflammation, generation of pain and joint tissue destruction. Current therapies are aimed 
at alleviating pain and preventing joint damage2. The treatment of RA has evolved significantly over the years, 
with the advent of various classes of disease-modifying antirheumatic drugs (DMARDs). Conventional synthetic 
DMARDs (csDMARDs) such as methotrexate (MTX), hydroxychloroquine (HCQ), and sulfasalazine (SSZ) 
have been the cornerstone of RA management for decades and are currently the first-line therapy for treatment 
of RA3. These drugs act by suppressing the immune system and reducing inflammation, thereby preventing joint 
damage and improving quality of life for patients. However, not all patients respond to csDMARDs, and some 
may experience adverse effects. Targeted synthetic DMARDs (tsDMARDs) such as tocilizumab and tofacitinib, 
have specific molecular targets including IL-64 and JAK kinases5 and biologic DMARDs (bDMARDs) such as 
tumor necrosis factor inhibitors (TNFi)6 have emerged as alternative options for patients who are unresponsive 
to csDMARDs or cannot tolerate their adverse effects.

MTX is the most commonly used initial treatment for RA, targeting folate-dependent enzymes involved in 
de novo pyrimidine and purine synthesis. However, the anti-inflammatory effects of MTX are not fully under-
stood. It is known that MTX directly and indirectly regulates the function of many diverse cell types. MTX 
increases regulatory T-cells, decreases levels of IL-6, reduces TNF produced by T cells7, inhibits proliferation 
cytokine production by monocytes/macrophages8,9, and is involved in modulation of function of T cells, B cells, 
neutrophils, monocytes, and fibroblast-like synoviocytes (FLSs)10. Methotrexate inhibits several key enzymes 
in the folate pathway. This inhibition can lead to a decrease in intracellular levels of folates, which are essential 
for the de novo synthesis of purines and pyrimidines, and consequently a decrease in nucleotide synthesis. This 
decrease in nucleotide synthesis can lead to an accumulation of adenosine in the extracellular space, which has 
been shown to activate adenylate cyclase and increase cAMP levels. Increased cAMP levels can, in turn, have anti-
inflammatory effects by inhibiting the production of pro-inflammatory cytokines and promoting the production 
of anti-inflammatory cytokines including TNF, IFN-γ, and IL-1β11. Given its effects on multiple cell types, MTX 
is considered to be a general immune modulator12. Depending on the patients’ condition and response profile to 
MTX, more targeted therapies are being used to treat RA including TNFi13. TNF is a major pro-inflammatory 
cytokine synthesized mostly by macrophages and T cells. TNF receptors are expressed on nearly every cell type 
allowing TNF to control many different immune cell types14.

Significant effort has been undertaken to understand the molecular mechanisms of disease progression and 
response to current therapies. mRNA expression analysis by RNAseq and microarray analysis have identified 
regulated genes and pathways associated with RA15–21. In addition, genome-wide association studies (GWAS) 
approaches (e.g.22,23) have reported several associated genes that play key roles in RA pathology.

Gene expression profiling is an informative method used to investigate disease biology. However, changes in 
cellular composition, a major contributor to gene expression changes, is not systematically studied in transcrip-
tomics studies. To build an accurate molecular profile of a phenotype, cell composition must be accounted for in 
order to understand the true gene expression regulatory changes. The complexity of the detection of different cell 
types in tissue samples, including peripheral blood, could be addressed either by direct measure or by imputa-
tion from gene expression or DNA methylation data. Direct measure of blood cells by flow cytometry and by 
cell counting after antibody staining or by cell morphology are common approaches that are usually limited by 
the number of specific sub-populations detected in flow cytometry experiments. Additionally, flow cytometry-
based methods require certain logistical considerations to collect a sample of fresh blood for flow cytometry and 
simultaneously, a sample for transcriptomics.

Several computational methods to deconvolve cell composition based on gene expression have been 
developed24–30. The development of single-cell RNA-seq (scRNA-seq) technologies has enabled cell type-specific 
transcriptome profiling. However, scRNA-seq is still unreliable for cell composition measurement since single-
cell preparation protocols have different efficiencies for different cell types. For instance, neutrophils, which are 
the most abundant immune cells in the blood, are poorly represented in scRNAseq analyses. In addition, most 
of the historical data available relied on bulk gene expression measurements.

To investigate the contribution of immune cells in response to treatment in RA, we employed a novel ana-
lytical strategy to profile RA patients compared to healthy controls, as well as pre- to post-treatment effects in 
RA. Our approach included estimating cell contributions from gene expression data and comparing it to flow 
cytometry-derived cell composition, followed by the identification of gene regulatory changes. We hypothesized 
that unbiased computational approaches31 could be used to identify cell contributions and that estimation of cell 
contributions can be used to identify disease and treatment-related changes.

We identified genes that were correlated with changes in cell compositions and genes that are associated with 
disease treatment even when cell composition is taken into account. Our analysis suggests that the majority of 
expression changes are due to changes in cell proportions rather than cell-intrinsic changes in gene expression.
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Patients and methods
Patient cohort.  Our cohort was derived from the COMBINE cohort32 which is a comprehensive cohort 
consisting of multi-omics data of pre- and post-treatment samples from more than 160 RA patients receiving 
either TNFi or MTX therapy. The cohort included patients with RA, according to the ACR 1987 or the 2010 
ACR/EULAR criteria, who were undergoing change or starting a new treatment regimen at the Rheumatology 
Clinic, Karolinska University Hospital, Stockholm from February 2011 to May 2013.

In our study, we included 53 DMARD treatment naïve early RA patients who started MTX treatment and 
were able to provide peripheral blood samples before the start of MTX treatment and following a follow-up visit 
of approximately three months (median 93 days). Patient demographics and baseline disease characteristics are 
provided in Supplemental Table 1. MTX treatment was given as a monotherapy according to current practice in 
Sweden and therefore the results are not complicated by effects from other DMARDs. Additionally, our cohort 
included 37 individuals who previously did not respond to MTX treatment and started TNFi treatment and 
were able to provide peripheral blood samples before the initiation of treatment and approximately 3 months 
post-start of treatment.

In addition to RA patients, we collected samples from 30 age-matched healthy controls at two time points 
separated by approximately 3 months. Only individuals with high-quality RNA samples with both time points 
were considered for further analysis.

We used the European League Against Rheumatism (EULAR) response criteria to classify patient response to 
treatment33. A qualified rheumatologist at Karolinska University Hospital performed the evaluation of response. 
In our analysis, we considered Good and Moderate EULAR responders as “responders” and compared these to 
the EULAR “non-responders”. Our cohort contained 31 MTX responders and 26 TNFi responders.

Data generation.  The RNA was extracted from PBMCs, freshly isolated using CPT tubes (BD Biosciences) 
using isopropanol extraction and sequenced as previously described32. Briefly, RNA was sequenced using an 
Illumina HiSeq 2000, the TruSeq RNA sample preparation kit with 2 × 100 base pair (bp) paired-end reads to a 
mean read depth of 15.7 million read pairs per sample. The sequencing reads were trimmed using Trim Galore 
(http://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​trim_​galore/) and then mapped to the GRCh38 human 
reference genome and subsequently gene counts were generated using Star v.2.5.3a34.

Flow cytometry analysis.  The Clinical Chemistry laboratory of Karolinska University Hospital measured 
the absolute numbers of leukocytes, neutrophils, eosinophils, basophils, and monocytes per liter of periph-
eral blood using XE Sysmex flow cytometry-based analysis. Peripheral blood mononuclear cells (PBMC) were 
stained freshly using the following antibodies (clones): CD45RA (B56), TcRgd (B1), HLA-DR (L43), CD4 
(OKT4), CD138 (ID4 or DL-101), CD19 (HIB19), NKp44 (P44-8), CD16 (3G8), CD69 (FN50), CD28 (CD28.2), 
CD45 (HI30), IL21R (2G1-K12), TREM-1 (TREM-26) all from Biolegend, CD3 (UCHT1) and NKG2A (Z199.1) 
from Beckman Coulter, IgD (IA6-2), CD14 (Mphi 9), CD27 (M-T271), CD56 (BI59) from Beckton Dickinson, 
NKG2D (1D11) from eBioscience. The definition of major cell populations was as described in35, and performed 
at the Division of Rheumatology in the Center for Molecular Medicine, Karolinska Institutet.

Glucocorticoid signature.  We utilized the gene signature by Hu et al.36 to estimate the level of exposure 
to glucocorticoids (GC) in each sample. We used the single-sample gene set enrichment analysis (ssGSEA) 
algorithm37 to calculate the composite score of the enrichment level of GC gene signatures in each individual 
sample. The Gene Set Variation Analysis package in R was employed which ranks genes in the transcriptome 
within each sample and scores genes of interest according to the ranks.

Cell contribution.  To extract cell-type specific information from heterogeneous samples, we used the com-
putational deconvolution procedures implemented in CytoPro38. To employ this algorithm, cell type markers 
for blood tissue were previously generated from a collection of sorted cell data from blood, which included 29 
cell types from blood or in-vitro assays (e.g. Th1, Th2) from which unique markers were identified which were 
optimal for cell deconvolution38. The cell type contribution score estimates the contribution of a given cell type 
to the total amount of RNA measured in each sample.

To determine the cell signatures, a manually curated compendium of 9000 samples of bulk gene expres-
sion data was used as input to generate and select cell-specific signatures39,40. These signatures are then used 
by a deconvolution method to quantitate per-sample cell content and output cell contribution score, which is 
a proxy for the cell type proportions in a sample. This score has arbitrary units but is overall correlated to the 
real cell type proportions. These values are comparable within a given cell type between different samples that 
were processed and normalized together as part of the same dataset. However, the scores cannot be interpreted 
as the actual number of cells.

Effect of conventional treatment on cell contributions in RA patients.  To determine the effect of 
treatment (MTX or MTX + TNFi) on computationally derived cell contributions we used paired samples (pre- 
and post-treatment) and modeled the association between cells and time (within-subject) in a linear model 
using the lm function in R, as follows:

cells ∼ subject + GC_signature + treatment

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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where cells represent the cell contribution score for the 29 cell types evaluated, subject is patient id, GC_signa-
ture is the enrichment level of GC gene signatures and treatment is either MTX or MTX + TNFi. To model the 
difference in treatment effect with respect to response, the binary response was added as an interaction term:

where response corresponds to the EULAR response criteria.

Effect of conventional treatment on gene expression in RA patients.  The effects of treatment 
(MTX or MTX + TNFi) on gene expression profiles in PBMCs were tested in paired samples (pre- and post-
treatment) using the R package limma voom41, as follows:

where gene represent the expression value for a specific gene. To model the difference in treatment effect with 
respect to response, the binary response was added as an interaction term to the model:

Models were run both with and without adjustment for computationally derived cell contributions (CD4+ 
alpha-beta T cell, monocyte, plasma cell) as well as adjusted for technical covariate of percent duplicates.

Prediction of treatment outcome in naïve and established RA patients.  We built binary clas-
sifiers on the baseline cell contributions data using Elastic Net (as implemented in the R package caret42 for 
predicting non-responders of MTX treatment (47 responders, 13 non-responders, prevalence 21.7%) or TNFi 
treatment (30 responders, 12 non-responders, prevalence 28.6%). Prior to prediction models, cell contributions 
were inverse rank normalized (as rank-based features). A nested cross-validation procedure was used to avoid 
overfitting when optimizing the model. In each repeat, a random set of four-fifths of the samples (“training 
set”) were used in optimization of the models, and one-fifth of the samples (“test set”) were kept out for testing 
of prediction performance, making sure to preserve group proportions. The models were optimized in tenfold 
cross-validation on the training set, keeping the model with the best overall performance in assigning patients to 
non-responder/responder (based on AUC). The prediction performance of the model was assessed as the ability 
of the model to predict samples in the test set to non-responder (as assessed by AUC and Precision recall (PR) 
better suited in cases with a low prevalence of non-responder group). This procedure was repeated 100 times to 
get a proper assessment of prediction performance.

Meta‑analysis.  Data from three public RA studies were downloaded from the Gene Expression Omnibus 
database43 as GEO accession numbers [GEO accession: GSE45291 (n = 493), GSE93272 (n = 232) and GSE90081 
(n = 12)]. Statistical integration of cell differences (Meta-analysis) from the different datasets was performed with 
a random effects model to account for study heterogeneity44.

Statistical analysis.  The cell type differences were calculated using the Wilcoxon rank sum test as imple-
mented within R (wilcox.test). The test was employed in paired or unpaired mode depending on the compari-
son. The P-values were corrected for multiple hypothesis testing using the Benjamini–Hochberg false discovery 
rate45. Gene expression differences were evaluated using limma R package46. All analyses were implemented in R 
version 3.6.2 and all visualizations were created using the ggplot2 R package version 3.3.647.

Ethics approval and consent to participate.  The COMBINE biobank was generated after written 
informed consent from all participants had been obtained according to the Declaration of Helsinki and with 
approval by the Stockholm (number 2010-351-31-2) and Uppsala (2009-013) Regional Ethics Committees.

Results
Generation of a comprehensive cell contribution dataset for RA.  We used a computational decon-
volution procedure (CytoPro) to determine the proportions of 29 cell types. To verify the accuracy of CytoPro 
we compared the predicted cell type contributions per sample to the measured cell proportion determined by 
flow cytometry (Fig. 1A). We observed a positive correlation between the two methods for 5 major high-level 
ontology definitions with statistically significant correlation coefficients ranging from 0.49 to 0.76 (Fig. 1B). It is 
important to note that the flow cytometry data was not used to train or test the deconvolution algorithm. Since 
immune cell subpopulations were assigned based either on protein markers (flow cytometry) or RNA gene 
expression (computational method) our methods are not redundant and equally informative for our further 
analyses.

Cell changes associated with disease.  We investigated changes in peripheral blood cell types in two 
cohorts of RA patients, those with early disease who were recently diagnosed with RA and were DMARD treat-
ment naïve and those with established disease whose disease was not adequately controlled by MTX therapy. 
Using healthy controls as a reference, we found that several cell types in PBMCs of RA patients were significantly 
altered (Fig. 2). Both classical and non-classical Monocytes and CD4+ cells (Th1 and Th2) were significantly 
increased (FDR < 0.05) in both early and established RA patients, while NK cells and B cells were significantly 
downregulated in early and established RA, respectively. Furthermore, B cells showed an increase in early RA 

cells ∼ subject + GC_signature + treatment + treatment : response

gene ∼ subject + GC_signature + treatment

gene ∼ subject + GC_signature + treatment + treatment : response
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with significant changes observed for memory B cells. To confirm our findings, we performed a meta-analysis of 
cell deconvolved data from three publicly available gene expression datasets20,48,49. We found directionally con-
sistent significant cell changes for 12 out of 13 cell types in the meta-analyses (Fig. 2). The meta-analysis showed 
a decrease in B cells, mirroring the changes in established RA in the COMBINE cohort, likely owing to the fact 
that most of the publicly available studies focus on established RA subjects. Additionally, the larger sample sizes 
in the meta-analysis (n = 747), revealed significant changes associated with RA for many cell types that did not 
show significant changes in our initial analysis.

Given the extensive clinical data available for this cohort, we investigated whether there were any associa-
tions between differences in cell contributions at baseline and clinical variables at the time of sampling. Since 
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Figure 1.   Correlation of flow cytometry to predicted cell compositions from gene expression. (A) Correlation 
heatmap comparing cell proportions derived from flow cytometry and gene expression derived cell 
compositions in blood of RA patients at baseline. (B) Direct comparison between flow cytometry and predicted 
cell compositions from gene expression for 5 selected cell populations: Mature B cells, CD4+ T cells, Mature NK 
cells, Monocytes, and CD8+ T cells.

Early RA Estab RA Meta

0 1 2 0 1 2 0 3 6 9

CS memory B
mature B

memory B
naive B
plasma

CD16+, CD56−dim NK
mature NK

NK
CD4+, abT
CD8+, abT

central memory CD4+, abT
central memory CD8+, abT

effector memory CD4+, abT
effector memory CD8+, abT

effector memory RA CD8+, abT
mature NK T

naive CD4+, abT
naive CD8+, abT

regulatory T
T−helper 1
T−helper 2

T−helper 17
dendritic

myeloid dendritic
plasmacytoid dendritic

CD14−low, CD16+ monocyte
CD14+, CD16− classical monocyte

CD14+, CD16+ monocyte
monocyte

−log10(FDR)

Estimate
Increase
Decrease

Figure 2.   Changes in cell proportions associated with RA disease. Bar plots showing the estimates of the 
contribution of a given cell type to the total amount of RNA measured in each sample. This score has arbitrary 
units but is overall correlated with the actual cell type proportions. The values are comparable within a given cell 
type between different samples that were processed and normalized together as part of the same dataset. The 
directionality of change (up/down) for each cell type is represented by a color code (green = down, red = up).
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information on the amount and timing of Glucocorticoid (GC) treatment, which has a dramatic effect on gene 
expression, was not consistently collected in our study, we used a GC signature as a proxy to GC exposure36. 
Our analysis revealed a strong correlation between GC exposure and monocyte cell proportions (as shown in 
Fig. 3). Additionally, we observed a negative correlation between CD8+ αβT cells and age, but we did not find 
any significant correlations between cell contributions and disease-related variables such as DAS28 components, 
pain, or smoking status (data not shown).

Cell changes correlated with treatment effect.  In general, treatment with MTX or TNFi led to a 
reversal of the changes in cell contributions observed when comparing healthy controls and patients with disease 
(Fig. 4). In the early RA group, treatment with MTX resulted in a decrease in B cells (Memory and Plasma cells) 
and CD4+ Th cells (Th1 and Th17) but had a limited effect on the monocyte population.

In contrast, treatment with TNFi in established RA patients significantly increased the population of B cells 
while generally not affecting the population of many other cell types. It is interesting to note that there was a 
dichotomous change in B cell populations where the proportions of B cells increase in early RA but decrease 
in established RA compared to healthy individuals without treatment. Both MTX and TNFi tended to reverse 
changes in B cells back to near healthy-levels. Adjustment for GC treatment only had a marginal effect on changes 
in cell proportions (data not shown).

Cell changes correlated with response.  We investigated whether changes in cell compositions that 
occurred after MTX treatment or TNF blockade differed among responders and non-responders.

We found that there were no changes in cell composition in subjects that responded to MTX and a significant 
decrease in plasma cells in those subjects that responded to MTX (Fig. 4A). PBMCs from subjects that responded 
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Figure 3.   Correlation of baseline clinical variables with cell compositions. (A) The calculated monocyte 
proportions were positively correlated with a gene expression module representing GC treatment. (B) The age of 
RA patients was negatively correlated with the proportion of naïve CD8+ αβT cells.

Figure 4.   Changes in cell proportions associated with treatment. The heatmap shows the proportion of cell 
types that change in RA compared to healthy controls (HC). (A,B) Additionally, the proportions were calculated 
before and after treatment with MTX and TNFi and for the responder (R) and non-responder populations (NR). 
The directionality of change (up/down) is represented by a color code (blue = down, red = up, white = no change). 
(C) Receiver operator curves and precision recall curves from predictions algorithms that use cell proportion to 
predict MTX responders (upper panels) and TNFi responders (lower panel).
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to TNFi treatment were significantly associated with an increase in mature B cells and a decrease in monocytes, 
whereas in non-responding subjects, no statistically significant changes were detected (FDR < 0.1). (Fig. 4B). We 
noticed that a decrease in mature B cells and an increase in monocytes were significantly associated with RA 
compared to healthy controls, suggesting that changes in these populations in patients during treatment may be 
associated with the treatment outcome.

Given the differences in cell changes between responders and non-responders to treatments, we developed 
prediction algorithms to determine if these differences could be used to predict non-responders to current thera-
pies. We built a classifier to predict treatment non-response from cell contributions at baseline using a logistic 
regression model and detected response as a binary factor (0 = No response, 1 = Moderate/Good response). We 
observed predictive performance with a mean AUC = 0.79 [0.44–1.0], and mean PR AUC = 0.59 [0.11–1.00] 
(Fig. 4C, Table 1) for predicting non-responders to MTX. In an analogous analysis of response to TNFi treat-
ment, we observed lower prediction performance than for MTX in the classification of non-responders (mean 
AUC = 0.63 [0.33–1.0], mean PR AUC = 0.35 [0.0.13–0.80], Fig. 4C, Table 1). This may be due to the lower number 
of patients in this sub-stratum.

Regulated genes after adjustment for cell composition.  The variability in the proportion of  cell 
subtypes between samples has been shown to strongly contribute to observed differential expression in bulk tis-
sue data50. Given the dramatic changes seen in cell composition, we determined the variation in gene expression 
level by statistically adjusting for sample cells. To achieve this, we compared gene expression changes between 
treated and untreated paired samples and modeled them with covariates to adjust for both technical variables (% 
duplicate reads) and biological variables (GC signature). In secondary models, we also included calculated cell 
contributions for three variables and non-correlated cell types (monocytes, CD4+ T cells, and plasma cells) to 
identify genes modulated by treatment that were not explained by changes in cell contribution. Adjusting for cell 
contributions accounted for most of the variation in treatment-associated expression (Fig. 5). In MTX-treated 
subjects, only three genes (FOXP3, CAI1, DOC2B) out of 157 remained significantly differentially expressed 
after adjustment for cell contributions. While after TNFi treatment 20 genes out of 76 remained significant 
including genes involved in innate immunity (AIM2, C2, GBP1, GBP5, SERPING1), IL1b- secretion (AIM2, 
GBP5), and interferon response (IFI27, STAT1, AIM2). We also identified 2 genes for MTX and 32 for TNFi, 
respectively, that became significant only after adjustment for cell contributions. These include interferon-
inducible genes (OAS1, IRF7, IFI35, IFI44, IFI44L) and antigen presentation pathway genes (CD86, HLA-DMA, 
HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DRB3) and potentially represent new regulatory signals that are 
masked by differences in cell contributions.

Table 1.   Prediction of non-responders. Se sensitivity, Sp specificity, F F measure, Pr precision, Re recall.

Treatment

AUC-ROC

Se Sp

AUC-Precision Recall

Pr ReMean Min Max Mean Min Max F

MTX 0.79 0.44 1.00 0.56 0.83 0.59 0.11 1.00 0.48 0.42 0.56

TNFi 0.63 0.33 1.00 0.48 0.52 0.34 0.13 0.80 0.33 0.25 0.48

Figure 5.   Gene expression changes associated with cell proportions. Scatterplots show the change in -log10 
FDR values before and after adjustment for cell type proportions for MTX treatment over baseline (A) and 
TNFi treatment over baseline (B). The x-axis represents the FDR values adjusted for a technical variable (% 
percent duplicates) while the y-axis is adjusted for cell proportions for three main cell types (Monocytes, CD4+ 
T cells, and Plasma cells) and adjusted for prednisolone signature gene sets. The points are colored red if they 
are significantly regulated both pre- and post-adjustment, blue if they are regulated before cell proportion 
adjustment and green if they are regulated only after cell type adjustment.
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Discussion
Rheumatoid arthritis is characterized as an immune-mediated disease and extensive research has been conducted 
over the years to characterize the molecular changes that occur in patients with RA. Many studies have inves-
tigated changes in cell composition51 and others have studied the molecular effects15–21. In a previous study, we 
extensively characterized a cohort of RA patients and collected PBMC samples from pre- and post- MTX and 
TNFi-treated patients (COMBINE study)32,35,52. We compared gene expression differences in PBMCs and inves-
tigated the proportion of different cell types and cell phenotypes measured using flow cytometry. Our analysis 
revealed significant changes in a number of immune cell proportions following MTX treatment including an 
increase in HLA-DR+ T cells. In this study, we aimed to determine the interplay between molecular and cellular 
changes associated with RA. We used a computational deconvolution approach to predict cell type proportions 
based on bulk RNA expression data and found a high correlation to traditional flow cytometry-based methods. 
We then used the predicted cell contributions to expand the identification of cell types that change with dis-
ease and treatment. Finally, we show that the majority of changes observed by gene expression analysis can be 
attributed to changes in cell composition, and we also identify disease-associated genes that are independent of 
changes in cell proportions.

Cell deconvolution is a powerful approach to estimate the relative proportions of different cell types within 
a mixed cell population based on gene expression data. In the context of RA, which is characterized by chronic 
inflammation and autoimmunity, cell deconvolution has important implications for understanding disease patho-
genesis, identifying novel therapeutic targets, and developing novel treatment strategies.

Chronic inflammation is associated with infiltration of immune cells into the synovial tissue. Different 
immune cell subsets, such as T cells, B cells, macrophages, and neutrophils, contribute to the inflammatory 
process and may have distinct roles in disease development and progression53. By using cell deconvolution 
methods to analyze gene expression data from peripheral blood samples of RA patients we estimated the relative 
proportions of these cell subsets and identified changes in their abundance during disease course.

By identifying specific cell subsets that are dysregulated in RA, cell deconvolution can also help to identify 
potential therapeutic targets. For example, therapies that target specific subsets of T cells54 or B cells55 have shown 
promise in clinical trials.

Here we applied cell deconvolution which is a powerful tool to understanding the role of different immune cell 
subsets in RA pathogenesis and to identify potential therapeutic targets. Its use can lead to a better understand-
ing of the underlying mechanisms driving the disease and ultimately lead to more effective treatment strategies 
for patients with RA.

Disease associated changes in cell composition.  We found that both established and early RA were 
associated with an increase in monocytes (both classical and non-classical) and CD4+ cells (Th1, Th2, and 
Th17). The role of monocytes in RA disease progression is well documented; they are central to the initiation 
of inflammation56, found in sites with high inflammation57, produce high levels of TNF58, and can lead to bone 
erosion59. Infiltration of CD4+ T cells is another hallmark of inflammatory disease and CD4+ T cells have been 
implicated in RA disease. CD4+ T cells can produce IFNγ60 which activates macrophages61 and are involved in 
B-cell activation.

The B lymphocytes are also involved in many aspects of RA pathogenesis62. They are precursors of plasma 
cells that produce anti-citrullinated protein antibodies and Rheumatoid factors which are hallmark markers 
of RA. In addition, B cells contribute to T cell activation and can act as antigen-presenting cells promoting 
immune infiltration. B-cell depletion has been used as a therapy to treat RA patients. In this study, we show that 
the circulating B lymphocytes decrease in established RA but increase following treatment with TNFi. This is 
consistent with other reports showing that there is a decrease in B cell populations that returns to near-normal 
levels following TNFi therapy63.

We also observed an increase in NK cells, particularly in the early RA cohort. NK cells are an important part 
of the innate immune system, acting as a first-line defense during immune challenges and having the ability to 
kill a variety of target cells64. They process cytolytic activity as well as the ability to produce cytokines. The role 
of NK cells in RA is unclear, but our data suggest that they may play a more critical role in early RA and have a 
diminished role once disease has been established.

Genes associated with MTX treatment.  We also analyzed the MTX data to elucidate disease-relevant 
genes that were not solely related to changes in cell contribution. In models adjusted for cell contributions, we 
identified three genes (FOXP3, CA1, and DOC2B) in our early RA cohort that change with treatment indepen-
dently of cell-related changes.

Foxp3+ regulatory T cell (Treg) is a major immune cell suppressor and we and others65 have shown sup-
pression of these cells in RA patients. However, we found the expression of FOXP3 was not correlated with the 
proportion of T-reg cells. In this study, we found an increase in FOXP3 expression in early RA, while the propor-
tion of T-reg cells is decreased, suggesting that FOXP3 may have an independent function in RA pathogenesis.

Carbonic anhydrase I (CA1) is involved in the process of bone formation and is indicated in susceptibility to 
ankylosing spondylitis and therefore may be important for bone erosion seen in RA. We found that CA1 expres-
sion was decreased in early RA patients.

Genes associated with established RA.  Our analysis identified twenty genes associated with treatment 
in established RA, which were independent of changes in cell composition. Many of these genes have been 
associated with processes involved in RA progression. This included several genes associated with type 1 inter-
feron response66 (GBP1P1, IFI27, IFI44L, UFI44, GBP4, GBP5, LGALS3BP, SMAD4A). Interferon response is 
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mediated by multiple cell types and has been associated with multiple rheumatic diseases66. Additionally, several 
disease-associated genes were implicated in immune-mediated functions such as AIM2 (Absent in melanoma 
2), which activates inflammasome formation in macrophages in response to double-stranded DNA and GBP5 
(Guanylate Binding Protein 5) which is upregulated in synovial fibroblasts. GBP5 knockout studies in animals 
exacerbates disease and increases bone destruction67. TG2 (Transglutaminase 2) is associated with wound heal-
ing and inflammatory diseases68 and linked with cartilage degradation69.

Recent studies have explored the differences of TNF between responders and non-responders using individual 
transcripts70 or expression modules71. However, many of these studies had limited ability to differentiate between 
responders and non-responders, resulting in a low predictive ability to predict responders. Moreover, there is a 
relatively low overlap of DEGs identified in previous studies of TNFi72. This may be due to patient heterogeneity, 
which could make it difficult to accurately detect differentially regulated genes. Alternatively, differences in cell 
abundance could contribute to patient heterogeneity. More work needs to be done to determine if differences in 
cell abundance can explain the observed patient heterogeneity in most studies.

Despite these findings, there are some limitations to our study. We used cell markers that were partially 
derived from healthy individuals, which may have missed some changes in cell state due to disease and/or 
treatment. In addition, our method was limited to a predefined set of cell types and could not identify potential 
novel cells or cell states. While newer single cell technologies would allow us to capture such novel cell types and 
cell states, our method has the distinct advantage to be able to utilize historical bulk RNAseq data in particular 
where methods to determine cell contributions were not employed. Finally, we relied on cell signatures derived 
from blood to learn about RA, even though the main site of the disease is in the synovium. It is worth noting 
that changes in cell proportions in the blood may differ from changes in the synovium.

Conclusions
In summary, our computational approach to identifying cell contributions has allowed us to determine that the 
majority of genes regulated in rheumatoid arthritis are not directly associated with regulatory changes of genes, 
but rather associated with changes in cell proportions. We have also identified several disease-associated genes 
that warrant further exploration as potential targets or biomarkers of disease progression. We applied predic-
tion algorithms to determine if the cell proportion can be used to predict response to the current standard of 
care therapy and while these results are encouraging, we plan to extend our studies into larger patient cohorts to 
validate these findings. We believe that the methods we employed can be applied to other diseases to better under-
stand the contributions of cell proportions to disease and to deconvolve the overall gene expression signature.

Data availability
Processed data have been deposited to NCBI’s Gene Expression Omnibus (GEO) under the GEO accession num-
ber GSE229449 https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE22​9449. The code used to process the 
RNA sequencing files, binary classification methods, and figure generation is now publicly available at https://​
github.​com/​pfizer-​opens​ource/​Perip​heral-​blood-​cellu​lar-​dynam​ics-​of-​Rheum​atoid-​arthr​itis. The raw datasets 
generated and analyzed during the current study are not available in a public repository according to the ethics 
permissions for COMBINE. Please contact author LP with data requests for applicable studies.
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