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Deep-learning-enabled brain hemodynamic mapping using
resting-state fMRI
Xirui Hou1,2, Pengfei Guo3, Puyang Wang 4, Peiying Liu5, Doris D. M. Lin 2, Hongli Fan1,2, Yang Li2, Zhiliang Wei2,6, Zixuan Lin2,
Dengrong Jiang2, Jin Jin7, Catherine Kelly8, Jay J. Pillai2,9, Judy Huang9, Marco C. Pinho10, Binu P. Thomas10, Babu G. Welch11,12,
Denise C. Park12, Vishal M. Patel3,4, Argye E. Hillis8 and Hanzhang Lu 1,2,6✉

Cerebrovascular disease is a leading cause of death globally. Prevention and early intervention are known to be the most effective
forms of its management. Non-invasive imaging methods hold great promises for early stratification, but at present lack the
sensitivity for personalized prognosis. Resting-state functional magnetic resonance imaging (rs-fMRI), a powerful tool previously
used for mapping neural activity, is available in most hospitals. Here we show that rs-fMRI can be used to map cerebral
hemodynamic function and delineate impairment. By exploiting time variations in breathing pattern during rs-fMRI, deep learning
enables reproducible mapping of cerebrovascular reactivity (CVR) and bolus arrival time (BAT) of the human brain using resting-
state CO2 fluctuations as a natural “contrast media”. The deep-learning network is trained with CVR and BAT maps obtained with a
reference method of CO2-inhalation MRI, which includes data from young and older healthy subjects and patients with Moyamoya
disease and brain tumors. We demonstrate the performance of deep-learning cerebrovascular mapping in the detection of vascular
abnormalities, evaluation of revascularization effects, and vascular alterations in normal aging. In addition, cerebrovascular maps
obtained with the proposed method exhibit excellent reproducibility in both healthy volunteers and stroke patients. Deep-learning
resting-state vascular imaging has the potential to become a useful tool in clinical cerebrovascular imaging.
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INTRODUCTION
Cerebrovascular diseases, such as acute ischemic stroke, athero-
sclerosis, Moyamoya disease, and vascular contributions to
cognitive impairment and dementia (VCID), encompass a range
of pathologies that affect different components of the cerebral
vasculature and brain parenchyma. Additionally, brain tumors
have also demonstrated altered vasculature which is key to their
pathophysiology. Structural brain MR imaging, including T1, T2,
diffusion-weighted image (DWI), susceptibility-weighted image
(SWI), and magnetic resonance angiogram (MRA), is the current
mainstay of imaging evaluation for these conditions. Advanced
imaging such as perfusion1 and vessel wall imaging2 is also
increasingly used in major medical centers.
Despite the progress, many of these conditions maintain high

mortality and morbidity, and cost billions of dollars to the
healthcare system3. Therefore, more advanced diagnostic and
prognostic tools are urgently needed. Cerebrovascular reactivity
(CVR) and bolus arrival time (BAT), which denote the brain
vasculature’s dilatory ability4 and hemodynamic delay5,6, respec-
tively, represent two important markers of brain vascular function
with proven utility in cerebrovascular conditions. For example,
CVR has been suggested to be a sensitive biomarker in vascular
cognitive impairment7 and is currently undergoing multi-site
clinical validation in the MarkVCID study8. BAT, sometimes
presented in the forms of time-to-maximum (Tmax) and time-to-

peak (TTP), is a promising biomarker in acute stroke and, when
combined with DWI, can help delineate ischemic penumbra and
guide triaging decisions in terms of recombinant tissue plasmino-
gen activator (tPA) and/or endovascular thrombectomy5,6,9–12.
Currently, CVR and BAT mappings are carried out using the

administration of CO2 enriched gas4, vasodilatory pharmacological
agents13, or contrast agents14,15. The need to use exogenous
agents in these measurements stems from the fact that these
physiological parameters denote dynamic properties of brain
vascular function. In the case of CVR, a vasoactive stimulus is
needed to induce vessel dilation. To measure BAT, a tracer is
needed to follow its path and timing along the cerebral
vasculature. These methods, however, require additional proce-
dures and equipment. Therefore, it is highly desirable to use
imaging procedures comparable to standard anatomic MRI, e.g.
acquired under resting state, to assess advanced physiological
parameters such as CVR and BAT. Under resting state, the arterial
CO2 concentration fluctuates as a result of spontaneous variations
in breath-by-breath respiration. This presents an opportunity to
use resting-state CO2 change as an intrinsic marker to estimate
CVR and BAT. Although several prior reports have demonstrated
proof-of-principle studies (for CVR16–20 and BAT5,6,21–23 separately),
these techniques generally suffers from low signal-to-noise ratio
and variable image quality across patients, which is primarily due
to the limited extent of natural variations in CO2 during resting
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state when compared to hypercapnic (HC) maneuvers with CO2

inhalation.
In this study, we aim to develop a robust, deep-learning

framework to estimate CVR and BAT simultaneously from resting-
state blood-oxygenation-level-dependent (BOLD) fMRI. The deep-
learning network developed will work with fMRI data of any spatial
and temporal resolutions as well as any number of time points.
The network is applicable to data from healthy volunteers as well
as patients with typical clinical vascular pathologies. Resting-state
fMRI consists of a time series of 3D volumetric images represent-
ing the complex interplay of temporal fluctuations in both neural
and vascular activities. Deep-learning networks have attracted
much attention for their ability to harness high-dimension data
and learn complex relationships through feature extraction and
representation learning24–26. These methods have proven to be
useful in applications across a wide range of disciplines in health
care, such as breast cancer detection27, heart disease identifica-
tion28, tooth segmentation29, and surgical outcome prediction30.
Here we employ a hierarchical deep-learning network to analyze
resting-state BOLD images to extract CVR and BAT information.
Training, validating and testing of our deep-learning network
include a wide range of cerebrovascular conditions to provide
diverse data sources, including healthy volunteers, as well as
patients with Moyamoya disease, brain tumor, and stroke, using
CO2-inhalation HC MRI data as labels, i.e., ground-truth. We also
demonstrate clinical applications of this technique by comparing
CVR and BAT with clinical variables. Furthermore, the reproduci-
bility of the technique is evaluated in healthy volunteers and
stroke patients.

RESULTS
Network architecture
Figure 1 shows the structure of our deep-learning framework. The
inputs to the deep-learning network consisted of two parts. The
primary input was the CVR and BAT maps obtained from the
previous global-regression resting-state (GRRS) method5,16. Speci-
fically, three 2D images, including GRRS CVR β0, GRRS CVR β1, and
GRRS BAT, were used as the primary inputs. We used the
parametric CVR and BAT maps instead of the raw BOLD image
time series as inputs, so that our deep-learning network can be
applied to BOLD data of any sample time points, repetition time
(TR), or scan duration. These images had also been spatially
normalized into Montreal Neurological Institute (MNI) standard
space so that the network, once trained, can be applied to
different field-of-views (FOVs), matrix sizes, and spatial resolutions.
A supplementary input was also used in our deep-learning
network. The supplementary input was based on the residual 4D
image series after global-regression computation. We parcellated
the whole brain into 133 regions-of-interest (ROIs)31 and
computed 133 2D cross-correlation (CC) maps, in each of which
the residual time course of one ROI was used as the reference time
course for voxel-wise CC calculation. This additional input
accounts for residual vascular information and regional variations
in vascular responses that are present in the BOLD data but not
captured in the global-regression results32–34.
The outputs of the network were the estimated 2D images of

deep-learning resting-state CVR (DLRS CVR) and deep-learning
resting-state BAT (DLRS BAT) maps. Between inputs and outputs,
the architecture of the deep-learning network consisted of an
encoder module and a decoder module. The encoder module
contained a primary encoder that extracted vascular features
from the primary inputs, i.e., GRRS CVR and GRRS BAT, and a
supplementary encoder that was applied to the supplementary
inputs, i.e., the CC maps from the residual BOLD data. The
decoder module contained a CVR-specific component and BAT-
specific component. Each component integrated the latent

representations in the primary and supplementary encoders,
and provided an estimation of CVR (or BAT) map. More details of
our deep-learning network architecture and training process are
described in Methods.

Population characteristics
The datasets used in our study are summarized in Table 1 and
detailed in Supplementary Table 1-4. The deep-learning network
was trained and validated on datasets from 232 participants, each
of whom underwent a resting-state fMRI and an HC MRI scan. We
performed K-fold cross-validation (K= 5) to evaluate our model35.
That is, the datasets were randomly divided into five subgroups.
For each fold, a single subgroup was retained as validation data,
whilst all other subgroups collectively were used for training. This
process was repeated five times, with each of the five subgroups
used exactly once as the validation data.

Quantitative evaluation
Figure 2a–c shows representative images of DLRS CVR/BAT for
healthy, Moyamoya disease, and brain tumor, together with GRRS
and ground-truth HC CVR/BAT images. Visual inspection sug-
gested that the deep-learning images resembled the ground-truth
images, and were superior to the global-regression maps.
Quantitative evaluations were based on Pearson cross-correlation,
structure similarity index measure (SSIM), peak signal-to-noise
ratio (PSNR), and root-mean-square error (RMSE) between the RS
based CVR/BAT maps with the ground-truth HC CVR/BAT, as
shown in Fig. 2d–k. In all quantitative indices evaluated, the deep-
learning results revealed a significantly higher congruency with
the HC results, when compared to those from the global-
regression approaches6,16.
We conducted an ablation study to demonstrate the efficacy of

the proposed network architecture, particularly the necessity of
the primary and supplementary encoders. As shown in Supple-
mentary Fig. 1, the DLRS CVR and DLRS BAT maps in Moyamoya
patients revealed a lower spatial correlation with the ground-truth
maps if the primary or supplementary encoder is omitted.
We also tested to only use the healthy control data for the DL

network training. As can be seen in Supplementary Fig. 2, the
performance of the DL in healthy participants is comparable to the
original model (when both healthy and patient data were used for
training). However, the performance in patients was diminished.

Sensitivity measurement
Next, we sought to demonstrate the sensitivity of the CVR and BAT
maps in detecting vascular abnormalities and treatment effects.
Region-of-interest (ROI) values were compared between ipsilateral
and contralateral regions in Moyamoya, brain tumor, and stroke
patients (Fig. 3a–c). For Moyamoya patients, we examined the
DLRS CVR/BAT differences in the middle cerebral artery (MCA)
territories between the hemispheres that underwent revascular-
ization surgery and those that did not. We focused on MCA
territories because revascularization procedures typically aim to
recover perfusion in these regions. In the brain tumor and stroke
patients, the comparisons were primarily focused on the lesion
regions versus the contralateral normal regions. Quantitative
results of these comparisons are summarized in Fig. 3d-i. As a
reference, the HC CVR/BAT values revealed significant differences
between ipsilateral and contralateral regions for all comparisons
conducted. The diseased side showed a lower CVR and longer
BAT. From the DLRS data, we observed a significant difference
between ipsilateral and contralateral regions in all comparisons
conducted, the directions of which were consistent with those in
the HC data. The GRRS results also revealed laterality-related
differences, although the effect sizes were smaller than that of
DLRS in comparison. We also conducted a two-way ANOVA test on
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these data in which hemisphere was one factor and measurement
method was the other factor. We found that there was not a
significant difference in CVR or BAT between HC and DLRS
methods. Bland-Altman plots (Supplementary Fig. 3) revealed that
there was not a significant difference between HC and DLRS CVR
and BAT values. The differences between HC and DLRS was not
dependent on the mean values.
We further investigated whether the imaging data, specifically

CVR and BAT, were correlated with clinical variables. We examined
the associations between CVR/BAT and arterial stenosis grades for
Moyamoya disease and with tumor grades in brain tumor patients.
As shown in Supplementary Fig. 4, DLRS CVR and DLRS BAT results
revealed a significant correlation with the clinical variables. We

further obtained an estimation of the variance in the R2 value
between MRI and clinical variables, using a bootstrap method
(N= 10,000)36. There was not a significant difference in R2 values
between HC and DLRS, but the R2 values were lower in GRRS than
in HC in Moymoya patients.
We also studied age-related differences in DLRS CVR/BAT in the

healthy participants, and compared them to those from ground-
truth HC CVR/BAT. Consistent with previous studies37, we selected
the occipital lobe as a reference, which was thought to be most
age-preserved in the brain38,39, and normalized all other brain
regions against the occipital CVR/BAT. As shown in Supplementary
Fig. 5, DLRS CVR revealed significant decreases with age across the
majority of brain regions, while DLRS BAT increased with age (FDR-

Fig. 1 Overview of MRI experiment and deep-learning network used in this work. a An illustration of MRI experiment to measure brain
hemodynamic function. Spontaneous fluctuations in breathing pattern during resting-state MRI result in changes in CO2 level in the arterial
blood. This CO2 change can be used as an intrinsic marker for the estimation of cerebrovascular reactivity (CVR) and bolus arrival time (BAT)
using deep-learning network. b Architecture of the deep-learning network. An encoder-decoder network was used, where primary and
supplementary features of the image series were analyzed, and then fused to generate the outcome measures of resting-state CVR and BAT
maps.
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adjusted p < 0.05). The Dice coefficients between DLRS CVR and
HC CVR were 0.78 for age-decrease effects, whereas the Dice
coefficients when using the global-regression approach were 0.08.
Similarly, for BAT, the Dice coefficients were 0.77 and 0.04,
respectively.

Reproducibility assessment
To conduct a test-retest reproducibility assessment, in a new
dataset of healthy participants (N= 67) and stroke patients
(N= 30), we performed two identical resting-state fMRI scans in
the same session. Figure 4a displays the DLRS CVR/BAT from
both scans on a healthy participant, along with GRRS and HC
maps. Note that the HC scan was only performed once. As shown
in Fig. 4c, d, the DLRS CVR/BAT images in healthy subjects
consistently revealed a significantly higher correspondence with
HC CVR (i.e., spatial Pearson cross-correlation) than those from
GRRS CVR/BAT (p < 1.0 × 10−5 for all tests). Figure 4e, f, i, j
showed the scatter plots of DLRS CVR and DLRS BAT obtained
from two scans in healthy participants, together with those from
the GRRS approach. We observed that the deep-learning results
were distributed closer to the unity line, with a smaller difference
between the two scans. The intraclass correlation coefficients
(ICC) of the DLRS CVR and the GRRS CVR were 0.863 (95% CI,
0.857–0.868) and 0.627 (95% CI, 0.615–0.640), respectively.
Similarly, the ICCs of the DLRS BAT and the GRRS BAT were
0.864 (95% CI, 0.859–0.870) and 0.386 (95% CI, 0.368–0.404),
respectively. The ICC analysis revealed that the deep-learning
approaches showed a better agreement between two scans in
both CVR and BAT images of healthy participants (p < 1 × 10−5

for CVR and BAT). Figure 4b depicted our DLRS CVR/BAT images
with reference to DWI and T2-weighted images for a stroke case.
In the stroke datasets, the scatter plots between two scans were
consistent with those from healthy participants (Fig. 4g, h, k, l),
indicating a smaller difference between two scans from deep-

learning results. The ICCs of our DLRS CVR and DLRS BAT were
0.874 (95% CI, 0.867–0.881) and 0.857 (95% CI, 0.848–0.865),
respectively, again with significant improvements (p < 1×10−5 for
CVR and BAT) compared with those from the previous approach
(GRRS CVR: 0.724 (95% CI, 0.710–0.739); GRRS BAT: 0.561 (95% CI,
0.539–0.581)). The ICCs from stroke datasets were higher than
from healthy datasets due to the longer scan time and no
repositioning between two scans.

Spatial resolution dependency
To test the performance of the DLRS method on data acquired at
different spatial resolutions, we compared CVR and BAT maps
across data of three voxel sizes, 2 × 2 × 2 mm3, 2.4 × 2.4 × 2.4
mm3, and 3x3x3 mm3. Figure 5a, b shows CVR and BAT images
from a representative participant. Figure 5c-j shows results of
quantitative comparisons. There was not a difference across
resolutions for any of the indices examined.

DISCUSSION
The past few years have witnessed the advent of several
promising applications of deep-learning networks in resting-
state fMRI analyses40–44. These studies were mainly concerned
with measuring neural signals from fMRI and developing new
biomarkers based on neural signature of the brain. A major
novelty of the present work is that our study primarily focuses on
the fMRI vascular signals instead and uses them to generate 3D
maps of cerebrovascular reactivity and bolus arrival time. Here we
described a deep-learning approach to reconstructing brain CVR
and BAT maps from resting-state BOLD images. The basis of our
approach is to exploit arterial CO2 fluctuations induced by breath-
to-breath respiratory variations as an intrinsic “contrast agent” to
map cerebrovascular physiology. The encoder-decoder framework
used in the present study is analogous to the U-shape networks

Table 1. Demographics and MRI sequence parameters of datasets used in this work.

Training and Validation (5-fold cross validation) Additional
clinical test

Reproducibility test Spatial resolution dependency
test

Healthy Moyamoya Brain tumor Stroke Healthy Stroke Healthy

N 169 49 14 38 67 30 8

Age, yr (mean ±
s.d. (range))

51±20 (20-88) 41±12 (18-72) 42±18 (21-81) 55±13 (27-
87)

52±18 (24-90) 57±13
(24-80)

27±5 (23-
38)

Female 104 43 5 15 42 11 3

rs-fMRI Sequence Parameters

No. Scans 1 1 1 1 2 2 1 1 1

Repetition Time,
ms

2000 1510 1550 2000 2000 2000 720 720 720

Echo Time, ms 25 21 21 30 25 30 37 37 37

Flip Angle, ° 80 90 90 75 80 75 52 52 52

Field of View,
mm2

220 × 220 205 × 205 205 × 205 240 × 240 220 × 220 240 × 240 208 × 208 210 × 210 210 × 210

Slice Number 43 36 36 35 43 35 72 64 56

Slice-thickness,
mm

3.5 4.2 3.5 4 3.5 4 2 2.4 3

Gap, mm 0 0 0 0 0 0 0 0 0

In-plane
resolution, mm2

3.4 × 3.4 3.2 × 3.2 3.2 × 3.2 3.0 × 3.0 3.4 × 3.4 3.0 × 3.0 2.0 × 2.0 2.4 × 2.4 3.0 × 3.0

Scan Duration,
min

5 9.3 9.4 7 5 7 10 10 10

Other Relevant
Sequences

T1, Hypercapnic
BOLD

T1, Hypercapnic
BOLD, TOF-MRA

T1, Hypercapnic
BOLD, T2-FLAIR

T1, T2-FLAIR,
DWI

T1, Hypercapnic
BOLD

T1 T1, Hypercapnic BOLD
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for image quality enhancement in low-dose CT45, PET46–48, and
MRI49. It allows the deep-learning model to use the results of
existing non-deep-learning methods as inputs (i.e., GRRS CVR and
GRRS BAT), but improves the quality of the image by taking
advantage of the prior knowledge gained during model training.
Furthermore, we included a supplementary encoder module in
the network to take the residual BOLD signal into consideration.
This residual signal was discarded in previous global regression
methods, but may contain region-specific vascular information
associated with vasodilatory response function or local properties
of neurovasculature32,33. Moreover, the global BOLD signal used in
the previous regression methods may contain non-vascular-origin
fluctuations (e.g., global variations in neural activity due to
vigilance shifting50,51), which could be alleviated by deep-

learning method because vascular-based HC CVR/BAT was used
as label in training.
The present study showed that all quantitative metrics of CVR

and BAT from our model revealed a more consistent performance
when compared to previous approaches across several medical
conditions. To better understand the reason for this improvement,
we further evaluated the contribution of each component in our
network through an ablation study. We found that the perfor-
mance without the supplementary encoder deteriorated com-
pared to the full network, especially among patients with
cerebrovascular pathology. This may be attributed to the
hemodynamic abnormalities in the lesion regions, resulting in
heterogeneous signals across the brain and making the global
regression BOLD signal less informative52. Therefore, integrating
the information from residual signal with the global-regression
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Fig. 2 Representative images and quantitative results of the deep-learning resting-state cerebrovascular reactivity (DLRS CVR) and bolus
arrival time (DLRS BAT). a–c Representative images from a healthy volunteer (a), Moyamoya disease patient (b), brain tumor patient (c). From
left to right, the images are T1-weighted anatomic images, raw BOLD images, hypercapnic (HC) CVR, DLRS CVR, global-regression resting-state
(GRRS) CVR, HC BAT, DLRS BAT and GRRS BAT. d–g The boxplots display the similarity between resting-state CVR maps and ground-truth HC
CVR maps. Two types of resting-state CVR maps were studied: the proposed DLRS CVR and an existing GRRS CVR. Four similarity indices were
studied, including Pearson cross-correlation (d), structure similarity index metric (SSIM) (e), peak signal-to-noise ratio (PSNR) (f), root-mean-
square error (RMSE) (g). The line within the boxplots represents the median, the box represents the interquartile range (IQR), and the whiskers
are 1.5 times the IQR. h–k the boxplots display the similarity between resting-state BAT maps and ground-truth HC BAT maps.
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results enables the full model to outperform the sub-component
models.
This study further demonstrated the sensitivity of the deep-

learning derived hemodynamic maps in detecting vascular
abnormalities for various brain diseases. Due to the blockage of
cerebral blood vessels, Moyamoya disease and ischemic stroke will
cause a reduction in the cerebrovascular reserve and a delay in
blood arrival5,53–55. Our data suggested that the deep-learning
derived maps can successfully delineate regions with deteriorated
CVR and delayed BAT. Similarly, the deep-learning maps also
identified cerebrovascular abnormalities in brain tumors. It is
known that neovasculature formed in and around high-grade
primary brain tumors due to angiogenesis is immature and not
equipped with vascular smooth muscles56. Thus, absent or
diminished regional CVR is consistent with this aspect of tumor
biology57,58.
We also provided some early evidence that the deep-learning

derived hemodynamic maps may be useful in patient triaging or

evaluating treatment effectiveness. In Moyamoya patients, the
DLRS CVR/BAT metrics in those who underwent revascularization
surgery were significantly improved compared to those who did
not59. Moreover, our results indicated that the cerebrovascular
dilation ability deteriorated with worse stenosis grades from MR
angiography. For brain tumor patients, we observed that CVR/BAT
was correlated with tumor WHO grades. These findings suggest
that deep-learning derived hemodynamic maps have the poten-
tial to be further developed into biomarkers for disease diagnosis
and treatment monitoring.
Additionally, we examined the age dependence of DLRS CVR/

BAT in a lifespan cohort. We found that most regional CVR from
our model tended to decrease while regional BAT increased with
age. Our result demonstrated more consistency with the CO2-
challenged study than from global-regression approaches. Our
results are also in line with the notion that vascular response to
CO2 challenge becomes diminished as we age60–63.

Fig. 3 The performance of deep-learning resting-state cerebrovascular reactivity (DLRS CVR) and bolus arrival time (DLRS BAT) in
detecting brain pathologies. a A patient with Moyamoya disease who suffered from bilateral stenosis with the right hemisphere undergoing
a revascularization surgery. Lower CVR and longer BAT can be seen in the non-surgical hemisphere. From left to right, the images are T1-
weighted image, the middle cerebral artery (MCA) perfusion ROIs, DLRS CVR, global-regression resting-state cerebrovascular reactivity (GRRS)
CVR, DLRS BAT and GRRS BAT. b A diffuse astrocytoma patient with T2-FLAIR image, the lesion/control ROIs, DLRS CVR, GRRS CVR, DLRS BAT
and GRRS BAT. c A stroke patient with diffusion-weighted image (DWI) image, the lesion/control ROIs, DLRS CVR, GRRS CVR, DLRS BAT and
GRRS BAT. d, e The boxplots of CVR and BAT data in Moyamoya patients, when comparing their values between the surgically revascularized
(S) hemispheres and the non-surgery (N) hemispheres. The line, box, and whiskers in the boxplots represent the median, the interquartile
range (IQR), and 1.5 times the IQR, respectively. The effect sizes of two groups of DLRS CVR, GRRS CVR and HC CVR were 0.65, 0.42, and 0.73,
respectively. The effect size of DLRS BAT, GRRS BAT and HC BAT were −0.55, −0.59, and −0.89. f, g The boxplots of CVR and BAT data in brain
tumor patients, when comparing between lesion (L) and contralateral control (C) areas. Tumor regions revealed a lower CVR and a longer BAT.
The effect sizes of two groups of DLRS CVR, GRRS CVR, HC CVR, DLRS BAT, GRRS BAT, and HC BAT were 1.16, 0.72, 1.10, −0.93, −0.44, and
−1.15, respectively. As can be seen, DLRS parameters showed a larger effect size than the existing GRRS method. h, i The boxplots of CVR and
BAT data in stroke patients, when comparing values between lesion (L) and contralateral control (C) areas. The effect sizes of group
comparisons were 0.89, 0.75, −1.15, and −0.75 for DLRS CVR, GRRS CVR, DLRS BAT and GRRS BAT, respectively. DLRS parameters generally
showed a larger effect size than the GRRS method.
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To ensure the applicability of our deep-learning network to
both healthy participants and patients with diseases, we trained
our model using datasets from participants with a range of
medical conditions as well as healthy volunteers. Besides, our
deep-learning method converted the raw fMRI signals into cross-

correlation maps before the data were used for training and
testing. An advantage of this approach is that the trained network
can be used for any resting-state fMRI datasets, regardless of the
TR or time points used in the acquisition. Furthermore, we
conducted an independent test-retest study using a separate
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dataset. Our results demonstrated a high consistency in CVR and
BAT maps using the proposed method when compared with
previous approaches.
While the DLRS method outperforms the GRRS method in

general, we also observed that the performance of the DLRS
method in patients, in particular in Moyamoya disease, was not as
good as that in healthy controls. We speculate that there are three
possible reasons. The first reason is that patients tend to exhibit
more motion during the MRI scan. In our data, we found that the
average frame-wise displacement in patient groups and healthy
control groups were 0.32 mm and 0.20 mm, respectively (p < 1 ×
10−4). The second reason is that our sample size of the training
data from the patients (N= 63) were considerably smaller than
that from the healthy controls (N= 169). Thus the trained DL
network may be more optimized for healthy participants than for
patients. The third reason is that the patients tend to have lower
CVR. Since CVR is a technique based on signal differences, thus by
definition data in the patients have lower contrast-to-noise ratio
compared to healthy controls.
While the present study primarily investigated the clinical utility

of the proposed hemodynamic mapping method, we would like
to note that our method can also be combined with conventional
fMRI analysis approaches to obtain a better interpretation of
neural signals. BOLD fMRI is long known to be an indirect
assessment of neural activity and is influenced by the

microvascular function of the brain32,33,64. In fact, the presence
of a BOLD fMRI signal is dependent on the vasodilation associated
with neural activity65. Therefore, the CVR map obtained from the
present method can be used to normalize or calibrate the
functional connectivity results that are commonly used in
literature. Importantly, both CVR and functional connectivity maps
can be estimated from the same data without any additional data
acquisition, and the two maps are automatically coregistered.
Therefore, our deep-learning method may offer a promising
approach for vascular-corrected fMRI quantification in future
studies.
Although our deep-learning method provides a significant

improvement over the previous global regression method, it also
has several limitations. First, the CVR and BAT obtained from our
deep-learning model were in relative units, rather than in absolute
units of percentage per millimeter mercury (mmHg) of CO2

change. Hence, our approach is more suited for diseases in which
CVR and BAT deficits are regional. Second, the pipeline proposed
is based on 2D slice-by-slice processing, instead of 3D volume-
based processing. This is because of the limited number of
training/validation data sets available. The use of 2D pipeline
allows us to extract more samples from each data set. Another
reason to choose 2D over 3D processing is that the computational
load for 2D network is substantially lower than that of a 3D.
However, 3D network will allow the learning of through-plane
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information, which could provide more accurate parametric
estimation. Additionally, the current deep-learning results pre-
sented in stroke patients have not been validated with the
ground-truth hypercapnic method, due to practical challenges in
performing CO2 inhalation in this group of patients. Future studies
are needed to validate its clinical utility.
In summary, our study shows that cerebrovascular reactivity

(CVR) and bolus arrival time (BAT) mappings using deep-learning
model from resting-state functional MRI provide a task-free
approach to assess cerebrovascular dilation ability and arterial
delivery time across the brain. This technique demonstrates
excellent performance when applied to healthy participants across
the lifespan, and in patients with stroke, Moyamoya disease, or
brain tumor. CVR and BAT mapping with resting-state fMRI may
provide a new platform for developing physiological biomarkers in
brain diseases.

METHODS
Study participants
Participants were recruited from two sites: the University of Texas
Southwestern Medical Center (UTSW), Dallas, TX; Johns Hopkins
University (JHU), Baltimore, MD. The study and procedures were
approved by the Institutional Review Boards of UTSW and JHU, in
compliance with all ethical regulations. All participants gave
informed written consent before being enrolled. Table 1 and
Supplementary Tables 1–4 summarize participant characteristics
and imaging parameters. Specifically, 236 healthy participants and
34 Moyamoya patients were recruited at UTSW site38,66. 8 healthy
participants, 15 Moyamoya patients, 14 brain tumor patients, and
68 stroke patients were recruited at JHU site. The Moyamoya
patients were characterized by severe stenosis/occlusion predo-
minantly involving the intracranial segments of the internal
carotid arteries, diagnosed between 2014 and 2019 (Supplemen-
tary Table 1). The 14 de novo brain tumor subjects were recruited
between 2016 to 2019 before surgical operation (Supplementary
Table 2). The 68 stroke subjects were enrolled between 2012 and
201967,68 (Supplementary Table 3, 4). The stroke subject selection
criteria were: (a) clinically confirmed stroke within 16 months prior
to the MRI scan; (b) at least a T2-weighted image or diffusion-
weighted image (DWI) in the same session of the resting-state
fMRI scan.
Each participant underwent one resting-state fMRI scan. In a

subset of 8 participants, the resting-state scan was performed at
3 spatial resolutions (2 × 2 × 2 mm3, 2.4 × 2.4 × 2.4 mm3; 3 × 3 × 3
mm3, see Table 1 for details on imaging parameters). The order of
the three runs were randomized and balanced across participants.
A HC BOLD scan was also performed. A subset of 67 healthy
participants (from the UTSW site) and 30 stroke patients (from the
JHU site) also underwent a second resting-state fMRI scan in the
same session for reproducibility assessment (Table 1 and
Supplementary Table 4). The second resting-state fMRI scan on
healthy participants was performed with a break and reposition-
ing. The stroke patients did not undergo the hypercapnic CVR
scan due to their disability and compliance issues, whereas all the
other participants received a hypercapnic CVR scan.

MRI protocols
All MRI examinations were performed on 3T MRI scanners
(Achieva, Philips Medical Systems, Best, The Netherlands). Each
participant received a T1-MPRAGE scan and a resting-state fMRI
scan. The resting-state scan was performed while the subject was
asked to lie still without performing any task. Except for stroke
patients, each participant also underwent the hypercapnic scan,
during which 5% CO2 was used as a vasodilative stimulus. The
details of the hypercapnic scan have been previously

described69,70. Other relevant sequences performed on the
participants are listed in Table 1.

Resting-state BOLD processing
For resting-state BOLD processing, we used Statistical Parametric
Mapping (SPM12, University College London) and in-house Matlab
(version 2019a, MathWorks) scripts. The processing pipeline is
illustrated in Supplementary Fig. 6. Briefly, the resting-state BOLD
images first underwent standard preprocessing steps, including
motion correction, slice timing correction, normalization to
Montreal Neurological Institute (MNI) standard brain space via
MPRAGE image, and spatial smoothing using a Gaussian filter with
a full-width half-maximum of 8 mm. The BOLD image series were
detrended and band-pass filtered with a frequency of [0 Hz,
0.1164 Hz]16.
After applying the band-pass filter, a general linear regression

analysis was performed using the cerebellum BOLD signal as the
reference signal time course (i.e., independent variable) and the
voxel-wise BOLD signal as dependent variable16, with 12 motion
vectors as covariates (6 band-pass filtered motion parameters and
their squares)71,72, yielding GRRS CVR coefficient maps (i.e., GRRS
CVR β0, GRRS CVR β1)69. We used the cerebellum signal, instead of
the whole-brain global signal, as the reference signal because
cerebellum territories are typically unaffected in the studied
patient populations, whereas the global signal can be compro-
mised16,53. We then conducted feature scaling on the GRRS CVR
coefficients by converting the voxel-wise coefficients into Z-
scores, which were used as a primary input in the deep-learning
network. To obtain the GRRS CVR value for comparison with the
DLRS CVR results, we calculated the ratio between the coefficients,
i.e., β1/β0, and converted the map to Z-score16.
For GRRS BAT map, the BOLD time course of each voxel within

the brain was extracted and then shifted between ±9 s with an
increment of 0.1 s. The search range of ±9 s is based on the
previous literature21,73–75. A general linear model was used for
each shifted time course with cerebellum time course as the
independent variable and 12 motion vectors as covariates (6
band-pass filtered motion parameters and their squares)71. The
optimal shift at each voxel was identified as the value that
maximizes the full model’s coefficient of determination (R2) to
account for possible collinearities between regressors75. The
optimal shift for each voxel then underwent feature scaling, i.e.,
normalization to Z-score, yielding the GRRS BAT map, which was
used as another primary input to the deep-learning model.
To obtain supplementary inputs for the deep-learning model,

the residual BOLD signal after global regression was parcellated
into 133 regions-of-interest (ROIs), based on the Neuromorpho-
metrics Atlas in standard SPM12 without extensions31. Then, using
the spatially averaged residual signal time-course in each ROI as a
reference, cross-correlation maps were calculated. The cross-
correlation maps were then normalized to Z-scores and yielded
133 supplementary inputs.

Hypercapnic BOLD processing
The processing pipeline for the hypercapnic BOLD is illustrated in
Supplementary Fig. 7. The preprocessing pipeline was similar to
that of the resting-state BOLD, which consisted of motion
correction, slice timing correction, normalization to MNI standard
brain space, and spatial smoothed using a Gaussian filter with a
full-width half-maximum of 8 mm. The EtCO2 time course was
temporally aligned with the reference BOLD time course (i.e.,
cerebellum BOLD time course) to account for the time it takes for
CO2 to travel from the lung (where the EtCO2 was recorded) to the
brain (where the BOLD signal was recorded). A general linear
model was performed using each voxel BOLD signal as the
dependent variable, EtCO2 as the independent variable, and linear
drift term as the covariate, yielding HC CVR coefficient maps (i.e.,
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HC CVR β0, HC CVR β1). CVR was then computed as
CVR ¼ β1=ðβ0 þ bEtCO2 ´ β1Þ. We noted that HC CVR was not
calculated as β1=β0, but instead contained the bEtCO2 ´ β1 term,
so that the measured HC CVR was in reference to basal EtCO2 state
under room air69. The HC CVR was then converted to Z-score map.
The HC BAT was quantified as the time delay between the

synchronized EtCO2 time course and the voxel-wise BOLD signal
time course. The analysis was performed by shifting the voxel-wise
time course in the range of [−10 s, 30 s] with an increment of 0.1 s,
based on the previous literatures4. Note that the search range for
the HC data is wider than that for the RS data. The reason is that
the CO2 bolus due to HC is on the order of 50–60 s while that for
the RS is on the order of 5–10 s (i.e., duration of one breathing
cycle). Previous research has shown that the delay in MRI signal
time course is proportional to the bolus length76. A generalized
linear analysis was performed for each shifted time course with
synchronized EtCO2 time course as the independent variable and
linear drift term as the covariate. The optimal shift was identified
similar to that in the resting-state BAT method75. The optimal shift
for each voxel then underwent Z-score normalization, yielding the
HC BAT map. These HC CVR and BAT maps are used as labels in
the training of the deep-learning network.

Image padding and clipping
The normalized images were in MNI space with a dimension of
91 × 109 × 91. We resized the image to 96 × 112 × 91 by padding
zero voxels on the border of x, y directions, ensuring the input and
label 2D image stacks were compatible with our encoder-decoder
framework. The ground-truth HC CVR and HC BAT maps were
clipped to the range of [−5, 5] to keep the image in a reasonable
scale. Supplementary Fig. 8 showed that only 0.16% voxels in HC
CVR and 0.00008% voxels in HC BAT images clipped to the
maximum or minimum intensities.

Encoder-decoder framework
Our proposed deep-learning framework is based on the “auto-
encoder network” design and includes encoders and decoders, as
shown in Fig. 1 and Supplementary Table 5. In an auto-encoder
model45,46,77, the encoder module converts high-dimensional data
into embedded representations whereas the decoder module
reconstructs high-dimensional data. In our model, our network
contains two encoders. The primary encoder processed input
images of GRRS CVR β0, GRRS CVR β1, and GRRS BAT. The
supplementary encoder processed the 133 correlation maps. The
primary and supplementary encoders contained an identical
network architecture similar to the contracting path in U-Net78.
Within each encoder, there were five convolutional blocks. Each
block consisted of the following sequential layers: convolutional
layer, rectified linear unit (ReLU) layer, batch normalization layer,
convolutional layer, ReLU layer, batch normalization layer, and
max pooling layer. In each block, we doubled the number of
feature channels, while we cut the spatial dimensions in half. The
specific configuration of each block is listed in Supplementary
Table 5.
The decoder module contained two identical decoders. The

decoders utilize high-dimensional representation provided by the
encoders and perform customized synthesis for output maps, in
our case CVR and BAT (Fig. 1)79. Each decoder consisted of four
deconvolutional blocks based on the expansive path in U-Net78.
Each block contained the following sequential layers: transpose
convolutional layer, concatenation layer, convolutional layer, ReLU
layer, batch normalization layer, convolutional layer, ReLU layer,
and batch normalization layer. At the end of the decoder, the
resulting feature map passed through 1×1 convolutional layer and
5×tanh activation unit layer to generate CVR or BAT in the range
of [−5, 5], respectively. The specific configuration of each block is
listed in Supplementary Table 5.

Training and validating of the deep-learning network
The deep-learning network was trained using GRRS CVR β0, GRRS
CVR β1, GRRS BAT, and cross-correlation maps as input images,
and HC CVR and HC BAT as ground-truth images. We defined the
loss function as the L1-norm error between the prediction and
ground-truth images. The deep-learning network was implemen-
ted by using the PyTorch library. The AdaBelief was used as the
optimizer80 to minimize the loss function and update the network
parameters iteratively through back-propagation. A learning rate
of 5 × 10−5, epsilon of 1×10−12, and a batch size of 64 were used
in our training for 100 epochs. Data augmentation, including
horizontal flipping and vertical flipping, was applied to the
Moyamoya and brain tumor datasets to increase the size of our
training data and thus reduce overfitting81. The final weights of
the network were determined based on training results using all
232 datasets. For the purpose of validating, fivefold cross-
validation was used35,46,82. Specifically, the 232 resting-state/
hypercapnic datasets were divided into five subgroups, each
consisting of similar numbers of healthy volunteers and patients.
For the kth fold (k= 1,2,…,5), the deep-learning network was
trained based on data from the four other subgroups and then
validated on the kth subgroup. We trained the network using two
Nvidia Titan RTX graphics processing units (duration typically
around 24 h). During validation, the typical inference time for one
validation sample of a participant is around 0.5 s.
We conducted an ablation study to further investigate the

necessity of the primary and supplementary encoders in the deep-
learning network. The inputs associated with the primary encoder,
i.e., the GRRS maps, and supplementary encoder, i.e., 133 cross-
correlations maps, were removed, respectively. We then compared
the CVR and BAT maps obtained from the ablated models to those
from the full model in terms of their correlations with the
HC maps.

Quantitative assessment of the deep-learning results
To compare the deep-learning-derived maps to ground-truth
hypercapnic maps, we computed four metrics: (1) spatial Pearson
cross-correlation between DLRS and HC maps; (2) Structural
similarity index measure (SSIM), which aims to account for
multiple factors used in human visual perception and integrates
similarities of two images in terms of luminance, contrast, and
structure; (3) Peak signal-to-noise ratio (PSNR) which is defined as
the ratio between the maximum signal in the DLRS image and
mean square error of the voxel-wise difference between DLRS
and HC images; (4) root mean square error (RMSE) which
quantifies the voxel-wise L2-norm error between two images. In
general, a higher cross-correlation, SSIM, and PSNR or a lower
RMSE indicates a better prediction closer to the ground-truth
images.
The sensitivity of DLRS CVR and DLRS BAT images to brain

pathologies was examined in three patient cohorts: Moyamoya
disease patients, stroke patients, and brain tumor patients. In
Moyamoya patients, we aimed to evaluate whether DLRS CVR (or
DLRS BAT) in affected hemispheres that have received revascular-
ization surgery is different from those that have not. Of the
patients we have studied, 75 hemispheres suffered from stenosis
based on MRA. Of these, 30 have had revascularization surgery at
the time of the MRI scan. The remaining 45 have not had surgery.
We compared DLRS CVR and DLRS BAT values between hemi-
spheres with and without revascularization surgery. We also
conducted a two-way ANOVA test by comparing DLRS with HC
values in the two hemispheres. A Bland-Altman plot was also
studied. Regional CVR and BAT values were obtained from the
perfusion territories of the middle cerebral artery (MCA) based on
a perfusion atlas83. We focused on MCA territories for Moyamoya
disease patients because revascularization procedures typically
aim to recover perfusion in these regions.

X. Hou et al.

10

npj Digital Medicine (2023)   116 Published in partnership with Seoul National University Bundang Hospital



The grade of MCAs stenosis of each participant with Moyamoya
disease was rated independently by a neuroradiologist (M. P., with
>10 years of clinical experience) who was blinded to the CVR/BAT
results. The rating was made by using a previously published
angiographic scoring system adapted to MR angiography84. The
association between DLRS CVR (or DLRS BAT) and MCA stenosis
grade was evaluated by using linear regression in hemispheres
which did not undergo revascularization surgery.
We then analyzed data from patients with brain tumors to

compare DLRS CVR and DLRS BAT values between lesion and
contralateral normal regions. The lesion regions were delineated
on T2-FLAIR images by a rater (X. H., with >5 years of experience
and verified by D. L., with >10 years of clinical experience)
blinded to the CVR and BAT maps. Control regions were
obtained by mirror-flipping the lesion ROI with regard to the
mid-line of the image. The tumor grade is based on the 2016
World Health Organization (WHO) updated criteria of brain
tumors85.
For the stroke data, similar approaches were used to obtain

manually defined ROIs. Since some of the stroke patients were
scanned in acute/subacute phase while others were scanned in a
chronic phase, different types of anatomic images were used for
the ROI drawing. For acute/subacute stroke patients, the lesion
regions were manually delineated on DWI images. The T2-
weighted images were used for ROIs drawing on lesion regions
for chronic stroke patients.

Reproducibility study
We further assessed the reproducibility of our proposed method
on an independent dataset that contains 67 healthy participants
and 30 stroke patients. Each of the 67 healthy participants
underwent two resting-state fMRI scans, with a break and
repositioning in-between. A hypercapnic CVR scan was also
performed. For the 30 stroke patients, two resting-state fMRI
scans were performed in the same session (without repositioning).
The DLRS CVR and DLRS BAT maps were parcellated into 133 ROIs,
based on the Neuromorphometrics Atlas in SPM1231. Pearson
cross-correlation and intraclass correlation (ICC) between the two
maps were computed.

Spatial resolution dependency study
To test the performance of the DLRS method on data acquired at
different spatial resolutions, we conducted a repeated ANOVA to
compare CVR and BAT maps across 2 × 2 × 2 mm3, 2.4 × 2.4 × 2.4
mm3, and 3 × 3 × 3 mm3 data.
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