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A systematic approach to deep 
learning‑based nodule detection 
in chest radiographs
Finn Behrendt 1*, Marcel Bengs 1, Debayan Bhattacharya 1, Julia Krüger 2, Roland Opfer 2 & 
Alexander Schlaefer 1

Lung cancer is a serious disease responsible for millions of deaths every year. Early stages of lung 
cancer can be manifested in pulmonary lung nodules. To assist radiologists in reducing the number of 
overseen nodules and to increase the detection accuracy in general, automatic detection algorithms 
have been proposed. Particularly, deep learning methods are promising. However, obtaining 
clinically relevant results remains challenging. While a variety of approaches have been proposed for 
general purpose object detection, these are typically evaluated on benchmark data sets. Achieving 
competitive performance for specific real‑world problems like lung nodule detection typically requires 
careful analysis of the problem at hand and the selection and tuning of suitable deep learning models. 
We present a systematic comparison of state‑of‑the‑art object detection algorithms for the task 
of lung nodule detection. In this regard, we address the critical aspect of class imbalance and and 
demonstrate a data augmentation approach as well as transfer learning to boost performance. We 
illustrate how this analysis and a combination of multiple architectures results in state‑of‑the‑art 
performance for lung nodule detection, which is demonstrated by the proposed model winning the 
detection track of the Node21 competition. The code for our approach is available at https:// github. 
com/ FinnB ehren dt/ node21‑ submit.

Chest radiographs (chest x-rays) are the most common radiological examination in clinical practice as they 
offer high diagnostic value, low radiation dose, and cost-effectiveness1,2. Among the wide variety of pathologies 
that can be diagnosed from chest x-rays, an important objective is to detect pulmonary lung nodules. These 
Pulmonary nodules can be an indication of lung cancer, a major reason for death  worldwide3. Therefore, an early 
detection of nodules in chest x-rays is of high clinical  importance4,5.

Detecting nodules in chest x-rays is challenging for radiologists, which is reflected in low inter- and intra-
observer agreement as well as highly variable detection sensitivities that are reported in the  literature4,6,7. A reason 
for this is seen in the modality itself, as signal characteristics of x-rays make it hard to distinguish overlapping 
structures and thus to identify nodules, placed behind certain anatomical structures. As a consequence, typi-
cally, a follow up computer tomography scan is requested if nodules are detected in x-rays8. This comes with 
the cost of time-intensive examinations and an increased radiation by a factor of 75 to  9009,10. Therefore, it is 
of high importance to achieve a high sensitivity and simultaneously reduce the number of false positive nodule 
detections in chest x-rays.

Computer-Aided Diagnosis (CAD) systems have been developed over the last few decades to assist radiolo-
gists in detecting and diagnosing diseases in chest radiographs, including pulmonary lung nodules. For this 
purpose, traditional methods involving manual feature  extraction11–13, threshold-based  methods14, active shape 
 models15 and machine learning-based techniques like  SVMs16 have been proposed. Recently, deep learning-based 
Convolutional Neural Networks (CNN) replaced these traditional approaches due to their ability to automatically 
extract high-level features from raw data, such as images, without the need for hand-crafted feature engineer-
ing. With the availability of large-scale data sets of chest  radiographs17–19, deep learning approaches have been 
shown to achieve high levels of accuracy for global, image-level pathology and nodule  screening20–25. However, 
the additional localization of nodules remains a challenging task. Several local methods have been proposed to 
address this issue, relying on patch-based  classification26,27, semi-supervised activation maps from  CNNs28–30 or 
supervised segmentation  networks31. Commercial CAD systems are also available and clinical validation studies 
have shown that these systems can improve the nodule detection performance of radiologists considering both 
classical machine  learning5 and deep learning-based  approaches32–34. While customized CNN-based architectures 
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are commonly used in the research field of nodule detection in chest x-rays, object detection methods optimized 
for generic images have proven their ability to perform well on benchmark data sets such as Common Objects in 
Context (COCO)35–39. Some of these methods have also been evaluated for nodule detection in chest x-rays, and 
have demonstrated promising  results40–48. Nevertheless, object detection methods require localization informa-
tion on nodules, which means that annotated data sets are necessary for training. Unfortunately, these data sets 
are limited and much smaller compared to the generic image data sets due to the expensive annotation process. 
As a result, the lack of large-scale publicly available data sets for training, evaluating, and benchmarking deep 
learning solutions for nodule detection in chest x-rays has been a major obstacle. Besides the high risk for 
overfitting on small data sets, this leads to a large-variety of deep learning-based solutions for nodule detection, 
evaluated on individual data sets which makes it hard to compare their performance and to distill the most 
promising approaches for nodule detection in chest x-rays. To address this issue, the Node21  competition49 
was created. Its aim is to encourage participants to develop automated approaches with high performance for 
detecting nodules in chest x-rays. The competition provides large data sets with ground truth annotations from 
radiologists, enabling fair comparison and evaluation of the different approaches. The participants’ solutions 
are ranked based on their detection performance on an unseen test set, which replicates the clinical application 
scenario and emphasizes the importance of generalization.

A high performing approach for such real-world problems is typically not achieved by using a single model 
architecture that shows strong individual performance on specific test data sets. Instead, a careful analysis of the 
problem at hand and adjusting the approach to address problem-specific challenges are required. Furthermore, 
the tuning of various complementary model architectures is beneficial as ensembling is known to improve 
 performance50–52.

Therefore, in this work we systematically study and identify two major challenges in the application of state-
of-the-art object detection algorithms to the task of nodule detection in chest x-rays.

First, we pinpoint the absence of large-scale data sets for training as a hurdle. Even though there exist large-
scale data sets of chest x-rays17–19, only a small part of the data sets contain nodules and even less reliable 
annotations from domain experts are available. In contrast, for generic images, large-scale data bases exist with 
reliable bounding box annotations. One approach to counteract small data set sizes is to apply transfer-learning. 
It is common practice to use models that are pre-trained on large scale data bases of generic images such as 
 ImageNet53 or COCO. However, the domain of these data bases significantly differs from the domain of chest 
x-rays, and there is low evidence that the algorithms pre-trained on the image domain of Imagenet or COCO 
would transfer well to the target domain of chest x-rays54.

Second, we recognize that the available medical data sets often show a heavy class imbalance, where x-rays 
containing nodules are less frequent than their nodule-free counterparts. Deep learning models tend to favor 
the prediction of the majority class without proper re-balancing of the data which impedes the generalization 
of the models. Especially for object detection algorithms, class imbalances are problematic as the majority of 
possible bounding boxes often corresponds to the background  class55. This problem is reinforced when applying 
object detection algorithms to the field of nodule detection, as high image-level class imbalances are inherent to 
publicly available data sets where only a fraction of chest x-rays contain annotated nodules, while the remaining 
x-rays exclusively contain the background class.

Having identified hurdles in applying deep learning-based object detectors to the task of nodule detection, 
we systematically evaluate different strategies to address them with the goal of improving the nodule detection 
performance.

First, we investigate the use of transfer learning with images from different source domains to account for 
the overall small training set sizes. Transfer learning is a widely used method when training deep learning-based 
approaches. Various studies have investigated supervised or unsupervised pre-training techniques, either from 
natural image  domains54 or domains that closely resemble the target domain, such as chest x-rays56,57. Many 
studies focus on pre-training the feature extraction backbone of deep learning architectures. In contrast to that, 
our study employs pre-trained weights from object detection models that are specifically trained in an end-to-
end supervised fashion on the  VinDR58 chest x-ray data set (published by the Vingroup Big Data Institute). In 
addition, we investigate the impact of using pre-trained weights from the COCO object detection data set and 
training from scratch to determine which strategy yields the most significant benefits.

Second, we address the issue of class imbalance by exploring the use of generated nodules to augment the 
training data distribution. Specifically, we introduce nodules at random locations within the lung area of nodule-
free chest x-rays. Similar approaches have been successfully employed in previous works, where RetinaNet has 
been trained solely on augmented chest x-rays46 or the nodule detection performance of RetinaNet has been 
improved by adding generated radiographs with nodules to the existing training  data59,60. In this study, we exam-
ine the impact of nodule generation in the healthy background class samples to balance the data distribution and 
compare its effectiveness to oversampling the less frequent class, i.e., chest x-rays with nodules.

Lastly, we evaluate, rank and compare various object detection algorithms that show state-of-the-art perfor-
mance on benchmark data sets of generic images for the task of nodule detection in chest x-rays. For our final 
nodule detection pipeline, we apply our collective insights and train four nodule detection algorithms, apply 
transfer learning and reduce the class imbalance by generated artificial nodules. Furthermore, we utilize tech-
niques like data augmentation and stochastic weight  averaging61 to achieve better generalization. We exploit that 
the different models learn complementary features from the chest x-rays and combine the different approaches 
to develop a well-generalizing ensemble.

Overall, we present a systematic approach to achieve state-of-the-art performance for nodule detection in 
chest x-rays. Rather than inventing entirely new techniques or model structures, we pinpoint the essential steps 
to achieve robust performance on real-world data. Our approach is systematic and well-grounded, based on a 
thorough analysis and comparison of the most effective techniques and methodologies and provides valuable 
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insights to the field of nodule detection in chest x-rays. By applying our strategy, we are able to outperform all 
competing solutions in the Node21 competition and secure first place in the detection track.

Methods
In this section we provide details of data handling, training strategies, and hyper-parameters. An overview of 
our approach is provided in Fig. 1.

Data set. For our experiments we use the Node21 competition data set. The data set consists of 4882 fron-
tal chest radiographs that origin from four different public data sets  (JRST63 (N=242),  PadChest18 (N=1680), 
Chestx-ray1417 (N=1804), Open-I19 (N=1218)). All x-rays are revised and annotated by radiologists. The major-
ity of the radiographs (N=3748) are free of nodules while 1134 radiographs show at least one nodule (1476 
nodules in total). The annotation protocol of the Node21 challenge includes annotations of solitary, solid or 
subsolid nodules. Clusters of more than three nodules are filtered out and only nodules with a diameter of 6mm 
to 30mm are included in the data set. For the evaluation of the challenge submissions, two additional test sets 
are used by the organizers. One experimental test set Dexp (N=281) on which participants have a limited number 
of evaluations to test intermediate results and one final test set Dfinal to evaluate the final submission. In strong 
contrast to the training data, x-rays with nodules are more frequent than nodule-free x-rays in the experimental 
test set Dexp . For the final test set Dfinal , no details regarding the data set size or class distribution are provided. 
Furthermore, the radiologists have access to a computer tomography scan of the same patient for Dexp and Dfinal 
during the annotation process.

Since the provided test and training data originates from different data sources, a reliable evaluation strategy 
is required to account for the expected variance across the different data sets. Therefore, first, we partition the 
provided data set into training data (N=4532) and an additional test set Dadd (N=350). We use Dadd to evaluate 
intermediate development steps of our approach. To achieve a balanced test set with a variance similar to the 
training distribution, and similar class distribution as Dadd we take an equal number of x-rays with nodules and 
x-rays without nodules from each public data set. For JRST, PadChest and Chest x-ray, we use 50 x-rays from 
each class respectively, while for the Open-I data set we only use 25 x-rays due to the low number of x-rays with 
nodules. Furthermore, we apply a 5-Fold cross-validation to the remaining data for hyper-parameter tuning. 
To ensure a similar class distribution across the folds, we sample the individual training and validation sets in 
a stratified fashion grouped by patients. A summary of all available training and test sets is provided in Table 1. 
After model tuning and selection, we merge the additional test set Dadd to our training set to train the models 
for the final submission with all available data.

Exemplary x-rays of the data set as well as a bounding box analysis regarding position and shape is provided 
in Fig. 2.

Pre‑processing. We follow the pre-processing strategy of the Node21 challenge: First, homogeneous border 
regions are removed. Second, energy-based normalization of x-ray intensity values is applied as proposed  in64. 
Third, lung fields are segmented by a convolutional neural network and the x-rays are cropped to the segmented 
lung fields. Finally, all x-rays are resized from their original resolution to a resolution of 1024× 1024 px with 
bilinear interpolation, and padded to preserve the aspect ratio. For models that require an input resolution other 
than 1024× 1024px, we further resize the x-rays to the desired input resolution.

Deep learning models. Our general approach is to use an ensemble of different object detectors to leverage 
all individual benefits, exploit complementary features and to build a well-generalizing model. We include four 
different models to our final ensemble, namely Faster-R-CNN36,  RetinaNet37, EfficientDet-D238 and  YoloV539. In 

Figure 1.  Schematic visualization of our deep learning pipeline for nodule detection. Left: Nodule generation 
process. A nodule is embedded in a nodule-free chest x-ray at a given position and scale. Middle: Training of 
multiple model architectures, independently of each other. Right: Evaluation and ensembling of the trained 
models. The predictions of each model are merged via weighted box fusion (WBF)62 which results in one 
aggregated prediction for all models.
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the following section, the architectures are presented and explained briefly. For a more detailed description, we 
refer to the referenced original publications.

The goal of each model is to predict pairs of bounding box coordinates and a score that corresponds to the 
probability of seeing a nodule in the respective bounding box. Exemplary predictions are shown in Fig. 3. All 
models are implemented in Pytorch.

Faster‑R‑CNN. Faster-R-CNN is a two-stage object detector where first region proposals are extracted from an 
input image and in a second step, these regions of interest are classified and the bounding box predictions are 
 refined65. Faster-R-CNN emerged from two earlier network versions, namely R-CNN65 and Fast-R-CNN66. The 
main development of Fast-R-CNN and subsequently Faster-R-CNN is the improved and more efficient choice 
of region proposals for the respective object to  detect36,66. To predict the class and position of bounding boxes, 
first, feature maps are extracted by a CNN backbone. Next, a convolutional region proposal network is used to 
predict the initial regions of interest in the feature maps. Finally, the bounding boxes and classification scores are 
predicted for each region of interest by a fully connected network.

RetinaNet. RetinaNet37 is a single-stage object detector that predicts bounding boxes and classification scores 
in an end-to-end fashion. Thereby, the input image is fed into a feature pyramid backbone CNN that outputs fea-
ture maps at multiple scales. From each pyramid level, the features are fed to two subnetworks, a box regression 
subnetwork for bounding box prediction and a classification subnetwork for classification. A core principle of 
RetinaNet is the use of focal loss for all predicted bounding boxes. Hereby, more importance is given to bound-
ing boxes that are hard to predict by scaling the loss of each bounding box  prediction37.

EfficientDet‑D2. EfficientDet38 is a model family of single-stage object detectors. The key concepts of Effi-
cientDets are weighted bi-directional feature pyramid networks (BiFPN) that are an advancement to the feature 
pyramids used in RetinaNet. Instead of fusing the features in a top-down fashion, in BiFPNs feature-levels are 
fused in a bi-directional fashion and with unequal, learned weights. As for  EfficientNets67, an architecture search 
is conducted where the depth, width and input resolution is scaled for different EfficientNet variants. For each 
variant of EfficientDet, the respective EfficientNet variant is used as backbone network.

In our experiments, we use EfficientDet-D2 with an EfficientNet-B2 backbone.

YoloV5. Yolo, short for “You only look once” is a family of one-stage object detectors. Developing from YoloV1 
to YoloV5, a variety of network structures, training procedures and specific post-processing strategies are 
adapted to efficiently improve the detection performance. The backbone of YoloV5 consists of a custom cross 
stage partial  network68, called CSPDarkNet53. The extracted features are processed by a feature pyramid net-
work with pathway fusion that aims for bi-directional fusion of feature  levels69. A key concept of the Yolo family 

Figure 2.  Analysis of bounding boxes in the data. From left to right: Position of all bounding boxes on the x 
and y axis height plotted against the width of all bounding boxes, respectively, exemplary x-ray without nodules, 
exemplary x-ray with one nodule.

Table 1.  Summary of the data sets with their respective number of samples and the fraction of x-rays 
containing nodules (positives). After sampling the additional test set, we apply a 5-fold cross-validation to the 
data set. For the training- and validation set, representative numbers of one fold are reported.

Data set Number of samples Fraction positives (%)

Training set Dtrain 3626 23

Validation set Dval 906 23

Add. test set Dadd 350 50

Exp. test set Dexp 281 59

Final test set Dfinal Unknown Unknown
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is extensive data augmentation and post-processing, integrated to the YoloV5  pipeline39. For our experiments, 
we chose YoloV5x as model architecture.

Ensembling and post‑processing. To obtain a high performance model for our final submission, we 
ensemble the predictions of Faster-R-CNN, RetinaNet, EfficientDet-D2 and YoloV5. Additionally, to become 
robust to different nodule sizes, we use two different input resolutions for the YoloV5 model, namely 640× 640 
px and 1024× 1024 px. For each model, we train 5 and ensemble versions from different folds of the data set by 
performing a five-fold cross-validation approach. We post-process all bounding box predictions by first applying 
non-maximum-supression (NSM). Hereby, if two bounding boxes overlap by an intersection over union (IOU) 
greater than 20%, the box with the lower prediction score is removed. Finally, we ensemble all model predictions 
by using weighted box fusing and remove all bounding boxes with a predicted score below 0.1. In weighted box 
fusion, overlapping bounding boxes are fused by a weighted average, where the weights are determined by the 
prediction score of the individual predictions. We denote the final ensemble model as Ensemble.

Data augmentation. For data augmentation, we crop or pad the x-rays randomly by a maximum of 50 
pixels to add robustness for different fields of view. Also, horizontal flipping and random rotation by a maximum 
of 5 degrees are applied. Furthermore, we blur the x-rays and apply cutout augmentation to improve the gener-
alization of our models. Additionally, Mosaic augmentation and test time augmentation are used exclusively for 
YoloV5, as only for the YoloV5 models performance improvements are seen.

In test time augmentation, each x-ray is evaluated multiple times for flipped and scaled versions of the x-ray. 
The predictions are then merged before applying non-maximum-suppression.

Imbalanced sampling and nodule generation. To address the challenge of class imbalance, we experi-
ment with oversampling the minority class of our training set to re-balance the mini-batches. During validation, 
we undersample the majority class. Thereby, we achieve a balanced data set for both training and validation.

As an alternative strategy, we consider generating artificial nodules. To this end, we make use of the nodule 
generation  algorithm70 that is also used as a baseline algorithm for the generation track of the Node21 challenge. 
First, nodules are generated by projecting template nodules from 3D CT scans to the 2D x-ray space by raycasting. 
Next, the contrast is adjusted to match the intensity range of x-rays. Finally, the nodule is embedded in the chest 
x-ray at a given position, rotation and scale and the inserted nodule is smoothed by mean filtering. Note that the 
template nodules, as well as position, rotation and scale of the nodules are taken from the generation track of the 
Node21 challenge. The generation process is shown in Fig. 1. We randomly sample 1000 x-rays without nodules 
from the training data and use the generation algorithm to place one or more nodules in these x-rays. Note that 
the nodule generation is done offline beforehand. As a result, we achieve a balanced data set for training and 
evaluation without the need for oversampling and thus with a reduced risk for overfitting.

Transfer learning. We make use of pre-trained model weights to account for the limited training data. We 
identified the source domain of the pre-trained weights as an important factor for transfer learning in the con-
text of nodule detection. Therefore, we use models that are pre-trained on the VinDR data  set58 where the model 
checkpoints originate from the VinBigData Chest X-ray Abnormalities Detection  Challenge71. This allows us to 
use pre-trained weights from the same domain as the target domain, i.e. chest x-rays. As alternative, we train the 
models from scratch without any pre-trained weights and we utilize pretrained models from COCO. Across all 
models, we keep all layers trainable.

Training parameters. In general, for fine-tuning hyperparameters, we utilize our held-out validation and 
test set ( Dval and Dadd ) and for broader model decisions we evaluate the algorithms on the experimental test set 
( Dexp ). The hyper-parameters differ slightly depending on the model choice. We observe that the metrics on the 
different data sets ( Dadd and Dexp ) are not always congruent which might be caused by the different degrees of 
imbalances. In cases where no congruent result is found, we choose the solution that works best on the experi-
mental test set, as a smaller domain shift to the final test set is assumed.

For Faster-R-CNN, RetinaNet and EfficientDet-D2, we train a fixed number of epochs, apply stochastic weight 
averaging (SWA)61 and use the last checkpoint for the final prediction. For YoloV5, we validate our models every 
epoch and early stopping is applied based on the validation set. For all models, cosine  annealing72 is used as 
learning rate schedule. A summary of all training parameters is provided in Table 2. Training of our models is per-
formed on NVIDIA RTX 3090 (24GB) and NVIDIA V100 (32GB) graphics cards depending on the model size.

Runner up solutions. In this section, we briefly describe the algorithms that have been developed by other 
competitors in their core concepts.

The team that achieved the second place (runner up) chose a similar approach to our solution by ensembling 
state-of-the-art object detectors, including Faster-R-CNN, YoloV5 and RetinaNet. Furthermore, different meth-
ods for sampling data sets to attenuate the class imbalances have been evaluated. Finally, they used a three-fold 
cross-validation approach where oversampling was used to balance the nodule and background classes.

The team that achieved the third place (second runner up) approached the competition by first pre-training 
an ensemble of object detectors on slices of CT volumes. After fine-tuning on the node21 data set with oversam-
pling, they used a bagging strategy to aggregate the predictions of their ensemble consisting of Faster-R-CNN 
and RetinaNet.
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Results
Evaluation metrics. We use two main performance metrics which are commonly used in the field of nod-
ule detection. First, we evaluate the sample-level performance, i.e., if an x-ray contains a nodule or not by report-
ing the area under receiver operation characteristic curve (AUROC). The AUROC is calculated by examining 
the predicted likelihoods of all nodules from each x-ray and filtering for the maximum prediction to derive a 
sample-level score. If there is no predicted nodule, the sample-level score is set to 0. Second, to evaluate the bal-
ance between the sensitivity and false positive predictions on a bounding-box level we report the sensitivity at an 
average false-positive rate of 25% (FROC25% ). To calculate the sensitivity, we count a predicted bounding box as 
positive if it shares an intersection over union greater than 0.2 with the ground truth bounding box. Otherwise, 
the prediction is counted as false-positive. Similar to the Node21 competition metric, we also consider a linear 
combination of the AUROC and FROC25%:

In addition, we provide AUROC and FROC plots and a run-time analysis of the predictions from the evaluated 
models.

Comparison of individual models and ensembles. Table 3 shows the results for individual models as 
well the ensemble for different test sets. The models are trained with pre-trained weights and generated nodules 
are used to re-balance the training set. For all models, we aggregate the predictions of the individual folds by 
weighted box  fusion62. We observe a performance gap across the different test sets. For the held-out test set Dadd , 
overall, higher metrics are reported compared to the experimental test set Dexp . Regarding Dadd , YoloV5-small 
shows high performance, superior to both other individual models and the ensemble of all models. Considering 
the experimental test set Dexp , the ensemble model outperforms all other individual models, including YoloV5-
small. By setting a fixed threshold (the median value of all thresholds of the AUROC), we report a true positive 
rate and true negative rate of 88.57% and 84.00%, at a false positive rate and false negative rate of 13.14% and 
13.71% respectively for the ensemble. Notably, the inference run-time of the evaluated models varies strongly. 
Comparing YoloV5-small and the ensemble, improving the competition metric by 1.3% results in a run-time 
increase of 280%.

For a fine-grained comparison of detection performances regarding Dadd , the AUROC and FROC are plotted 
in Fig. 4. Furthermore, in Fig. 3, exemplary predictions of the Ensemble are shown. It can be observed that false 
positive predictions often occur at locations of overlapping structures.

In Table 3, final challenge results are shown for the top three approaches. While the runner up solution shows 
competitive AUROC scores, it is clearly outperformed by our Ensemble solution considering FROC-based met-
rics, indicating a better detection performance.

Ablation study: class imbalance and pretrained weights. Table 4 shows ablations for the ensemble 
of all models. We compare training from scratch and the use of transfer learning with pre-trained weights from 
different domains. We tackle the class imbalance with oversampling (OS) or generated nodules (GN). Train-
ing the network from scratch results in poor performance compared to models that use pre-trained weights. 
Comparing weigths from COCO and VinDR, models that are trained with VinDR show superior detection 
performance.

Considering the different strategies for addressing the class imbalance, nodule generation shows improved 
detection performance compared to simple oversampling for both data sets, regarding the AUROC and Com-
petition Metric.

Discussion
Automated nodule detection in chest x-rays is of high clinical importance. Although deep learning algorithms 
show high performance for general purpose object detection tasks on benchmark data sets, their application to 
real-world, clinical problems such as nodule detection is challenging. In this work, we systematically identify 
these challenges and study approaches to tackle them. Thereby, we investigate which source data set is best suited 

(1)Competition Metric (CM) = 0.75 · AUROC+ 0.25 · FROC25%.

Table 2.  Hyperparameters for training, determined by cross-validation. For gradient clipping, the gradients’ 
global norm is clipped to the reported values.

Parameter YoloV5-large YoloV5-small Faster-R-CNN RetinaNet EfficientDet-D2

Learning rate 8.94e−3 1.15e−2 1.0e−4 1.0e−4 1.0e−4

Optimizer SGD SGD Adam Adam Adam

Batch size 8 16 16 16 16

Epochs 20 20 25 60 20

SWA start N/A N/A 20 45 15

SWA epochs N/A N/A 5 15 5

Warmup epochs 2.5 2.8 5.0 5.0 5.0

Gradient clipping value N/A N/A 3.0 3.0 3.0
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Figure 3.  Left: Correctly predicted nodule. Middle and Right: Correctly predicted nodule together with false 
positive predictions. Yellow arrows indicate the groundtruth location of nodules.

Table 3.  Performance metrics in percent of the different models and ensembles for different test sets. Dadd 
denotes our additional validation set for the evaluation of intermediate changes of our approaches and models. 
Dexp denotes the experimental test set, provided by the challenge hosts for validation on unseen data. Dfinal 
denotes the final test set of unseen data to rank the final submissions of all participants. Among with our 
solution (Ensemble), the top three challenge solutions are reported. Highest values are in bold.

Test set Model CM AUROC FROC25% FROC50% Runtime (s/patient)

Dadd

YoloV5-small 87.94 94.59 68.00 76.57 0.33

YoloV5-large 87.12 93.68 67.43 80.00 0.54

RetinaNet 82.84 90.46 60.00 70.29 0.17

Faster-R-CNN 84.17 91.28 62.86 79.43 0.17

EfficientDet-D2 84.36 92.10 61.14 74.86 0.24

Ensemble 87.77 93.98 69.14 81.14 1.26

Dexp

YoloV5-small 80.99 88.48 58.51 65.03 N/A

YoloV5-large 80.00 88.22 55.33 64.11 N/A

RetinaNet 75.88 85.58 46.77 54.84 N/A

Faster-R-CNN 76.96 86.38 48.69 58.87 N/A

EfficientDet-D2 74.53 84.19 45.56 54.03 N/A

Ensemble 82.08 90.73 56.12 64.62 N/A

Dfinal

First Place (Ensemble) 83.90 86.79 75.24 80.00 N/A

Runner up 82.75 86.21 72.38 77.14 N/A

Second runner up 80.11 83.32 70.48 76.19 N/A

Table 4.  Detection performance of the ensemble of all models (Ensemble) with and without pre-trained 
weights and different re-balancingstrategies. The check marks indicate the use of the respective pre-training or 
re-balancing strategy. Pretrain refers to the dataset used for pre-training of the models, OS to oversampling 
and GN to generated nodules. CM denotes the competition metric. Highest values are in bold.

Test set Pretrain OS GN CM AUC FROC25%

Dadd

None 82.64 89.52 61.71

COCO 85.52 ( ↑3.48 % ) 91.93 66.29

VinDR 86.76 ( ↑4.98 % ) 92.83 68.57

VinDR � 86.87 ( ↑5.11 % ) 92.40 70.29

VinDR � 87.36 ( ↑5.71 % ) 94.19 66.86

Dexp

None 75.43 84.99 46.77

COCO 79.78 ( ↑5.77 % ) 88.50 53.63

VinDR 80.47 ( ↑6.68 % ) 87.94 58.06

VinDR � 81.45 ( ↑7.98 % ) 89.58 57.10

VinDR � 81.87 (↑8.54 % ) 89.86 57.91
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for transfer learning and study different strategies to re-balance the imbalanced training data. Furthermore, we 
systematically compare four state-of-the-art deep learning models for object detection. Finally, we present a 
highly effective deep learning approach by aggregating complementary model predictions from different object 
detectors.

Overall, we observe superior performance when evaluating on the held-out test set compared to the experi-
mental- and final test set. This indicates that the models tend to overfit to the domain of the training data set. 
Another reason for this is seen in the annotation process of the test sets provided by the Node21 challenge. The 
annotations are derived with the help of CT scans in which nodules can be detected much easier. Since for the 
annotation of the training data, no CT scans are used, detecting all nodules from the test set is challenging as 
very subtle nodules may exist that only can be seen in CT scans. This highlights the importance of data annota-
tion and represents a drawback of the training data.

Our results show that the individual models Faster-R-CNN, RetinaNet and EfficientDet-D2 show similar 
performance. In contrast, both Yolo versions show superior performance to other individual models. We assume 
that the pipeline of Yolo which includes pre-processing, data augmentation and anchor generation techniques that 
are highly optimized for the Yolo network architecture leads to a strong detection performance. In contrast, for 
the other models, although data augmentation is applied, the augmentation policies are not directly optimized 
to a certain model. We note that in comparison to all other models RetinaNet is initialized from COCO weights 
instead of the VinDR weights data set as no checkpoints are available for RetinaNet which hinders a direct and 
fair comparison.

By ensembling the individual models, we can further improve the performance compared to the best indi-
vidual model YoloV5-small regarding the competition metric on the unknown experimental test set. For a 
fixed threshold, the ensemble shows a high true positive rate while preserving a small number of overseen nod-
ules which is important, e.g. for pre-screening purposes. While the performance boost of the ensemble on the 
experimental test set is moderate compared to the rise in computational costs, we argue that since even small 
improvements are of high relevance, the additional costs in run-time are acceptable.

Using an ensemble of different models is often considered in practical applications where high-performance 
on unseen data is important as ensembling has shown to be a good strategy to combine strong features from 
individual  algorithms50,51. Even though a single model might outperform an ensemble on a certain data set, it 
is unrealistic to train a single model that generalizes to all possible variations in data. Therefore, on average, 
ensembles are assumed to be a more general  solution52. This can be observed considering Table 3. While for our 
held-out set Dadd , the individual YoloV5 model shows a higher CM in comparison to the ensemble model, for 
the unknown set Dexp the ensemble is superior. Furthermore, although all individual models appear to perform 
poorly compared to YoloV5-small regarding the FROC analysis (Fig. 4), the ensemble benefits from their con-
tributions as the individual models show different characteristics at different observation points.

We believe that combining different algorithms with different detection characteristics and input sizes gen-
eralizes well to different nodule sizes and appearances, to different x-ray examination protocols and to varying 
resolutions.

Hence, we choose the ensemble of all models for our final solution to become agnostic to certain characteris-
tics in the training and test data. This is identified as an important property of the final solution for the Node21 
challenge, as it is evaluated on an unseen data set Dfinal.
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Figure 4.  Left: AUROC of all individual models and their ensemble, evaluated on Dadd . Right: FROC of all 
individual models and their ensemble, capped at an average of two false positives per patient.
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Pre-training shows notable performance improvements across all metrics. Initializing the models with weights 
that are trained on generic images from COCO already improves the models final predictions. We assume that 
the CNNs benefit from the weights of the early layers in the feature extraction backbones that are trained to 
detect edges and different shapes in the images. Thereby, the risk for overfitting is reduced and faster convergence 
can be  achieved54. Using data from the target domain, i.e., chest x-rays, for transfer learning further improves 
the performance. This is not surprising as now the pre-trained filters of the CNNs are already specialized to the 
task of object detection in chest x-rays and we assume that during fine-tuning, later layers of the models are also 
reused and only require subtle adaptions. Overall, we identify pre-training as an important strategy to improve 
the detection performance and highlight the positive effect of using image data from a similar domain as the 
target data set for pre-training.

We evaluate different strategies to encounter the class imbalance in the data. We find that it is important to 
re-balance the training data. However, there is no significant result on whether nodule generation or simple 
oversampling is superior in general. Comparing both strategies for the task at hand, nodule generation is seen 
beneficial as the risk of overfitting is  reduced73. Furthermore, as the generated nodules are barely visible by design, 
we believe that this helps to make the models more sensitive to subtle nodules that might appear more clear in 
the CT scans that are used as additional modality only for test set annotations.

Comparing our approach to the runner up and second runner up solutions in the node21 competition, our 
solution consistently outperforms the other methods, particularly when considering the FROC-based localization 
metrics. Both competing solutions chose a similar approach for the competition, namely an ensemble of recent 
object detection models. However, we believe that our systematic evaluation of strategies to address challenges 
for the task at hand have considerably improved the performance of our solution. First, as shown in this study, 
clear benefits can be observed for pre-training across all models and test sets which is not part of the runner up 
solution. While the second runner up achieved performance improvements when pre-training on CT data, their 
model ensemble did not include Yolo-based models that have shown to perform best within our study regard-
ing the node21 competition. Second, even though only moderate performance improvements can be achieved 
by nodule generation, we believe that this strategy has led to increased generalization as oversampling which is 
done in both competing solutions comes with a risk for overfitting.

In conclusion, by conducting a careful analysis and by addressing identified challenges, we present a high 
performing deep learning pipeline for the detection of nodules in chest x-rays. We prove the effectiveness and 
robustness of our strategy by winning the detection track of the Node21 challenge with a relative improvement 
of 1.4 % to the second-best submission. To build an approach that achieves state-of-the-art performance, the use 
of pre-trained weights from the same image domain, re-balancing of the training set, and ensembling of various 
model architectures are seen as key strategies. Furthermore, the careful design of validation and test splits, hyper-
parameter tuning and data augmentation are seen as requirements for a robust deep learning-based solution.

While our method outperforms all competing solutions, it is essential to acknowledge that further studies 
are needed to evaluate the clinical utility of the proposed solution. The performance of the system in a clinical 
setting will depend on various factors, such as the prevalence of nodules in the patient population, the experience 
of the radiologist, and the available resources for follow-up procedures.

We also recognize the limitations of the high false positive rate, as false positives can lead to unnecessary 
follow-up CT scans, resulting in patient anxiety, increased radiation exposure and costs. Therefore, radiologists 
would need to carefully review the results of CAD systems, as also noted in clinical validation studies of com-
mercial  systems32,34,74. To reduce the manual filtering of false-positive predictions from CAD systems, further 
research is needed to increase sensitivity while reducing the false positive rate to an acceptable level. One possible 
solution is the use of two-planar projections that include the lateral view. We hypothesize that this could prevent 
the models from interpreting overlapping structures or blood vessels as nodules and thus improve the detection 
performance of nodules in chest x-rays while reducing false-positive findings. We believe that further exploration 
of this approach may be a promising direction for future research in the field of chest x-ray nodule detection.

Data availabilityy
The data sets that are used in this work are publicly available via the Node21 Competition https:// zenodo. org/ 
record/ 55483 63#. Y4TNv X2ZNQ4. The code for our approach, model checkpoints and a Docker Image are avail-
able at https:// github. com/ FinnB ehren dt/ node21- submit.
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