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Abstract
Background Electronic cigarette (e-cigarette) vapour is gaining popularity as an alternative to tobacco
smoking and can induce acute lung injury. However, the specific role of nicotine in e-cigarette vapour and
its long-term effects on the airways, lung parenchyma and vasculature remain unclear.
Results In vitro exposure to nicotine-containing e-cigarette vapour extract (ECVE) or to nicotine-free
e-cigarette vapour extract (NF ECVE) induced changes in gene expression of epithelial cells and
pulmonary arterial smooth muscle cells (PASMCs), but ECVE in particular caused functional alterations
(e.g. a decrease in human and mouse PASMC proliferation by 29.3±5.3% and 44.3±8.4%, respectively).
Additionally, acute inhalation of nicotine-containing e-cigarette vapour (ECV) but not nicotine-free
e-cigarette vapour (NF ECV) increased pulmonary endothelial permeability in isolated lungs. Long-term in
vivo exposure of mice to ECV for 8 months significantly increased the number of inflammatory cells, in
particular lymphocytes, compared to control and NF ECV in the bronchoalveolar fluid (BALF)
(ECV: 853.4±150.8 cells·mL−1; control: 37.0±21.1 cells·mL−1; NF ECV: 198.6±94.9 cells·mL−1) and in
lung tissue (ECV: 25.7±3.3 cells·mm−3; control: 4.8±1.1 cells·mm−3; NF ECV: 14.1±2.2 cells·mm−3).
BALF cytokines were predominantly increased by ECV. Moreover, ECV caused significant changes in
lung structure and function (e.g. increase in airspace by 17.5±1.4% compared to control), similar to mild
tobacco smoke-induced alterations, which also could be detected in the NF ECV group, albeit to a lesser
degree. In contrast, the pulmonary vasculature was not significantly affected by ECV or NF ECV.
Conclusions NF ECV components induce cell type-specific effects and mild pulmonary alterations, while
inclusion of nicotine induces significant endothelial damage, inflammation and parenchymal alterations.

Introduction
Chronic exposure to cigarette smoke (CS) is a major trigger of chronic obstructive pulmonary disease
(COPD), which affects more than 174 million people worldwide [1]. COPD comprises pulmonary
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inflammation, airway obstruction, pulmonary emphysema and often pulmonary hypertension (PH) [2].
Aside from nicotine, numerous ingredients in tobacco smoke are responsible for increased oxidative stress
and activation of immune cells, leading to airway destruction and chronic inflammation in the lung [3].
Therefore, the substitution of traditional tobacco smoking with electronic cigarettes (e-cigarettes)
containing liquids that optionally include nicotine and/or different flavours to produce an aerosol
(commonly referred to as vapour or e-cigarette vapour) for inhalation has grown in popularity as a
healthier alternative to cigarette smoking, especially among young people [4].

Despite a growing number of studies in this area, there is currently no consensus on the effects of
e-cigarette smoking on human health. The large variability of e-liquid content (e.g. flavours, nicotine),
technical specifications of e-cigarettes (e.g. voltage, temperature) and user habits (e.g. puff duration,
number of puffs) and the relatively short period that e-cigarettes have been in use hamper robust scientific
conclusions, in particular those concerning their long-term effects [5]. Accordingly, studies in humans
report discrepant results with a decrease [6], an increase [7] or no change [8] in inflammatory markers after
short-term use of e-cigarettes. Although, until recently, studies in humans had not found severe effects of
e-cigarette use on health [5], more than 2600 cases of acute e-cigarette or vaping-product-associated lung
injury have been reported in recent years [9].

Owing to these variabilities and limited experience with long-term effect in humans, it is necessary to
assess the effects of e-cigarette vapour in a clearly defined animal model. Previously, discrepant results
from in vivo studies concerning the development of CS-like lung structural alterations, such as emphysema,
have been reported: some studies show signs of emphysema after 4 months [10] and others demonstrate no
effect after 8 months [11] of exposure to nicotine-containing (18 mg·mL−1) e-cigarette vapour.
Furthermore, cell type-specific effects on primary lung cells and the impacts of e-cigarette vapour on
pulmonary vasculature remain to be fully addressed. In this regard, previous in vitro experiments
suggested cell type-specific cytotoxic effects of different e-cigarette preparations depending on their
ingredients [12–16].

Therefore, we investigated 1) the in vitro effects of nicotine-containing e-cigarette vapour extract (ECVE)
and nicotine-free e-cigarette vapour extract (NF ECVE) on different human and murine pulmonary cell
types; 2) the short-term ex vivo effects of nicotine-containing e-cigarette vapour (ECV) and nicotine-free
e-cigarette vapour (NF ECV) on endothelial permeability in isolated perfused and ventilated mouse
lungs; and 3) the long-term in vivo effects of ECV and NF ECV on pulmonary inflammation, function,
structure and the vasculature.

Methods
For detailed methods, please see the supplementary material.

Animal experiments
Wild-type C57BL/6J mice were obtained from Charles River Laboratories (Sulzfeld, Germany). Animals
were housed under controlled conditions of a 14/10 h daylight/night cycle with food and water supplied ad
libitum. All experiments were approved by the governmental ethics committee for animal welfare
(Regierungspräsidium Giessen, Germany, GI 20/10, Nr. 105/2014, GI 20/10, Nr. 74/2016, GI 20/10,
number 115/2014).

Cell culture
Primary mouse alveolar type II (mATII) cells were isolated, as described previously, by negative selection
of CD16/32+ cells (553142, BD Biosciences, Franklin Lakes, NJ, USA) and CD45+ cells (553076, BD
Biosciences) [17]. Primary mouse pulmonary arterial smooth muscle cells (mPASMCs) were isolated from
precapillary pulmonary arterial vessels as described previously [18]. Primary human pulmonary arterial
smooth muscle cells (hPASMCs) were isolated from pulmonary arteries of donor lung transplants by
dissection of the medial layer. The studies with hPASMCs were approved by the Ethics Committee of the
Faculty of Medicine at Justus-Liebig University Giessen (AZ 58/15, AZ 10/06). A549 cells were
purchased from the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig,
Germany) and human bronchial epithelial cells (HBEpC) from PromoCell (Heidelberg, Germany). All
cells were cultured in a humidified atmosphere of 5% CO2 at 37°C in a cell incubator. 24 h after seeding,
the cell culture medium was replaced with a medium containing different doses of ECVE, NF ECVE or
cigarette smoke extract (CSE) (for preparation, see below). The medium bubbled with room air served as
the control medium. For detailed isolation protocols and functional assays, please refer to the
supplementary material.
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Preparation of ECVE and CSE for in vitro assays
100% ECVE or NF ECVE was produced by bubbling the vapour from an e-cigarette (2.2 Ohm, 3.3 V,
Joyetech eGo-C, Shenzhen, China) filled with 0.8 mL e-cigarette liquid (60% propylene glycol, 30%
glycerol and 10% water; Riccardo Retail GmbH, Neubrandenburg, Germany) either containing
18 mg·mL−1 nicotine or without nicotine through 10 mL of culture medium. The puffing condition was
15 puffs of 4 s duration with 20 s intervals between them. 100% CSE was freshly prepared by bubbling
10 mL of basal cell culture medium (without fetal calf serum) with mainstream smoke of one 3R4F
cigarette (University of Kentucky, Lexington, USA). After pH adjustment to 7.4, the medium was
sterile-filtered through a 0.22-µm pore filter and the CSE concentration was determined
spectrophotometrically (absorbance 290 nm). For control experiments, 100% medium for the respective
cell type was bubbled with room air for 5 min.

E-cigarette vapour application in the isolated ventilated and perfused mouse lung system
The isolated ventilated and perfused mouse lung system was used to investigate the effects of repetitive
intra-tracheal application of ECV and NF ECV on hypoxic pulmonary vasoconstriction and the capillary
filtration coefficient (Kfc) [19]. A detailed description is provided within the supplementary material.

Animals and e-cigarette vapour exposure
To generate e-cigarette vapour for animal exposure, Joyetech eVic-VTC Mini e-cigarettes (coil resistance:
0.15 Ohm, 4.1 V, 15–50 W, Riccardo Retail GmbH) were integrated into a custom-made “inExpose”
inhalation exposure chamber (SCIREQ Scientific Respiratory Equipment Inc., Montreal, Canada). This
automated system (FlexiWare 6.1, SCIREQ Scientific Respiratory Equipment Inc.) was set to inject one
60 mL puff·min−1 with a flow of 3 L·min−1 into the whole-body exposure chamber. Mice were randomly
allocated to the control group or the ECV or NF ECV exposure groups for 6 h·day−1, 5 days·week−1 for
8 months. Control animals were housed under otherwise identical conditions to those of the ECV/
NF ECV-exposed mice and were age- and sex-matched. Commercially available e-liquids (60% propylene
glycol, 30% glycerol and 10% water (Avoria GmbH, Nuremberg, Germany)) with (18 mg·mL−1) or
without (0 mg·mL−1) nicotine or flavouring were used. A MicroDust Pro (UT-CEL712, Casella
Measurements, Bedford, UK) device was integrated into the vapour exposure system for real-time
monitoring of aerosols. For conventional CS, the mice were exposed as previously described [17].

In vivo haemodynamics, lung function, micro-computed tomography imaging and echocardiography
Lung function and structure and pulmonary vascular function and structure were determined as described
previously [17, 20]. Heart function was measured by transthoracic echocardiography using a VEVO770 or
VEVO2100 system (Visualsonics, Toronto, Canada). In vivo micro-computed tomography (micro-CT)
images were acquired using a Quantum GX microCT Imaging System (PerkinElmer, Waltham, MA, USA)
as previously described [20].

Flow cytometry
Flow cytometry was performed with an LSRII flow cytometer (BD Biosciences) using the DIVA software
(BD Biosciences) as previously described [21, 22]. For detailed methods and the gating strategy, please
refer to the supplementary material.

Immunohistochemistry
Immunohistochemical staining was performed using 3-μm sections of mouse lungs [23]. CD3+ cells were
counted per section area of the lung. CD45+ cells were counted around vessels, septa and bronchi in
randomly selected fields according to the following scale: 0: small number of CD45+ cells; 1: moderate
number of CD45+ cells; and 2: many CD45+ cells. A detailed description is provided within the
supplementary material.

Multiplex assay
A custom-made mouse magnetic bead-based multiplex assay was used to analyse the levels of selected
inflammatory mediators in bronchoalveolar lavage fluid (BALF) according to the manufacturer’s protocol
(R&D Systems, Minneapolis, MN, USA).

Statistical analysis
Data are reported as mean±SEM. Statistical analyses using t-test or one-way ANOVA with Tukey’s post hoc
test were carried out using GraphPad Prism (GraphPad Software, San Diego, CA, USA). The combined
p-value of the in vivo lung function measurements was calculated by a meta-analysis using Fisher’s
method and the BisRNA R package (R Foundation, Vienna, Austria). Categorical analysis was done using
pair-wise Wilcoxon tests with continuity correction to evaluate the data from immunohistochemical
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staining of CD45+ cells. For comparison of the in vivo effects of ECV and NF ECV, binominal analysis
was performed using Binom.Dist in Microsoft Excel (Microsoft Corp., Redmond, WA, USA). For this
analysis, parameters were categorised as alterations either compatible or incompatible with pathological
changes seen in smoke-induced emphysema or PH using differences in mean values of the different
parameters.

Results
ECVE and NF ECVE differentially affected metabolic activity and proliferation of murine and human
cultured pulmonary cells
High-dose NF ECVE treatment decreased metabolic activity in isolated mATII cells and A549 cells only
(figure 1a, supplementary figure S1a), while ECVE treatment decreased metabolic activity in all epithelial
cell types and hPASMCs at high concentrations (100% ECVE; figure 1d, e; supplementary figure S1a).
Lower concentrations of ECVE but not NF ECVE (15%) that did not affect metabolic activity did diminish
the proliferation of mPASMCs and hPASMCs (figure 1c, f; supplementary figure S1b). Accordingly, only
15% ECVE decreased mPASMC and hPASMC confluence, without affecting migration or the number of
dead cells (supplementary figure S1c–g). Moreover, ECVE and NF ECVE did not show any cytotoxic
effects at any concentration (supplementary figure S2a–e) or induce apoptosis compared to the untreated
controls (supplementary figure S2f–j). In contrast, exposure to CSE decreased the metabolic activity of all
cell types (figure 1a, b, d, e; supplementary figure S1a), decreased cell confluence (supplementary figure
S1c, d) and migration (supplementary figure S1e, f ), induced cellular toxicity and increased apoptosis
(supplementary figure S2a–j). The paradoxical reduction in apoptosis in some of these experiments may be
explained by faster action of 100% CSE compared to 50% CSE (supplementary figure S2k).

ECVE and NF ECVE exposure changed gene expression patterns in a cell type-specific manner
Hypothesis-driven and non-hypothesis-driven approaches were used to study the ECVE and NF EVCE
effects on signalling pathways in mPASMCs and mATII cells. First, the expression levels of different
genes, which were changed specifically in vessels and/or septa after in vivo CS exposure [24], were
investigated in mPASMCs and mATII cells. Only ECVE and not NF ECVE increased the mRNA
expression of inducible nitric oxide synthase (Nos2) and cyclin A1 (Ccna1) specifically in mPASMCs
(supplementary figure S3a, b). Microarray analysis of ECVE- and NF ECVE-treated mATII and
mPASMCs revealed cell type-specific alterations of various pathways in these cells, largely independent of
the presence of nicotine in the vapour extract (figure 2a, b; supplementary figures S3c–f, S4a–i and
S5a–j). The most consistent regulation of genes after exposure to either ECVE or NF ECVE was an
upregulation of DAZ interacting protein 1-like (Dzip1l) in mATII and a downregulation of
UDP-N-acetylglucosamine pyrophosphorylase 1-like 1 (Uap1l1) and dipeptidyl peptidase 7 (Dpp7) in
mPASMCs (supplementary figure S3c–f ). Besides a general effect on metabolic pathways, we found
specific upregulation of glutathione metabolism in mATII cells (figure 2a) and downregulation of the
lysosomal pathways in mPASMCs (figure 2b). We confirmed these results by showing that the ratio of
reduced glutathione (GSH) to oxidised glutathione (GSSG) was decreased by the application of ECVE or
NF ECVE in mATII cells (figure 2c) and that protein expression levels of markers of the
autophagy-lysosome system, microtubule-associated proteins 1A/1B light chain 3B (LC3-II) and p62, were
decreased in mPASMCs (figure 2d, e).

ECV and NF ECV inhalation increased endothelial permeability
To investigate the effects of ECV and NF ECV on hypoxic pulmonary vasoconstriction and endothelial
permeability, we used an isolated perfused and ventilated mouse lung model. Repetitive application of
ECV or NF ECV via the trachea attenuated hypoxic pulmonary vasoconstriction in both the ECV and
NF ECV groups (figure 3a). However, only the inhalation of ECV (but not of NF ECV) increased the
capillary filtration coefficient (Kfc) as a measure of endothelial permeability (figure 3b).

Long-term exposure to ECV caused a pulmonary inflammatory response
To evaluate the immune response of the lung to ECV and NF ECV exposure, flow cytometry and
multiplex immunoassay analysis of BALF from mice exposed to NF ECV or ECV for 8 months were
performed (figure 4). The flow cytometry gating strategy is depicted in supplementary figure S6a.
Although there was only a trend towards an increase in the total number of cells in BALF from mice
exposed to ECV (figure 4a), there was a significant increase in the number of neutrophils (figure 4b,
supplementary figure S6b) and lymphocytes (figure 4c, supplementary figure S6b). Moreover, despite an
unchanged number of total macrophages after ECV or NF ECV exposure (figure 4d), only ECV
significantly shifted the macrophage population from resident macrophages to pro-inflammatory exudative
macrophages (figure 4e, f; supplementary figure S6b); NF ECV had no such effect.
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Multiplex screening of selected inflammatory mediators in BALF showed that ECV altered the levels of
C-C motif chemokine ligands (CCLs) in BALF (figure 4g). ECV decreased CCL3 while it increased
CCL8 and CCL12 levels, indicating an imbalance of recruitment and activation of different immune cells
[25–27]. In addition, ECV increased pro-inflammatory interleukin (IL) levels of IL-5, IL-13 and IL-16
(figure 4h), which promote autoimmune responses as seen in asthma [28], while NF ECV did not. In
contrast, ECV exposure decreased the level of IL-2 (figure 4h), the main driver of T-cell proliferation and
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FIGURE 1 Effect of in vitro nicotine-containing e-cigarette vapour extract (ECVE) or nicotine-free e-cigarette vapour extract (NF ECVE) exposure on
metabolic activity and proliferation. a, b) Cell metabolic activity of primary mouse alveolar type II (mATII) cells (a, n=6) and primary mouse
pulmonary arterial smooth muscle cells (mPASMCs) (b, n=5) after exposure to different concentrations of either NF ECVE, ECVE or conventional
cigarette smoke extract (CSE). Data are presented as percentage of control. c) Cell proliferation of mPASMC (n=8) after exposure to either 15%
NF ECVE, 15% ECVE, 5% CSE or control. Data are presented as percentage compared to control. d, e) Cell metabolic activity of primary human
bronchial epithelial cells (HBEpCs) (d, n=6) and primary human PASMCs (hPASMCs) (e, n=5) after exposure to different concentrations of either
NF ECVE, ECVE or CSE. Data are presented as percentage of control. f ) Cell proliferation of hPASMCs (n=6) after exposure to either 15% NF ECVE,
15% ECVE, 5% CSE or control. Data are presented as percentage compared to control. Controls were treated with medium without ECVE, NF ECVE
or CSE. Number of mATII cells, mPASMCs and hPASMCs represents independent isolations per group, number of HBEpCs represents independent
experiments per group. Statistical analysis was performed by one-way ANOVA with Tukey’s post hoc test. Significant p-values in comparison to
respective controls are presented. Data are presented as mean±SEM.
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differentiation, and anti-viral responses [29, 30]. Interestingly, only NF ECV increased the level of IL-33
(figure 4h), which promotes the production of Th2-associated cytokines [31]. Screening of other cytokines
and chemokines did not reveal any significant alterations (supplementary figure S7a–c). We also
investigated various matrix metalloproteinases (MMP) in BALF, which are known to be associated with
increased inflammation in COPD. ECV exposure increased MMP-9 and MMP-12 levels, while NF ECV
only increased MMP-9 in BALF from mice exposed to e-cigarette vapour for 8 months (figure 4i). Other
MMPs did not reveal any significant alterations (supplementary figure S7d).

To further investigate the effects of ECV and NF ECV on lymphocytes, which showed a change in the
initial screening by fluorescence-activated cell sorting (FACS) but were not characterised in detail, we
investigated CD45+ cell (leukocyte) and T-cell (CD3+) infiltration in lung sections. The
immunohistochemical staining of CD45+ cells revealed that ECV induced a higher accumulation of
leukocytes in the different compartments of the lung compared to NF ECV and confirmed the FACS data
by showing an increased number of CD3+ T-cells in the lung tissue of ECV-treated mice compared to
NF ECV-treated (figure 4j–l).

Long-term exposure to ECV resulted in structural and functional pulmonary changes without effects
on the lung vasculature
In vivo exposure of mice to ECV in our setup resulted in lower plasma concentrations of nicotine and
cotinine compared to conventional CS exposure (nicotine: 3.8±0.9 ng·mL−1 versus 16.0±3.0 ng·mL−1;
cotinine: 6.2±0.9 ng·mL−1 versus 50.7±7.4 ng·mL−1; supplementary figure S8a–c). During 8 months of
exposure, the mice made similar weight gains in all experimental groups (supplementary figure S8d). The
haematocrit was increased in mice after exposure to ECV for 8 months (supplementary figure S8e). Lung

glutathione (GSSG) in primary mATII cells exposed to either 15% NF ECVE, 15% ECVE, 2.5% cigarette smoke extract (CSE) or control medium
without ECVE, NF ECVE or CSE (n=8 each). d, e) Protein expression of p62 and microtubule-associated proteins 1A/1B light chain 3B (LC3-II),
normalised to the expression of β-actin, in primary mPASMCs exposed to either 15% NF ECVE, 15% ECVE or control medium without ECVE or
NF ECVE (n=4). Numbers represent independent isolations per group. For statistical analysis of c and d, one-way ANOVA with Tukey’s post hoc test
was used. Data are presented as mean±SEM.
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FIGURE 4 Effect of long-term in vivo exposure to nicotine-containing e-cigarette vapour (ECV) or nicotine-free e-cigarette vapour (NF ECV) on
pulmonary inflammation. a–d) Total number of cells (a), neutrophils (b), lymphocytes (c) and macrophages (d) in bronchoalveolar lavage fluid
(BALF) from mice exposed to NF ECV or ECV for 8 months. e, f ) Number of macrophages given for exudate macrophages (ExMAs) (e) and resident
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function parameters (figure 5a–d) showed a trend for being affected by ECV. Meta-analysis of p-values
from lung function (figure 5a: static compliance; figure 5b: resistance; and figure 5c: inspiratory capacity)
suggests that ECV induced significant functional alterations similar to CS-induced emphysema-like
changes (combined p=0.03); we did not detect significant differences in the NF ECV group. Moreover,
only exposure to ECV for 8 months induced significant structural alterations of the pulmonary
parenchyma, as determined by in vivo micro-CT imaging (figure 5e–g) and histological analysis (figure
5h–j), while NF ECV exposure did not show this result.

By contrast, after long-term exposure of mice to ECV or NF ECV, we did not detect statistically significant
alterations indicating induction of PH, which was assessed by haemodynamic measurements and
morphological analysis of the pulmonary vasculature (figure 6a–c). Accordingly, long-term exposure of
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FIGURE 6 Effect of long-term in vivo exposure to nicotine-containing e-cigarette vapour (ECV) or nicotine-free e-cigarette vapour (NF ECV) on the
pulmonary circulation in mice. a, b) Haemodynamic measurements (n=9–12): right ventricular systolic pressure (RVSP) (a) and systolic arterial
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Data are presented as mean±SEM.
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mice to ECV or NF ECV did not significantly affect the Fulton index (figure 6d) or right ventricular or
global heart function evaluated by echocardiography (figure 6e–h). Meta-analysis of p-values also did not
indicate any statistically significant effect of ECV or NF ECV on the pulmonary vasculature.

Although no significant effect of NF ECV on single measurement parameters was detected, binominal
analysis of parameters characterising the pulmonary airways/parenchyma indicated that the NF ECV group
was more affected than the control group and less than the ECV group (table 1). Furthermore, we detected
a significant difference between the NF ECV and ECV groups when performing a combined analysis of
the inflammatory and pulmonary airway/parenchymal parameters (combined p=0.031), supporting the
notion that nicotine promotes the effects of e-cigarette vapour on inflammation and airway/parenchymal
parameters.

Discussion
Our study provides evidence that ECV can induce acute and chronic lung damage. Although both ECV
and NF ECV affected functional and gene expression patterns in pulmonary cells in vitro and airway and
parenchymal parameters, only ECV significantly increased endothelial permeability ex vivo and promoted
inflammation and mild structural and functional pulmonary alterations in vivo, similar to CS-induced
alterations after long-term exposure. However, in contrast to CS exposure, we did not detect significant
pulmonary vascular alterations.

Our in vitro experiments showed that ECVE and NF ECVE reduce metabolic activity in specific cell types
only at high concentrations but are insufficient to induce cytotoxic effects or trigger apoptosis.
Furthermore, nicotine promotes the inhibitory effects of e-cigarette vapour on metabolic activity and
proliferation, the latter at least in PASMCs. Owing to the lack of general standardisation of e-cigarette
vapour generation, we are limited in our ability to compare other published studies with our data [32]. In
this regard, some studies reported no effect (regardless of the nicotine content and flavouring) of the
pad-collected e-cigarette extracts in CHO-K1/A549 cells [14], while another observed a dose- and
flavour-dependent decrease of CALU3 cell viability after e-cigarette vapour exposure [15]. Despite the

TABLE 1 Binominal analysis of parameters characterising lung airways and parenchyma and the pulmonary
vasculature

Control versus NF ECV Control versus ECV NF ECV versus ECV

Lung airways and parenchyma
Static compliance Compatible Compatible Compatible
Resistance Compatible Compatible Compatible
Inspiratory capacity Compatible Compatible Compatible
Air/tissue, lung density# Compatible Compatible Compatible
Airspace Compatible Compatible Compatible
MLI Compatible Compatible Compatible
Number of compatible changes (n) 6 6 6
Total number of analysed parameters (n) 6 6 6
p-value 0.031 0.031 0.031

Pulmonary vasculature
Heart ratio No change Not compatible Not compatible
RVSP Compatible Not compatible Compatible
RVWT Compatible Compatible Compatible
TAPSE Not compatible Not compatible Not compatible
Degree of muscularisation Not compatible Not compatible Not compatible
Number of compatible changes (n) 2 1 2
Total number of analysed parameters (n) 5 5 5
p-value >0.99 >0.99 >0.99

Binominal analysis of parameters characterising lung airways and parenchyma and the pulmonary vasculature.
“Compatible” indicates that the parameter was compatible with a certain pathology (smoke-induced
emphysema or pulmonary hypertension) (green); “not compatible” indicates that the parameter was not
compatible with a certain pathology (red); “no changes” indicates that the parameter was not changed (blue).
Binominal analysis was performed by using Binom.Dist in Microsoft Excel. NF ECV: nicotine-free e-cigarette
vapour; ECV: nicotine-containing e-cigarette vapour; MLI: mean linear intercept; RVSP: right ventricular systolic
pressure; RVWT: right ventricular wall thickness; TAPSE: tricuspid annular plane systolic excursion. #: dependent
parameters, regarded as one variable.
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more pronounced effect of ECVE on cellular functions, microarray analysis showed that exposure to
ECVE and NF ECVE changed gene expression patterns differentially in mATII cells compared to
mPASMCs but largely independent of nicotine content, suggesting that ECVE and NF ECVE trigger
transcriptional alterations with hitherto unknown functional relevance. In line with our microarray data, we
showed nicotine-independent downregulation of the GSH/GSSG ratio in mATII cells and of two proteins
involved in the autophagy-lysosomal pathway, LC3-II (an active lipid-modified form of LC3) and p62
(autophagy receptor), in mPASMCs. GSH depletion and decreased GSH/GSSG levels occur in many
different cell types secondary to CSE-induced oxidative stress [33, 34]. The relevance of the
downregulated lysosomal pathway in mATII cells remains unclear; however, alterations of lysosomal
pathways have been found to contribute to the pathogenesis of COPD [35].

Because acute respiratory distress syndrome (ARDS) has recently been associated with vaping [36], we
investigated the acute effects of ECV inhalation on endothelial permeability in isolated mouse lungs. ECV
but not NF ECV increased capillary permeability, indicating the effect of nicotine. Nicotine could directly
alter the function of vascular endothelial cells, PASMCs, airway epithelial cells and immune cells
expressing nicotinic acetylcholine receptors [37], thus promoting increased capillary permeability.
Although using oil-formulated tetrahydrocannabinol or cannabidiol in ECV was suggested to be associated
with vaping-induced ARDS, our data indicate that nicotine in e-cigarettes may contribute to ARDS
development [6, 7, 36–39]. Similarly, CS increases the risk of ARDS because of alterations in pulmonary
vascular permeability and endothelial barrier function [38]. In addition to endothelial permeability,
pulmonary vasoreactivity, in response to acute hypoxia, was affected by e-cigarette vapour, independent of
the presence of nicotine. This suggests that ECV or NF ECV may alter the endothelial release of
vasoactive mediators, similar to inhaled CS that reverses human hypoxic pulmonary vasoconstriction
through the NO–cGMP signalling pathway [40].

In accordance with our ex vivo studies, in vivo ECV or NF ECV treatment for 8 months showed different
effects related to the presence or absence of nicotine. Only exposure to ECV, not NF ECV, resulted in a
significant increase of inflammatory cells in the BALF, as well as of CD45+ in different compartments of
the lung. ECV exposure resulted in a significantly higher accumulation of CD3+ T-cells in the lungs
compared to NF ECV. In this regard, FACS analysis of BALF may be limited, because lymphocytes were
only identified by their scattering properties in our study and were not further characterised. BALF analysis
also showed that the presence of nicotine enhanced recruitment and activation of immune cells such as
T-cells, eosinophils and macrophages, indicated by increased CCL8 and CCL12 [25–27], and triggers an
inflammatory response similar to that seen in asthma, indicated by an increase in IL-5 and IL-13 [41, 42].
Therefore, one could speculate that ECV induces an allergic reaction and predisposes to bronchial
hyper-reagibility [28]. In line with our data, previous studies have shown that exposure to
nicotine-containing ECV alters lung inflammatory responses in mice after 3 days [43], 2 weeks [44] and
4 months [10] and in humans after 4 weeks [45], leading to macrophage-mediated inflammation [44] and
increased levels of pro-inflammatory cytokines [43]. Moreover, the presence of nicotine increases
lymphocyte levels in human BALF [44]. In our study, ECV significantly increased MMP-9 and MMP-12
levels in BALF, while NF ECV increased MMP-9 levels only. MMP-9 and MMP-12 are important
mediators associated with inflammation and the development of COPD [46, 47]. These findings align with
our in vivo study, demonstrating a more pronounced effect of ECV than NF ECV on pulmonary structural
alterations, which showed characteristics of CS-induced alterations, albeit less pronounced. Previous in vivo
studies suggest the development of emphysema [10], lung function alterations [48] or no effect [11] of
long-term ECV treatment in mice. However, differences in mice strains [10], age of mice [48] and daily
duration of ECV exposure [11] may explain discrepancies with regard to the severity of lung functional
and structural alterations.

Plasma nicotine levels of 3.8±0.9 ng·mL−1 in our study are comparable to low concentrations in human
e-cigarette users. In clinical studies, the levels of nicotine in the plasma of e-cigarette users vary from
∼1 ng·mL−1 to ∼50 ng·mL−1 depending on study design, the e-cigarette device etc. [49, 50]. Interestingly,
a prospective human study over 3.5 years did not find any functional or structural changes in nine subjects
who used e-cigarettes daily [51]; however, the exposure time was much lower compared to the mouse
model. Moreover, from our study, we cannot exclude a harmful effect of NF ECV because we found in the
distribution analysis of pathological values an effect of NF ECV compared to control. However, we did
not find a statistically significant difference for single parameters.

In contrast to lung function, airway and alveolar alterations, we did not detect pulmonary vascular
alterations indicating development of PH, a frequent comorbidity of COPD [2]. Previous investigations on
the impact of ECV on global heart function could not find any ECV-induced alterations after short-term
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(14 day) [52] and long-term (8 month) [11] exposure in mice. However, 8 months of ECV exposure
induced increased aortic stiffness [52]. A recent study using high doses of nicotine induced PH
development [53]. Thus, despite ECVE affecting PASMC in vitro, ECV in vivo did not induce pulmonary
vascular remodelling in our setting.

A study limitation is the relatively low number in the in vivo experiments and the isolated lung setup,
which may mask subtle changes in the different parameters assessed, especially regarding possible
differences between NF ECV and ECV. However, the finding of the pronounced effect of ECV in these
two independent experimental setups supports the conclusion that nicotine promotes the deleterious effects
of e-cigarette vapour.

In summary, we have shown that the presence of nicotine in e-cigarette vapour promotes acute endothelial
damage, pulmonary inflammation and chronic pulmonary functional and structural alterations. Although
research on e-cigarette use is hampered by the lack of standardisation in methods to produce and apply
e-cigarette vapour, this diversity may reflect the variety of human situations in which application depends
on e-liquid composition, puffing topography and e-cigarette characteristics [50].
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