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Abstract 
Background: Papers describing the results of a randomised trial 
should include a baseline table that compares the characteristics of 
randomised groups. Researchers who fraudulently generate trials 
often unwittingly create baseline tables that are implausibly similar 
(under-dispersed) or have large differences between groups (over-
dispersed). I aimed to create an automated algorithm to screen for 
under- and over-dispersion in the baseline tables of randomised trials. 
Methods: Using a cross-sectional study I examined 2,245 randomised 
controlled trials published in health and medical journals on PubMed 
Central. I estimated the probability that a trial's baseline summary 
statistics were under- or over-dispersed using a Bayesian model that 
examined the distribution of t-statistics for the between-group 
differences, and compared this with an expected distribution without 
dispersion. I used a simulation study to test the ability of the model to 
find under- or over-dispersion and compared its performance with an 
existing test of dispersion based on a uniform test of p-values. My 
model combined categorical and continuous summary statistics, 
whereas the uniform uniform test used only continuous statistics. 
Results: The algorithm had a relatively good accuracy for extracting 
the data from baseline tables, matching well on the size of the tables 
and sample size. Using t-statistics in the Bayesian model out-
performed the uniform test of p-values, which had many false 
positives for skewed, categorical and rounded data that were not 
under- or over-dispersed. For trials published on PubMed Central, 
some tables appeared under- or over-dispersed because they had an 
atypical presentation or had reporting errors. Some trials flagged as 
under-dispersed had groups with strikingly similar summary statistics. 
Conclusions: Automated screening for fraud of all submitted trials is 
challenging due to the widely varying presentation of baseline tables. 
The Bayesian model could be useful in targeted checks of suspected 
trials or authors.
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Introduction
Papers describing the results of a randomised trial often include a table that compares the randomised groups at baseline
(hereafter called a “baseline table”). This baseline table presents summary statistics that describe the groups, such as
average age and the percentage of males. The table’s purpose is to demonstrate that the randomisation produced similar
groups, which strengthens the case that any differences between groups are due to the randomised treatment.1 A baseline
table is recommended by the CONSORT guidelines, which were designed to improve the reporting of randomised trials.2

Researchers who fabricated randomised trials have been discovered because their baseline tables were not realistic.3–5

When fabricating the baseline table they created highly comparable groups that would pass peer review. In trying to avoid
raising alarms during peer review, they unwittingly raised an alarm at post peer review. Fraudulent researchers might also
create baseline data with unusually large differences between groups, likely because they do not understand how to create
realistic summary statistics when data are truly random.6 Fraudulent researchers may not be uncovered by one baseline
table alone, but an odd table might prompt a wider investigation.7

Fraudulent researchers have so far been found in ad hoc ways, including concerns being raised by whistleblowers and
researchers noticing strange patterns whilst reading papers in their field or conducting systematic reviews.8,9 Other
problems have been found by dedicated researchers trawling through papers. Manually extracting data from papers is
time consuming and automatic data extraction would be a useful advance.10 Automated detection algorithms would save
time and increase scrutiny.11,12

Previous statistical methods for finding problems in baseline tables have used the p-values from tests comparing groups at
baseline, and then tested if the distribution of p-values is uniform.13,14 However, it is possible to get a non-uniform
distribution of p-values when the two groups were randomised, for example, for skewed data.15 Another limitation with
this approach is that it can only use summary statistics of the mean and standard deviation for continuous variables,
so summary statistics using percentages are not included.16,17 This is a large loss as percentages are commonly used in
baseline tables. I aimed to create a method that could use summary statistics from both continuous and categorical
variables.

The aim of this paper is not to provide undeniable evidence for fraud. Baseline tables that appear to have a problem could
occur for a range of non-fraudulent reasons. These include planned or unplanned factors to dowith randomisation, such as
dynamic randomisation to create highly comparable groups, or subversion of the random allocation.18 Problems can also
be due to mislabelled summary statistics or reporting errors.11,14 My aimwas to create an automated algorithm that could
be used to flag potential problems at the submission stage, which would help researchers improve their paper prior to
publication.19

Methods
I report PubMed Central ID numbers to highlight examples without citing papers. The example baseline tables can easily
be examined by interested readers using the PubMed Central site (see extended data).

There are two parts to the methods and results: 1) The new Bayesian test for under- or over-dispersion, 2) The automated
extraction of baseline tables.

Baseline tables
An example of a baseline table from a randomised trial is shown in Table 1. The table compares the continuous variable of
age using the mean and standard deviation, and the categorical variable of gender using numbers and percents.

The key idea of this work is to use the summary statistics to examine if there is under-dispersion (the statistics are too
similar) or over-dispersion (the statistics are too different) given that the data are from a randomised trial. I combined

Table 1. Example of a baseline table comparing three randomised groups at baseline. This is illustrative data
and not from a real trial.

Treatment group

A (n = 20) B (n = 21) C (n = 22)

Age, mean (SD) 17.1 (4.4) 18.2 (3.8) 16.5 (3.3)

Gender, Male, n (%) 10 (50) 10 (48) 10 (45)

Female, n (%) 10 (50) 11 (52) 12 (55)

Page 3 of 23

F1000Research 2022, 11:783 Last updated: 30 MAY 2023



continuous and categorical or binary summary statistics from the baseline table by summarising the difference between
randomised groups using the independent samples t-statistic. It may be surprising to use the t-statistic to compare
categorical data like gender, but the t-test is robust in situations where the chi-squared test would be a common choice,
even for small sample sizes.20

I excluded rows from the baseline table that were the inverse of the previous row, for example the percentage
male followed by the percentage female. In this case the t-statistics for males and females would be perfectly negatively
correlated and including these results twice would artificially increase the sample size. I excluded rows where the
t-statistic was the inverse of the previous, but not where the t-statistic was zero. This approach only excludes rows that are
a perfect inverse and would miss other grouped results, such as rows for three age groups. The effect of including these
correlated table rows are examined in the simulation study.

I did not use summary statistics that were themedian and quartiles orminimum tomaximum, as I could not compare these
statistics using the parametric t-test.

I created t-statistics for all pairs of comparisons. For example, for the three-group trial in Table 1 there would be three
comparisons: A vs B, A vs C, B vs C.

Bayesian model of observed differences
The observed differences (d) in the summary statistics of randomised groups were modelled using a t-distribution.

di,j � t 0,σ2i,j,df i
� �

, i¼ 1,…,T , j¼ 1,…,ni,

where i is the trial index and j is the row in the table. The expected mean difference is zero, which should be the case for
randomised groups.

The pooled inverse-variance is the precision and was modelled as

σ�2
i,j ¼ s�2

i,j � γi,

where s2i,j is the reported pooled variance. The trial-level random variable γiwas used tomodel a difference in the precision
for trial i using a spike-and-slab approach21:

log γið Þ¼ 1�Pið Þ�0½ �þ Pi� ϵi½ �,

Pi �Bernoulli 0:5ð Þ,

ϵi �N 0,10ð Þ:

Each trial had a “switch” Pi ∈ (0, 1), that determined whether it is part of the spike or slab. The spike at zero, with Pi = 0,
was for trials where the differences between randomised groups were as expected (σ�2

i,j ¼ s�2
i,j ). The slab, with Pi = 1, was

for trials with under- or over-dispersion. This difference was modelled using a normal distribution where over-dispersed
results have a negative ϵi (andmultiplier under 1, γi< 1) and under-dispersed results have a positive ϵi (γi> 1). The variance
for this normal prior of 10 is small compared with typical vague priors in Bayesianmodels, but in preliminary modelling I
found this covered the full range of possibilities, including where the summary statistics were identical between
randomised groups, and variances larger than 10 caused convergence issues. The binary switch for each trial (Pi) was
modelled using a Bernoulli distribution.

For continuous data I used the difference in group means and pooled variance as follows (dropping the i and j subscripts
for simplicity):

d¼ x1� x2,

s2 ¼ 1=n1þ1=n2ð Þ n1�1ð Þs21þ n2�1ð Þs22
� �
n1þn2�2ð Þ ,
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where xg is the mean, sg the standard deviation, and ng the sample size in group g. For categorical data I used:

p1 ¼ r1=n1; p2 ¼ r2=n2,

d¼ p1�p2,

s2 ¼ n1�1ð Þp1 1�p1ð Þþ n2�1ð Þp2 1�p2ð Þ
n1þn2�2ð Þ ,

where rg is the numerator and ng is the denominator for group g.

The degrees of freedom (df) for trial i is the total sample size minus one (n1 + n2� 1), which allows for greater variance in
differences for smaller trials.

Two statistics can be used to judge whether a baseline table has under- or over-dispersion:

• The estimated trial-specific probability of under- or over-dispersion Pi ¼
PM

j¼1P
jð Þ

i =M, for which I examined a
threshold ofPi > 0:95 to flag a potential problem by averaging over theMMarkov chainMonte Carlo estimates.

• The estimated precision ϵi which indicates larger under- or over-dispersion for values further from zero. This is
also averaged over the Markov chain Monte Carlo estimates.

Established problematic trials
To examine how the method performed for trials that are very likely fraudulent, I used the trials published by Yuhji
Saitoh which were identified as problematic by Carlisle and colleagues.22 I extracted the baseline tables for the first ten
trials in date order and examined how the evidence of under- or over-dispersion accumulated over time. For comparison,
I calculated the existing uniform test of p-values.13 I calculated the statistics using continuous summary statistics only,
and for combining continuous and categorical summary statistics.

Simulation study
I used a simulation study to examine differences between the new Bayesian method using the t-distribution and the
existing method using p-values and the uniform distribution. I simulated data using two scenarios described by Bland15

with no concern about randomisation but where the p-value distribution would be non-uniform, meaning the uniform test
could return a high percentage of false positives:

• Small trials with a sample size of 10 and summary statistics using binary data (e.g., percent of males)

• Large trials with a sample size of 1,000 and summary statistics using skewed continuous data (e.g., length of
hospital stay)

As a comparison with the small binary scenario, I added a large binary scenario which would be expected to have more
uniform p-values due to the larger sample size:

• Large trials with a sample size of 1,000 and summary statistics using binary data

To examine the power of my Bayesian method to detect problematic tables, I used three additional scenarios that used a
50:50 mix of binary and continuous summary statistics and where the underlying data were:

• Under-dispersed: randomised groups were too similar. Achieved by copying half of the means and percentages
from one group to the other.

• Over-dispersed: randomised groups were too different. Achieved by adding a large number to the group means
or percentages.

• As expected for a randomised trial.
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To create realistic tables, simulation parameters were based on a large sample of baseline table data from my automated
extraction applied to PubMed Central (see extended data). These parameters were: the ratio of continuous:binary
summary statistics and the distributions of group sample sizes and table rows. The group sample sizes were randomly
generated using an exponentiated gamma distribution with shape of 11.2 and rate of 3.0, which gives a median sample
size of 37 and first to third quartile of 19 to 83. The number of rows per baseline table were randomly generated using a
gamma distribution with shape 2.2 and rate 0.15, which gives a median number of rows of 12 and first to third quartile of
7 to 19.

Summary statistics in baseline tables are often rounded, and hence I rounded the mean to one decimal place and the
standard deviation to 2 decimal places. To examine stronger rounding I rounded the mean to zero decimal places and a
standard deviation to 1 decimal place. Rounded statistics could create under-dispersion by concealing the differences
between groups.

To examine a scenario where the uniform test should perform well, I used a simulation with no dispersion, all continuous
summary statistics, and means rounded to 3 decimal places.

To examine the effect of including multi-group categorical data (e.g., low, middle, high income), I simulated categorical
data with three groups.

For all scenarios I created 500 simulated trials and each trial had two randomised groups with equal sample size.
I compared the statistics graphically using distributions of the p-values and t-statistics. For the existing uniform test,
I tested if the p-values for each study followed a uniform distribution using the Kolmogorov–Smirnov test, and counted
the number of simulations where the null hypothesis was rejected using the 0.05 threshold. Using my Bayesian model,
I examined the number of trials where the estimated probability of under- or over-dispersion (P) was higher than 0.95.

Automated extraction of baseline tables
To create a large and generalisable sample of baseline tables, I extracted tables from the National Library of Medicine’s
PubMed Central open access subset which has 3.7 million papers. The steps are outlined below and the complete code is
available on GitHub.23

I downloaded a list of published randomised trials from the trialstreamer web page24 using the PubMed Central ID
(PMCID). The trialstreamer data was downloaded on 9 August 2021 and had 57,109 trials with a PMCID. For logistical
reasons I reduced the full list to a random sample of 10,000.

I next accessed the available papers from the open access subset using the PMCID. All available papers were download in
XML format and read into R.

I excluded papers that were not randomised trials, including: i) trial protocols, and ii) papers that re-used trial data for other
study designs (e.g., diagnostic accuracy). This exclusion was made based on the title and abstract, but some protocols
were not identified in the title or abstract and hence were wrongly included.

The algorithm searched the full text for the baseline table using key words and phrases in all table captions. These words
included “baseline”, “characteristic” and “demographic”. I also searched for words and phrases in the caption that ruled
out baseline tables, such as “drug information” and “change from baseline”. The key words and phrases were found using
trial and error.

If a baseline table was found, then I extracted: all the summary statistics, the type of summary statistics (e.g., median or
percentage), and the group sample sizes. A challenging step was estimating what summary statistics were used in each
row of the baseline table. This was estimated based on the text in the rows and columns (e.g., “Mean”, “%”, etc) and the
variable label, as some variables such as age andBMIwere often continuous, whereas other variables such as gender were
categorical.

A key step was estimating the groups’ sample sizes. These were first estimated by searching the column and row
headers for key indicators such as “N=”. If no samples sizes could be found, then they were estimated from all
available percentages in the baseline table. These estimated sample sizes were only used if there was a strong agreement,
defined as an inter-quartile range of less than 1. For example, estimated sample sizes from four percentages of 65, 65,
65 and 64, would be acceptable and would use the mode of 65. A paper was excluded if the sample sizes could not be
extracted.
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Predictors of under- or over-dispersion
I applied my Bayesian model to all the baseline tables extracted from PubMed Central to give the probability of under- or
over-dispersion for each trial. I then examined whether there were study design characteristics associated with the
probability of under- or over-dispersion. I used a multiple linear regression model with a dependent variable of the study-
level probability of a non-zero dispersion (0≤Pi≤1), and independent variables that described the paper, study design and
features of the table. I included independent variables of the journal and country of first author, using a combined “other”
if a journal had fewer than 10 trials and a country fewer than 20 trials. For the study design, I included if the study was a
pilot (based on the title), a cluster-randomised trial (based on the title and abstract), or used the standard error of the mean
instead of the standard deviation (based on the baseline table). Features of the baseline table included as predictors were
the number of rows, number of columns, sample size, largest difference in sample size between groups, proportion of
continuous summary statistics and average number of decimal places for summary statistics. I selected a smaller subset of
key predictors from the larger set using the elastic net as a variable selection tool.25

Estimation
All the R code to extract the tables and run the Bayesian model is openly available https://github.com/agbarnett/
baseline_tables.23 An interactive version of my Bayesian model is available via shiny: https://aushsi.shinyapps.io/
baseline/. The Bayesian models were fitted using WinBUGS Version 1.4.326 for the paper and nimble version 0.12.127

for the shiny application. The Bayesian models used two chains with a burn-in of 2,000 followed by 2,000 samples
thinned by 2. The data management and plotting were made using R version 4.1.1.28

Ethical considerations
I used publicly available data that were published to be read and scrutinised by researchers and hence ethical approval was
not required.

Results
Established problematic trials
Example results applied to known problematic trials are shown in Figure 1, and show the new Bayesian method and
existing test based on the uniform distribution. The results are cumulative to show the effect of accumulating evidence,
which was 3 table rows in trial 1 up to 38 table rows for trials 1 to 10. Ten (26%) of these rows were categorical summary
statistics.

The Bayesian probability of under- or over-dispersion (Pi) using continuous and categorical data is 1 from the first trial
and remains at 1 for all ten trials, strongly signaling an issue with the tables. The Bayesian probability just using
continuous data is relatively high, but dips when trials 3 and 9 are added. The p-value from the uniform test is zero across
all ten trials, strongly signaling an issuewith the tables. However, the p-value gradually increaseswith accumulating trials
when using only continuous summary statistics, and was 0.09 when using all 10 trials.

The Bayesian precision shows that the summary statistics are under-dispersed and the 95% credible intervals narrowwith
accumulating evidence. However, when using only continuous summary statistics, the intervals widen greatly when
including trials 3 and 9 and the intervals include potential over-dispersion.

Simulation results
The results for the nine simulated scenarios are in Table 2. The uniform test performed well for the simulations that
used continuous data with minimal rounding or large binary data, with rejection rates close to the expected 5%. However,
it had high false positive percentages for the other five scenarios where there was no under- or over-dispersion, doing
particularly badly for small binary data and skewed data. The uniform test did have good power to detect under- and over-
dispersed data. Examples for single simulations are shown in the extended data and show the non-uniform distribution
when the data are skewed, small binary or rounded.

The Bayesian model rarely flagged trials where there was no under- or over-dispersion, hence there were few false
positives. The Bayesian model was successful at detecting trials that were over-dispersed, with 84.4% of the simulations
flagged at the 0.95 threshold. The model was less successful at detecting trials that were under-dispersed, with 16.0% of
the simulations flagged as under-dispersed at the 0.95 threshold.

Validation of automated table extraction
I validated my algorithm to extract baseline tables using manually-entered baseline data from randomised trials. To find
eligible trials I searched PubMed for randomised trials between 2017 and 2020 that were available open access on
PubMed Central and were not protocols, which gave 25,760 trials. A random selection of 200 trials was made, with the
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Figure 1. Results from the Bayesianmodel and uniform test of p-values applied to a set of knownproblematic
trials. The results are cumulative to highlight the effect of accumulating evidence over time.

Table 2. Results for the simulation study. Percentages of simulated trials that were not flagged or were
flagged as under- or over-dispersed using a > 0.95 probability threshold, and a test of uniformity for the
p-value distribution using a < 0.05 threshold.

Simulation type Uniform test rejected (%)
As expected/Under-dispersed/
Over-dispersed (%)

Simulated data that is not under- or over-dispersed

Continuous, minimal rounding 6.0 100/0/0

Large binary 5.6 99.6/0.4/0

50:50 binary:continuous 18.6 99.8/0/0.2

Rounded 21.2 97.0/0/3.0

Correlated categorical 27.4 97.4/2.0/0.6

Small binary 31.6 98.4/1.6/0

Skewed 43.8 98.8/1.0/0.2

Simulated data that is under- or over-dispersed

Over-dispersed 74.6 13.6/2.0/84.4

Under-dispersed 95.0 84.0/16.0/0
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results compared between the algorithm and manually entered data. 118 papers were excluded by the algorithm, with the
three most common reasons because the paper was not openly available (n = 48), there was no baseline table (n = 36), or
there was no comparison between groups in the table (n = 16). A further 9 papers could not be compared because the
manually entered data were judged not to be randomised trials. This left 73 baseline tables to compare.

Detailed comparisons of the algorithm and manual results are in the extended data. In summary, my algorithm correctly
determined the summary statistic 87% of the time (795 out of 909; 95% CI: 85% to 90%). The biggest differences were
when the algorithm wrongly chose continuous for a median (2%) or could not chose any statistic when the row was a
percentage (5%). The algorithm was able to extract the sample size, with a mean difference of 0 (5% to 95% percentile:
0 to 0). The algorithm accurately estimated the size of the baseline table, with a median difference of 0 (5% to 95%
percentile: –1 to 4) for the number of rows, and 0 (5% to 95% percentile: 0 to 0) for the number of randomised groups.

The accuracy of the algorithm is reasonable given the large variety in the presentation of baseline tables, an issue that has
been flagged by others.29 Failures of the algorithm sometimes meant the table data were excluded as the algorithm could
not extract the numbers, this means that I was not able to completely screen the literature. Failures when the wrong data
were extracted, for example wrongly extracting a total column as a randomised group, sometimes led to the trial being
flagged by my model and I examine this issue in the next section.

Results for PubMed Central trials
The majority of the 10,000 potential trials were excluded (Table 3). The three most common reasons were:

• there was no baseline table or one could not be detected by my algorithm,

• the XML file was not available despite being on the open access PubMed Central database,

• it was not a randomised trial.

There were 2264 included trials with a total of 72,090 table rows. The median number of rows per baseline table was
15 and the median number of columns was 2. The central 50% of publication dates were between 15 June 2016 and
15 June 2020. The summary statistics extracted from the baseline tables of the included trials are in Table 4.

After excluding summary statistics that were medians and ranges, which cannot be compared using t-statistics, and
excluding perfectly correlated table rows, there were 2245 trials with 52,615 table rows available for the Bayesian model.
There were a relatively large number of trials that had baseline tables that were over-dispersed: 18.3% for the 0.95
threshold. There were fewer trials that were flagged as under-dispersed: 3.6% for the 0.95 threshold.

The t-distributions for three trials that were flagged as over-dispersed (Pi ¼ 1,ϵi < 1) are plotted in Figure 2. For
comparison, three randomly selected trials with no dispersion (Pi ¼ 0) are also plotted. The three flagged trials were

Table 3. Number of excluded trials and reasons for PubMed Central trials.

Reason n Percent

No baseline table 2824 37.4%

Full text page not available 2127 28.2%

Not a randomised trial 1547 20.5%

No sample size 408 5.4%

Just one column in table 304 4.0%

Follow-up results in baseline table 162 2.1%

Just one sample size 72 1.0%

Pre-post comparison 43 0.6%

Single-arm study 43 0.6%

Atypical table layout 14 0.2%

Could not detect statistics 9 0.1%

Total 7553 100.0%
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selected using the smallest multiplier of the precision (ϵi) and hence show the most extreme over-dispersed trials.
For each trial there are a small number of extremely large t-statistics.

Two trials that are flagged as over-dispersed are due to errors in the data extraction algorithm (PMC7553102 and
PMC7301747). For PMC7553102 the bottom five rows of the table were wrongly assigned by the algorithm as
continuous instead of percentages which creates t-statistics over 200. The result for PMC7301747 is an example of
where an error in my data extraction creates a false impression of variability. The error occurs due to large numbers such
as “15,170 (7,213)”which my algorithm extracts as three statistics: 15170, 7 and 213, instead of the correct two statistics:
15179 and 7213. This is because a comma is used both for large numbers and as a separator of two statistics such as a
range. The t-statistic for this row is over 1,000 and hence the trial is flagged as over-dispersed.

The baseline table in trial PMC7302483 had a complex layout with four summary statistics per group in four separate
columns, which the algorithm interpreted as separate groups rather than summary statistics for the same group.

Table 4. Summary statistics from the baseline tables of PubMed Central trials. The first column indicates if the
statistics were included in the tests of under- or over-dispersion.

Included Statistic n Percent

Yes Percent 37,229 52

Continuous 27,539 38

Number 2816 4

Confidence interval 38 <1

No Median 4212 6

P-value 206 <1

Range 50 <1

Total 72,090 100

Figure 2. Example t-distributions for three trials flagged as over-dispersed. For comparison there are three
randomly selected trials that were not flagged. The scales on the count axes differ by trial. The panel headings show
the PubMed Central ID number.
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The t-distributions for three trials that were flagged as under-dispersed (Pi ¼ 1,ϵi > 1) are plotted in Figure 3. One study
flagged as under-dispersed had an error where a mean was outside the confidence interval (PMC7259582), which meant
the summary statistics were not recognised as a confidence interval and were instead wrongly guessed as a mean and
standard deviation.

One flagged study was not a randomised trial but was a case–control study with an age and gender matched control group
(PMC2176143), hence it was not surprising that the summary statistics in the baseline table were very similar.

One trial labelled proportions as percentages and hence it appeared as if there were lots of zero percentages which meant
the two randomised groups appeared highly similar (PMC7578344).

The most extreme results in terms of under- and over-dispersion were often failures in the algorithm’s data extraction,
sometimes due to poor reporting. Hence, I next examine less extreme results by excluding flagged trials that are in the tails
of the precision distribution (ϵ), which were the extremely under- or over-dispersed results (see extended data for the
distribution). All flagged trials have a probability of under- or over-disperion of 1 (Pi ¼ 1).

Three further examples of over-dispersion are in Figure 4. One trial stratified the randomised groups by severity which
created large between group differences and hence the over-dispersion (PMC4074719).

A trial that was flagged as over-dispersed had standard deviations for height that were zero (PMC6230406). This is likely
a reporting error as zero standard deviations would require all participants to have exactly the same height.

One study was not a trial but was an observational study with some very large differences between groups at baseline,
with 4 absolute t-statistics larger than 10, including a table row that was labelled as not significantly different based on a
Mann–Whitney test but had a t-statistic of 19 (PMC6820644).

Three examples for under-dispersion using the lower threshold of a multiplier are in Figure 5. All three trials have
strikingly similar summary statistics, with all six t-statistics within –0.4 to 0.4 (PMC5863571), all twelve t-statistics
within –0.7 to 0.5 (PMC7245605), and all five t-statistics within –0.2 to 0.6 (PMC7443541). One trial (PMC7443541)
appeared to exclude two participants, potentially based on their baseline values, which may partly explain the under-
dispersion.

Figure 3. Example t-distributions for three trials flagged as under-dispersed. For comparison there are three
randomly selected trials that were not flagged. The scales on the count axes differ by trial. The panel headings show
the PubMed Central ID number.

Page 11 of 23

F1000Research 2022, 11:783 Last updated: 30 MAY 2023



Predictors of under- or over-dispersion
I examined which study design features were associated with the trial-specific probability of under- or over-dispersion
(Pi). The five predictors selected by the elastic net approach are in Table 5. The variables not selected were: number of
table rows, pilot trial, block randomisation, average number of decimal places, journal, and first author’s country.

Figure 4. Example t-distributions for three trials flagged as over-dispersed after excluding themost extreme
results. For comparison there are three randomly selected trials that were not flagged. The scales on the count axes
differ by trial. The panel headings show the PubMed Central ID number.

Figure 5. Example t-distributions for three trials flaggedasunder-dispersedafter excluding themost extreme
results. For comparison there are three randomly selected trials that were not flagged. The scales on the count axes
differ by trial. The panel headings show the PubMed Central ID number.
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The probability of under- or over-dispersion was much higher in baseline tables that wrongly used the standard error of
the mean instead of the standard deviation. This is as expected given that the standard error will be far smaller than the
standard deviation and hence small differences could look like over-dispersion.

The probability of under- or over-dispersion increased when there were large differences in group sample sizes. An
examination of examples of these trials found that some were not a simple comparison of, for example, treatment versus
control (two columns), but included subgroups, such as gender or disease severity. These strata will likely create over-
dispersion as the comparisons are no longer between randomised groups.

The probability of under- or over-dispersion increased when the baseline table had a greater proportion of continuous
variables. This is likely because of the greater statistical power for continuous variables compared with categorical.
Similarly the probability increased with greater sample size and more columns, which both increase the statistical power.
The number of rows in the table was not selected, but in a separate simulation I confirmed that—as expected—the power
to detect under-dispersion increased for larger tables (see extended data).

No journals or countries were selected by the elastic net variable selection, meaning nonewere associatedwith dispersion.
However, the total number of trials were small for most journals and some countries, which reduces the statistical power.
The largest number of trials for a single journal was 85.

Discussion
Statistical methods
In the simulation study, my Bayesian model based on the distribution of t-statistics outperformed the test using the
distribution of p-values. Mymodel dealt well with data that was skewed and categorical, or where the summary statistics
were rounded, whereas the uniform test often wrongly flagged these trials as under- or over-dispersed.

The uniform test had a high false positive percentage because it is overly sensitive to small departures from the
uniform distribution. Skewed or categorical data can cause spikes in the p-value distribution, causing the uniform test
to be rejected even for randomised data. The Bayesian model using t-statistics is less sensitive to small departures as
it examines the variance of the distribution, which is a summary statistic of the distribution rather than the entire
distribution.

A previous simulation study similarly found that p-values in a baseline table for categorical data can be non-uniform even
for trials that were randomised, and hence recommended against including categorical data.17Mymodel using t-statistics
can use continuous and categorical summary statistics, and as 56%of summary statistics in thePubMedCentral datawere
numbers or percentages (Table 4) this greatly increases the available data. The advantage of using both categorical and
continuous summary statistics was shown in the example using known problematic trials, where the continuous-only
results had lower probabilities and much greater uncertainty (Figure 1).

Automated extraction and testing of baseline tables
My automated algorithm was able to flag baseline tables that would be worth querying with the authors during journal
peer review. However, this was not always due to under- or over-dispersion, but was sometimes because of an error in the
table, because the authors had mislabelled their study as a trial, or because of the exclusion of valid data (PMC7443541).
Flagging these issues with authors at the submission stage could reduce errors and improve reporting. Arithmetic and
calculation errors were considered an important and common mistake by medical journal editors.30

Table 5. Estimated predictors of the probability of under- or over-dispersion showing the mean change in
probability and 95% confidence interval (CI).

Predictor Mean CI

Standard error 0.30 0.19 to 0.40

Difference in group sample sizes of 10+ 0.13 0.09 to 0.16

Proportion continuous (0.0 to 1.0) 0.10 0.06 to 0.14

Number of table columns (+1) 0.09 0.07 to 0.11

Sample size (per doubling) 0.03 0.02 to 0.04
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At times my algorithm flagged papers where the baseline table was not a baseline table for a randomised trial,
but was a study that re-used the data from a trial. For example, a study which examined responders and non-
responders to a randomised treatment, and the table compared non-randomised groups meaning over-dispersion is likely
(PMC7660513). It is challenging to exclude these studies using automation as the abstract and title naturally talk about the
randomised trial. Any automated flags raised for papers like this would need to be filtered by a person, or the authors
whose study was flagged could simply explain that it was not a randomised trial. An automated algorithm to detect fake
papers containing “tortured phrases” used a two-stage (or semi-automated) approach, where results that are flagged by an
algorithm need to be checked by a person.31

Publishers have trialled automated algorithms to check statistics and reporting completeness.32–34 If applied by a
publisher, my algorithm could be adapted to suit the publisher’s style; the current algorithm tried to cover all journals.
The statistics that control which papers are flagged (Pi and ϵi) could be tuned with experience to reduce false positives.

My algorithm flagged some trials that were under-dispersed with a striking similarity in the baseline characteristics of
randomised groups. Flagging trials where the baseline table is under-dispersed might protect journals from publishing
fraudulent papers, as this has been a clue in previous fraud investigations.35 It is better to prevent the publication of
fraudulent papers, as post-publication retractions can be long and costly.5 A study of randomised trials submitted to the
journal Anaesthesia, estimated that around one quarter of trials had false data that was problematic enough to invalidate
the trial.5 Research fraud may be increasing due to fierce competition for funding and promotion that often depend on
publication counts.36

Improved reporting
There were many potential trials that were excluded because they were not randomised trials (Table 3). Two key reasons
for this were poor reporting in the title and abstract,37 and studies that re-used data from a trial in other study designs
(e.g., PMC6761647). Some baseline tables were excluded or flagged as under- or over-dispersed because of atypical
descriptions in the caption or because of complex formatting in the table. There is a great variance across journals in how
baseline tables are reported, including varied uses of symbols, labels and punctuation. Ideally commas would not be used
to separate two numbers as they are also used to indicate thousands and millions.

I foundmanymistakes in baseline tables, some of whichmeant the trial was flagged as under- or over-dispersed.Mistakes
included misreported statistics (e.g., continuous summary statistics labelled as percentages), missing labels, typograph-
ical errors, means reportedwithout standard deviations, zero standard deviations, incorrect confidence intervals, incorrect
p-values, and percentages that did not match the numerator divided by the denominator. Researchers should take more
care and accurately report their results.38

Greater use of standardised reporting—such as recommended by CONSORT—would increase the amount and
accuracy of data that can be captured using automation. Even supposedly simple statistics such as age and gender were
inconsistently presented in baseline tables, and a previous study similarly found highly varied reporting in age and gender
in the clinicaltrials.gov database.29 Publishers who wanted to use my algorithm to screen trials may need to provide more
guidance to authors, although journal editors have raised concerns that authors rarely read instructions,39 and there is no
systematic study of whether journal instructions are read.40

Relation to previous work
Carlisle plotted the distribution of standardised mean differences for continuous summary statistics from randomised
trials and graphically compared the distribution to a standard normal to visually check for under- or over-dispersion.41

A number of automated algorithms have been created to detect numerical problems in papers, including statcheck for
p-values42 and SPRITE for summary statistics.43 An automated check of p-values and confidence intervals found up to
5% had large errors, suggesting there are likely tens of thousands of published papers containing undetected errors.44

These automated checks had a similar motivation: to automate the laborious process of checking numerical results and
improve the quality of published papers and/or correct errors in published papers.

Limitations and extensions
Aprevious study found that 92% of trials included a baseline table,1 whereas my algorithm only extracted a baseline table
for 25% of trials, hence I very likely excluded eligible trials where the algorithm did not detect a baseline table. Often this
was because the baseline table was in graphical format meaning the table could not be extracted. There were other
exclusions where the study was not a randomised trial, and hence no baseline table was included. There were also trials
that did not include a baseline table (e.g., PMC3574512).

Page 14 of 23

F1000Research 2022, 11:783 Last updated: 30 MAY 2023

http://clinicaltrials.gov


I assumed one sample size per group, but there were tables where the sample size varied by row (e.g., PMC7086156) and
hencemy calculated t-statistics will be inaccurate. Some trials hadmultiple baseline tables (e.g., PMC7908111), however
I just used the first table. Some baseline tables were in an appendix and I only extracted tables from the main text in XML
format.

In the simulation study, I assumed a that 50% of statistics were copied when the data were under-dispersed, but fraudsters
may copy fewer statistics on average or use an entirely different process for falsifying data.

I report whether a baseline table has a potential problem, but make no attempt to differentiate between fraud and honest
errors.35,45 Checking for fraud needs to be done by examining other details, such as ethics clearances, plausible
recruitment rates, and other work by the same authors. However, my automated check could still be a useful flag when
papers are submitted.46

I used t-statistics to test for issues in baseline tables, but other methods could be applied such as Benford’s law.35,47

Statistical approaches have been used to detect fraud in trials using individual patient data.3,6,48 Problems can be more
accurately detected in individual data than summary statistics and this also avoids any rounding errors.5,6 My approach
could be extended to examine the dispersion in individual data at baseline, which would greatly increase its ability to
detect under- or over-dispersion.5 Journals could request that authors provide the underlying trial data at submission to
perform detailed checks.49,50 Authors may raise concerns about participant confidentiality and data security,51 but many
data sets in health collect anonymised data and authors need not commit to openly sharing their data or sharing any
variables that include personal information.

I have created a shiny app where researchers can upload the summary statistics for a trial to examine the distribution of
t-statistics and get the results frommyBayesianmodel https://aushsi.shinyapps.io/baseline/. This app should be useful for
researchers who are concerned about particular papers.

Conclusions
My automated algorithm is potentially useful as an initial screening of randomised trials, but needs human validation of
the trials that are flagged as under- or over-dispersed as the automated data extraction is imperfect. Similar automated
tools are likely to become more widely used as journals struggle to find reviewers due to increasing submission numbers
and over-burdened reviewers.52

Data availability statement
Underlying data
Zenodo: baseline tables. https://doi.org/10.5281/zenodo.6647853.53

This project contains the following underlying data:

• simulated_data_bland.RData. The simulated trial data.

• trialstreamer.RData. The trials identified by trialstreamer and downloaded from PubMed Central.

• hand_entered_data.RData. The manually entered data used in the algorithm’s validation.

Data are available under the terms of the Creative Commons Attribution 4.0 International license.

Extended data
• Github: “Supplement: Automated detection of over- and under-dispersion in baseline tables in randomised

controlled trials” (baseline_tables_supplement.docx)

• Github: “Algorithm validation: Comparison of the statistics extracted from baseline tables by the algorithm and
manually” (3_compare_algorithm_hand.docx)

This project contains the following extended data: https://doi.org/10.5281/zenodo.6647853.
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Reporting guidelines
Repository: STROBE checklist for “Automated detection of over- and under-dispersion in baseline tables in randomised
controlled trials”. https://github.com/agbarnett/baseline_tables/tree/main/checklist.
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Jack Wilkinson   
Centre for Biostatistics, Faculty of Biology, Medicine, and Health, University of Manchester, 
Manchester, UK 

The paper describes an automated approach to extracting baseline tables from RCTs and testing 
for under or over-dispersion. The work is timely, as there is currently lots of interest in and 
awareness around the issue of fabricated RCT data. Efficient methods to flag trials with apparent 
problems are needed – as the author notes, manual checking of published papers (as well as of 
the underlying individual participant data, if an investigation proceeds to that stage) is very time-
consuming. My view of the work is positive – below I make some comments on applicability of the 
comparison between the new approach versus the approach based on uniformity of p-values.

The uniform test has been applied to binary variables in the simulation study – as the 
author notes, this is incorrect – and we probably don’t need another simulation study to tell 
us this. A more useful comparison might have been to compare the t-statistic method (on all 
variables) to the uniform p-value method applied to continuous variables only. Do we miss 
any studies using the uniform method because we have to omit binary variables? As it 
stands, we appear to have a comparison between the new approach and the uniform p-
value approach applied to variables which are not suitable. Since one of the possible 
strengths of the new method is that it allows binary variables to be inspected, it would have 
been useful to know whether including them (vs dropping them with the uniform p-value 
method) actually led to different results. 
 

○

Aside from the test of dispersion, the ability to reliably extract baseline table results would 
itself be very useful. This could be used to apply other checks (e.g. GRIM, checking accuracy 
of reported p-values, checks of digit preference) and if it could be done on a large scale, 
could facilitate identifying duplication between tables. So the ability of the tool to reliably 
extract this information is of interest. This appears to be challenging – tables were extracted 
from 25% of papers, when they will probably be reported by nearly all of them. Still, as 
someone who investigates a lot of papers for integrity issues, the ability to automatically 
extract for 1 in 4 papers would be welcome. 
 

○

The paper mentions ‘dynamic randomisation’ as a challenge to investigating dispersion – ○
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not sure what specifically was meant by this term, but any method for creating balance in 
baseline characteristics will cause issues here (stratified randomisation, minimisation). 
However, when looking at study features associated with dispersion, this sort of covariate-
adaptive randomisation doesn’t appear to have been considered – blocked randomisation 
has been considered, but this balances group sizes, rather than covariates. 
 
As presented, results in Table 5 may be misleading (due to ‘Table 2 fallacy’ - Table 2 Fallacy: 
Presenting and Interpreting Confounder and Modifier Coefficients | American Journal of 
Epidemiology | Oxford Academic (oup.com)). 
 

○

Various limitations of the approach are helpfully documented by the author. 
 

○

The suggestion to focus on t-statistics is interesting, and is a useful contribution to the 
ongoing methodological work on this topic. There remains considerable scope to evaluate 
the approach, and to consider how it might sit alongside other approaches for integrity 
checking.`

○
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Are all the source data underlying the results available to ensure full reproducibility?
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Are the conclusions drawn adequately supported by the results?
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This paper addresses the important problem of the detection of fraudulent RCTs. The basic idea is 
to analyze the baseline table or “table 1” and test if the group differences are either too large or 
too small. The author cites previous work on this approach. 
 
The novelty of the paper is to propose a Bayesian model that can switch between the distribution 
of the differences between the groups that would be expected from chance alone, versus and 
over- or underdispersed distribution that would result from manipulation. For numerical 
outcomes the central t-distribution is appropriate when there is no fraud, and over- or 
underdispersion can be modelled by multiplying the dispersion with some trial-specific factor 
(gamma). Somewhat surprisingly, the t-distribution is also used for categorical outcomes with the 
author mentioning that the t-test is robust even for small sample sizes. 
 
A minor comment is that the prior probability of fraud is taken to be 50%, which seems rather 
pessimistic. 
 
I do have one serious reservation which led me to report that the statistical analysis and 
interpretation are "partly" appropriate. Although it is not mentioned explicitly, it seems that the 
Bayesian model assumes that the variables in the baseline table are independent, or at least 
uncorrelated. This does not seem realistic. Suppose the baseline table has, among other variables, 
age and blood pressure. If, by chance, a large number of old people are selected in group A, then 
it is likely that group A will also have a large number of people with high blood pressure. 
 
Independence certainly does not hold among the pairwise group differences when there are more 
than 2 groups. Now, I’m worried that the dispersion parameter will pick up on this dependence, 
which could result in the false detection of fraud. 
 
From the description of the simulation experiment, it seems that the variables were independently 
generated. It would be important to also examine scenarios with varying degrees of dependence. 
 
The result from the simulation study (p.7) that underdispersion was detected in only 16% of the 
cases is a little disappointing. Especially since underdispersion seems more likely than 
overdispersion as fraudsters presumably want their Table 1 to look beautifully balanced. 
 
Finally, I always recommend the paper of Morris et al., when I review a simulation study that does 
not cite it already1. 
 
References 
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Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I am a statistician at a university hospital.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 23 Sep 2022
Adrian Barnett 

A minor comment is that the prior probability of fraud is taken to be 50%, which seems rather 
pessimistic. 
 
Response: Yes, this could be viewed as pessimistic. When considering a single trial, it has 
the least amount of prior information, because it gives equal probability to both scenarios: 
dispersion and no dispersion. However, there may be prior knowledge about the expected 
probability of dispersion which could be lower, say 0.10. I have updated the shiny app to 
allow users to give their own prior probability. 
 
I do have one serious reservation which led me to report that the statistical analysis and 
interpretation are "partly" appropriate. Although it is not mentioned explicitly, it seems that the 
Bayesian model assumes that the variables in the baseline table are independent, or at least 
uncorrelated. This does not seem realistic. Suppose the baseline table has, among other 
variables, age and blood pressure. If, by chance, a large number of old people are selected in 
group A, then it is likely that group A will also have a large number of people with high blood 
pressure. 
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Independence certainly does not hold among the pairwise group differences when there are more 
than 2 groups. Now, I’m worried that the dispersion parameter will pick up on this dependence, 
which could result in the false detection of fraud. 
From the description of the simulation experiment, it seems that the variables were independently 
generated. It would be important to also examine scenarios with varying degrees of dependence. 
 
Response: I have added three new simulations that examine correlated data. I simulated 
correlated continuous data, such as age and blood pressure, with separate simulations for 
correlation strengths of low (0.2) and high (0.6). I also added a simulation with 3 treatment 
arms. None of these simulations had over- or under-dispersion, so they were used to check 
for false positives. The Bayesian model did have an inflated false positive percentage for the 
high correlated data of 11%. However, it performed well for the 3-arm simulation, whereas 
the uniform test again had a high false positive probability of 23%. 
 
As per the recommended paper of Morris, it is: “useful to have unrealistically extreme data-
generating mechanisms to understand when and how each method fails”. Trials with only 
multiple continuous variables with a correlation of 0.6 are not “unrealistically extreme”, but 
are likely rare. However, knowing that the approach can return false-positives in this 
scenario is useful to know, and I have added a comment on this to the discussion. 
Overall, I believe the new simulations show that the Bayesian method is relatively robust to 
correlated data. 
 
The result from the simulation study (p.7) that underdispersion was detected in only 16% of the 
cases is a little disappointing. Especially since underdispersion seems more likely than 
overdispersion as fraudsters presumably want their Table 1 to look beautifully balanced. 
 
Response: I agree this is a disappointing result. This lack of power can be somewhat 
overcome by combining tables from the same author or research group, as per the example 
in Figure 1. I have also mentioned this disappointing result in the discussion. 
 
Over-dispersion is generally easier to detect, because it is unbounded, and even one row of 
the table with a large difference could mean a high probability of over-dispersion. Whereas 
under-dispersion is bounded at zero, and hence generally needs multiple table rows with 
small differences to increase the probability of under-dispersion. 
 
Finally, I always recommend the paper of Morris et al., when I review a simulation study that does 
not cite it already. 
 
Response: Thanks for recommending this paper. I have heeded the advice of Morris et al. 
and included the standard error of the uncertainty in a supplemental plot and added some 
information justifying the sample size.  
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