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Interstitial fibrosis, tubular atrophy, and inflammation are major contributors to kidney allograft 

failure. Here we sought an objective, quantitative pathological assessment of these lesions to 

improve predictive utility and constructed a deep-learning–based pipeline recognizing normal vs. 

abnormal kidney tissue compartments and mononuclear leukocyte infiltrates. Periodic acid– Schiff 

stained slides of transplant biopsies (60 training and 33 testing) were used to quantify pathological 

lesions specific for interstitium, tubules and mononuclear leukocyte infiltration. The pipeline was 

applied to the whole slide images from 789 transplant biopsies (478 baseline [preimplantation] 

and 311 post-transplant 12-month protocol biopsies) in two independent cohorts (GoCAR: 404 

patients, AUSCAD: 212 patients) of transplant recipients to correlate composite lesion features 

with graft loss. Our model accurately recognized kidney tissue compartments and mononuclear 

leukocytes. The digital features significantly correlated with revised Banff 2007 scores but were 

more sensitive to subtle pathological changes below the thresholds in the Banff scores. The 

Interstitial and Tubular Abnormality Score (ITAS) in baseline samples was highly predictive 

of one-year graft loss, while a Composite Damage Score in 12-month post-transplant protocol 

biopsies predicted later graft loss. ITASs and Composite Damage Scores outperformed Banff 

scores or clinical predictors with superior graft loss prediction accuracy. High/intermediate risk 

groups stratified by ITASs or Composite Damage Scores also demonstrated significantly higher 

incidence of estimated glomerular filtration rate decline and subsequent graft damage. Thus, our 

deep-learning approach accurately detected and quantified pathological lesions from baseline or 

post-transplant biopsies and demonstrated superior ability for prediction of post-transplant graft 

loss with potential application as a prevention, risk stratification or monitoring tool.
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Kidney transplantation is the treatment of choice for patients with end-stage renal 

disease (ESRD).1 Interstitial fibrosis and tubular atrophy and inflammation are considered 

major contributors to post-transplant kidney allograft failure irrespective of etiology of 

injury.2 Currently interstitial fibrosis and tubular atrophy and inflammation are graded 

by pathologic assessment of biopsies. While cumulative injury represented as categorical 

Banff scores have been associated with post-transplant graft function and survival, these 

have intermediate sensitivity for graft failure prediction in any given biopsy, due to 

interobserver and intraobserver variability.3 Prediction of long-term graft survival remains a 

major challenge. Post-transplant factors, such as the rate of decline of estimated glomerular 

filtration rate (eGFR) up to 2 years4,5 have shown predictive ability. However, factors 

obtained early post-transplantation that predict longer-term post-transplant course would 

offer distinct advantages for identifying patients at risk for graft loss and therefore, 

potentially guide subsequent patient management.

Recently, deep-learning–based approaches have been successfully applied to radiological 

medical images6,7 and histologically stained images,8,9 and studies in renal digital pathology 

have shown promise in detecting glomerular or interstitial abnormalities.10–15 Good 

prediction of kidney tissue compartments16–18 was obtained with pixel-level prediction 

algorithm U-Net.19 An instance-level object detection algorithm mask Region-based 
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Convolution Neural Network (R-CNN)20 was developed recently with advantages of 

performing object localization, shape prediction, and object classification at the same time 

and that accurately distinguishes sclerotic from nonsclerotic glomeruli.21 We reasoned 

that these deep-learning–based approaches could be applied for observer-independent 

histopathologic assessment of transplant biopsies, offering distinct advantages for graft 

prognostication.

In this study, we first trained a deep-learning model based on both U-Net and mask R-CNN 

algorithms to accurately recognize normal and abnormal kidney tissue compartments and 

infiltrated mononuclear leukocytes (MNLs) from both baseline (pre-implantation) and post-

transplant biopsies. We then extracted slide-wide features to ensure capture of abnormalities 

in the interstitium, tubules, and inflammation and investigated their association with Banff 

scores and post-transplant graft outcomes in 2 large, independent cohorts.

METHODS

Study cohorts and biopsy slides

The Genomics of Chronic Allograft Rejection (GoCAR)22 study is a prospective, 

multicenter study with patients that have been followed for a median of 5 years. Australian 

Chronic Allograft Dysfunction (AUSCAD) is an Australia transplant cohort from Westmead 

Hospital, University of Sydney with patients being followed for a median duration of 4.5 

years. Living- and deceased-donor recipients between 18 and 75 years old were included 

and sensitized; patients with multiple organ transplants were excluded in this study. Blood, 

kidney biopsy specimens, and clinical data were collected at the time of post-transplantation 

visit. In GoCAR, 2 protocol biopsy cores were taken from baseline (pre-implantation) 

or various times (3, 12, and 24 months) post-transplantation. One formalin-fixed, paraffin-

embedded corewas processed for histologic stains and scored centrally and agreed byat 

least 2 pathologists at Massachusetts General Hospital according to revised Banff 2007 

classification for renal allograft pathology23 at the time of biopsy. AUSCAD biopsy samples 

were formalin-fixed and paraffin-embedded prior to routine histologic staining including 

periodic acid–Schiff (PAS). These biopsies were scored locally at Westmead according 

to the revised Banff 2007 classification for renal allograft pathology and reviewed by 

pathologists at Massachusetts General Hospital to ensure consistency in diagnosis between 

the 2 centers. GoCAR slides were scanned with Aperio CS scanner at ×20 objective with a 

×2 magnifier; AUSCAD slides were scanned by scanner from Hamamatsu company with a 

×20 objective.

PAS-stained slides in both cohorts were used in this study (Figure 1). To fully capture 

abnormalities regarding interstitium, tubules, and inflammation, the training set should 

incorporate all types of abnormal cases covering all 3 aspects. However, due to the various 

incidences of pathologic lesions observed in 1164 kidney biopsies taken at various time 

points in the entire GoCAR cohort, a random selection of a subset from these biopsies 

may miss certain types of abnormal instances. Therefore, we examined each PAS-stained 

slide and selected 93 slides that represented the spectrum of histologic lesions for model 

construction. Multiple selected regions covering glomeruli, interstitium, tubules, arteries, 

and MNL infiltration on these slides were annotated under the guidance of pathologists 

Yi et al. Page 3

Kidney Int. Author manuscript; available in PMC 2023 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prior to model construction. Here abnormal tubules are defined as shrunken tubules 

with thickened and wrinkled membrane, while interstitium is defined as intertubular, 

nonglomerular space within tissue sections. Next, the established whole-slide image (WSI) 

investigation pipeline was applied to all available PAS-stained slides, including 478 slides 

at baseline (GoCAR, n = 317; AUSCAD, n = 161) and 311 slides at 12 months post-

transplantation (GoCAR, n = 200; AUSCAD, n = 111) to extract digital features to be 

correlated with graft survival. These slides represented 404 patients from GoCAR cohort and 

212 patients from the AUSCAD cohort.

WSI deep-learning analysis

The WSI deep-learning analysis procedure was divided into 2 stages: stage I includes 

development of deep-leaning–based models for tissue compartment recognition; and stage 

II includes the application of pretrained models on WSI to extract slide-wide features to be 

correlated with graft outcomes (the details were depicted in Figure 1 and Supplementary 

Figure S1 and described in the Supplementary Methods). Briefly, at stage I, annotated PAS 

sections including most tissue compartments were preprocessed into 22,692 fixed-sized 

image tiles for model generation. The deep-learning model was tuned on training image tiles 

from 60 slides with 10-fold cross-validation to avoid overfitting and the established model 

was tested on independent image tile set from 33 slides for unbiased model evaluation. 

We constructed a compartment detection model and an MNL detection model using mask 

R-CNN20 and an interstitium estimation model using U-Net.19 Detailed hyperparameter 

settings are described in the Supplementary Methods. By comparing prediction results 

with ground truth annotations, the accuracies were measured by true positive rate, positive 

predictive value, and general Fβ score,24 where β = 2. At stage II, outputs from pretrained 

tissue compartment recognition models were first combined into whole-slide prediction 

image. Through use of a unit window scanning across the prediction image of entire 

slide, we defined interstitial or inflammatory regions of interest and slide-wide digital 

features capturing abnormalities in interstitium, tubules, and MNL infiltration, which were 

then summarized into composite features reflecting overall kidney damage. This WSI 

feature extraction process was applied to 2 independent transplant cohorts (GoCAR and 

AUSCAD) and estimated digital features were correlated with Banff scores and graft 

survival separately.

Statistical analysis

Quantitative outcomes such as Banff scores or eGFR were treated as continuous variables, 

and missing data were excluded for specific analyses. Association of digital features with 

Banff scores or eGFR were measured by Spearman’s correlation. Graft loss was defined as 

loss of graft function; association with graft loss was assessed by Cox proportional hazards 

regression; and multiple testing correction has been applied. Time-dependent area under 

the curve (AUC) values were estimated by R package “timeROC”.25 T denotes follow-up 

days of a patient. At certain time point t, a case is defined as patient lost graft at T ≤ 

t; a control is defined as patient survived through t (T > t). As for survival confounders 

adjustment, a series of clinical parameters including recipient age, sex, race, donor age, 

number of transplants, kidney diseases, living or deceased donor, human leukocyte antigen 

mismatch, cold ischemia time (CIT), induction type, baseline donor-specific antibodies, 
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and delayed graft function were first evaluated with graft loss through univariate analysis. 

Significant parameters—living or deceased donor, CIT, baseline donor-specific antibodies, 

human leukocyte antigen mismatch, and induction type—were selected as confounders. 

Further investigations of graft loss and other graft outcomes among risk groups stratified by 

composite scores were evaluated by log-rank test and Fisher’s exact test, respectively.

RESULTS

Demographic and clinical characteristics of study cohorts

We applied artificial intelligence techniques to all available PAS-stained slides of kidney 

donor biopsies taken at baseline (pre-implantation) or 12 months post-transplantation in 

404 patients from a multicenter international cohort (GoCAR)22 and 212 patients from 

an external Australian cohort (AUSCAD) (Figure 1). Among these patients, 113 patients 

in GoCAR and 60 patients in AUSCAD had biopsies taken at both time points, and 

others were biopsied at either baseline or 12 months. The 2 populations had similar sex 

distribution, age, and CIT, but they differed in ethnicity and clinical management protocols 

(Table 1). Patients from GoCAR had more diverse ethnic backgrounds including African 

American or Hispanic (25% vs. none in AUSCAD), whereas AUSCAD recorded more 

deceased donors (78.77% vs. 53.71% in GoCAR). All patients from AUSCAD received 

induction therapy predominantly with lymphocyte nondepleting agents (93.87%), while 

among 78.22% of recipients from GoCAR who received induction, lymphocyte-depleting 

agents (Thymoglobulin or Campath-1) were used in 39.36% and nondepleting agents in 

38.86%. Overall, the AUSCAD cohort had a lower graft loss rate (4.72% vs. 12.13% in 

GoCAR) during slightly shorter follow-up period (median 4.5 years vs. 5 years in GoCAR).

Deep-learning–based WSI investigation defined abnormality in interstitium or tubules and 
MNL infiltration

Our 2-stage study first generated a deep-learning model detecting tissue compartments 

and MNLs, and then defined slide-wide abnormality features to be correlated with Banff 

scores23 and graft outcomes (Figure 1, Supplementary Methods). In stage I, 3 types of 

models based on 2 deep-learning architectures were built on 17,470 images from 60 slides 

(training set) using 10-fold cross-validation. The models, respectively, identified tissue 

compartments (tubules, glomeruli, etc.), MNLs (mask R-CNN), and interstitial area (U-Net). 

The final model was tested on an independent set of 5,222 images from 33 slides, and 

accurately recognized 96% of glomeruli and 91% of tubules and differentiated normal and 

abnormal tubules at true positive rates of 81% and 84%, respectively. On the other hand, we 

were able to detect 90% of normal epithelial cells as well as 77% of MNLs at the individual 

nuclei level. The slightly lower accuracy of MNL detection was reflective of challenges in 

MNL annotation on PAS slides. Lastly, 85% and 96% of predicted interstitial area and area 

covered by arteries were correctly identified (Supplementary Table S1).

In stage II, we applied the pretrained tissue compartment recognition models to WSIs to 

extract a series of slide-wide digital features specifically capturing abnormalities within 

biopsies (Supplementary Figure S1, Supplementary Methods). For quantifying abnormalities 

in tubules and/or interstitium, we defined (i) abnormal interstitial area percentage, 
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proportion of total abnormal interstitium area over WSI; (ii) standardized abnormal tubule 

density; (iii) Interstitial and Tubular Abnormality Score (ITAS), a composite score of 

(i) and (ii). To quantify inflammation in biopsies (i.e., MNL infiltration), we defined 

(iv) MNL-enriched area percentage, proportion of MNL infiltration area over WSI; (v) 

standardized MNL density; (vi) MNL Infiltration Score, a composite score of (iv) and (v). 

Lastly, a Composite Damage Score (CDS), integrating both ITAS and MNL Infiltration 

Score, was defined as the estimation of overall graft damage. Figure 2a demonstrates an 

example application of our pipeline to an abnormal case: (i) original WSI, (ii) whole-slide 

prediction, and the masks highlighting (iii) abnormal interstitium or tubule regions or (iv) 

MNL infiltration regions that agreed with assessment by pathologists.

Digital features were correlated with Banff scores

The Banff scores such as interstitial fibrosis (ci), tubular atrophy (ct), and total inflammation 

(ti) (graded by expert visual-assessment from different histologic stains) are similar in 

pathologic principle but different in quantification and technique to our PAS-based digital 

features (as illustrated in Supplementary Figure S1B). Here, we examined the relationship 

between these 2 methods. We performed a WSI investigation, extracting digital features 

in 789 WSIs from biopsies at baseline (n = 478) and 12 months post-transplantation (n = 

311) in both the GoCAR and AUSCAD cohorts. Our data indicated that digital features 

(abnormal interstitial area percentage, abnormal tubules density, and MNL-enriched area 

percentage) were significantly correlated with respective Banff scores in GoCAR biopsies 

at baseline (Supplementary Figure S2A) and 12 months (Figure 2b). Similarly, the digital 

scores were correlated with Banff scores in AUSCAD (12 months) where i+t was used 

because of unavailability of ti score (Supplementary Figure S2B). Notably, although MNL 

detection at nuclei level yielded a lower accuracy compared to detection of glomeruli or 

tubules, MNL-derived digital inflammation feature was strongly correlated with ti score in 

GoCAR (P = 1.9e–21) and i+t in AUSCAD (P = 1.9e–05) at slide level.

Although highly correlated, we still identified discrepancies between the 2 scoring systems 

such as the case demonstrated in Supplementary Figure S3A: here, Banff assessment 

reported all zeros but digital features indicated abnormal scores (illustrated by small clusters 

of shrunken tubules and MNLs). We then inspected all 137 cases classified as normal by 

Banff criteria (ci, ct, i, t, ti, g, cv = 0) from baseline biopsies and identified 50 abnormal 

and 87 normal cases based on digital features. No graft loss by 1 year was observed in 

these cases, but the baseline digitally abnormal group, compared with the all-normal group, 

had higher subsequent Banff ci+ct scores early post-transplantation, which were especially 

significant within the first 3 months (Supplementary Figure S3B). Moreover, the digitally 

abnormal group had a worse subsequent graft function as measured by eGFR within 12 

months post-transplantation (Supplementary Figure S3C).

Taken together, the above-mentioned data indicate that our digital features accurately reflect 

Banff scores and identified similar histologic lesions. Furthermore, it suggested that in cases 

of discrepancy, digital quantitative scores offer a more sensitive assessment of graft damage 

below the Banff threshold.

Yi et al. Page 6

Kidney Int. Author manuscript; available in PMC 2023 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Baseline interstitial and tubular abnormality score predicted early graft damage and 1-year 
graft loss

The pathologic evaluation of baseline biopsies could reveal donor kidney quality. However, 

its utility in post-transplant prognosis has been debated.26 To explore a novel application 

for our digital features in baseline biopsies, we examined the association of individual 

or composite features with post-transplant graft failure and compared these with the 

performance of Banff-based scores. We also compared these with Kidney Donor Profile 

Index (KDPI), a composite demographic and clinical factor that is validated for deceased 

donors.27–29 In the GoCAR cohort (n=317) (Supplementary Figure S4A, Supplementary 

Table S2), we observed significant association of individual interstitial or tubular features 

and composite ITAS with death-censored graft loss (DCGL) in univariate or multivariate 

Cox models. In the AUSCAD cohort (n = 161) (Supplementary Table S3), the association 

with graft survival was not confirmed in DCGL, which could be because there were fewer 

DCGL cases.

Time-dependent AUC estimation in GoCAR indicated that baseline individual or composite 

digital features outperformed individual Banff scores or ci+ct, respectively, in prediction 

of DCGL within 12 months (Figure 3a). Next, we divided baseline biopsies into 3 risk 

groups by composite feature ITAS: high (ITAS > 0.6), intermediate (0.1 ≤ ITAS ≤ 0.6), 

and low (ITAS < 0.1) risk. Threshold of high baseline ITAS was determined according to 

the percentile of baseline ci+ct > 1 in the GoCAR cohort. A second threshold for low risk 

was added to identify healthy donor kidneys with zero or extremely low ITAS (< 0.1). The 

high and intermediate ITAS risk groups exhibited significantly higher DCGL rates compared 

with those of the low ITAS risk group over the entire period of follow-up. These differences 

were most apparent in the first 12 months post-transplantation (P = 2.8e–07 for high vs. low 

and P = 3.6e–03 for intermediate vs. low) (Figure 3b) and in the deceased-donor subcohort 

(P = 5.3e–04 for high vs. low and P = 0.011 for intermediate vs. low) (Supplementary 

Figure S4B). ITAS was superior to ci+ct (P = 6.0e–04 for high vs. low and P = 0.197 for 

intermediate vs. low in the entire population) (Supplementary Figure S4C) and KDPI (P = 

0.024 for high vs. low and P = 0.141 for intermediate vs. low, KDPI > 85%, 20% < KDPI 

≤ 85%, KDPI ≤ 20% in deceased-donor population) (Supplementary Figure S4D) for risk 

stratification of DCGL. Of note, high and intermediate ITAS risk groups demonstrated a 

sustained decline in eGFR over the first 12 months post-transplantation (Figure 3c), which 

is consistent with incrementally significant correlation of ITAS with post-transplant eGFR 

at 3 months (P = 0.001), 6 months (P = 7.6e–05), 12 months (P = 1.5–05), and 24 months 

(P = 0.015). A significantly higher incidence of delayed graft function (P = 3.9e–05), and 

early (3 months post-transplantation) graft damage as measured by the Chronic Allograft 

Damage Index (CADI) score30 > 2 (P = 0.002) were observed in high and intermediate 

ITAS risk groups (Figure 3d). In the AUSCAD cohort (n = 161), the associations of ITAS 

risk groups with other clinical outcomes were demonstrated in Supplementary Figure S5. 

To summarize, donor baseline ITAS is strongly associated with early graft function within 1 

year post-transplantation, but the degree of association weakens afterward, implicating that 

recipient factors and post-transplant conditions come into play.
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Twelve-month post-transplant composite damage score predicted long-term graft loss

Because our data showed that composite baseline digital score predicts early but not 

long-term DCGL, we examined longer-term subsequent graft survival using 12-month post-

transplant biopsy slides in both cohorts. In GoCAR (n = 200) (Supplementary Figure S6A, 

Supplementary Table S4), digital interstitial and tubular features, which are superior to 

corresponding Banff ci and ct scores, were significantly associated with long-term DCGL 

with or without adjustment for clinical confounders (living or deceased donor, CIT, baseline 

donor-specific antibodies, human leukocyte antigen mismatch, and induction type), while 

the MNL feature was comparable to the Banff ti score in association with DCGL. The 

associations of 12-month digital features with long-term survival were validated in the 

AUSCAD cohort (n = 111) (Supplementary Table S5).

We observed that 12-month digital features outperformed corresponding Banff scores 

including CADI in predicting long-term graft loss with superior time-dependent AUCs in 

the GoCAR cohort (Figure 4a). We then used the CDS summarizing abnormalities detected 

in interstitium, tubules, and inflammation for graft loss risk stratification. We determined 

the threshold of 12-month CDS (> 1.5) according to the percentile of 12-month CADI ≥ 4 

in the GoCAR cohort, as 1-year CADI ≥ 4 is considered a surrogate for high risk of graft 

loss in patients who received transplants.31 A 12-month CDS > 1.5 outperformed 12-month 

CADI ≥ 4, >30% 3-month to 12-month eGFR decline, and acute cellular rejection (including 

or excluding borderline cases) at 12 months in long-term survival prediction, especially 

for graft survival within 2 years post-transplantation (Figure 4b). Kaplan-Meier curves of 

DCGL (P = 7.3e–05) (Figure 4c) confirmed significantly lower survival rate in patients 

with high 12-month CDS. We also identified significant associations of 12-month CDS 

risk groups with other published surrogate outcomes including >30% 6-month to 24-month 

eGFR decline4,5 (P = 0.010) and progressive histologic damage (P = 0.005; 24-month CADI 

> 2) (Figure 4d). These analyses in the AUSCAD cohort (n = 111) also validated the 

predictive ability of 12-month CDS for long-term survival (Supplementary Figure S7). Thus, 

high 12-month CDS (> 1.5), obtained at 12 months post-transplantation, is an alternative 

surrogate for long-term graft loss.

DISCUSSION

We constructed a deep-learning–based histopathologic assessment model recognizing 

and quantifying interstitial, tubular, and inflammatory abnormalities in kidney transplant 

biopsies. WSI investigation of baseline and 12-month post-transplant biopsies validated 

these digital features and further explored potential applications of composite features in 

clinical practice. Our digital features not only exhibited strong correlation with relevant 

Banff scores, but they also detected subtle changes below the thresholds in Banff scores. 

Composite features of baseline ITAS and 12-month CDS were identified to be predictive of 

early and late graft outcomes, respectively, implying utility in transplant prognosis. To the 

best of our knowledge, this is the first study applying artificial intelligence techniques in 

identifying digital pathologic features associated with solid organ transplant survival from 

both baseline and post-transplant biopsies with validation in multiple prospective cohorts.
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Compared to previous investigations in deep-learning–based kidney tissue compartment 

detection,16–18 our study advances the field in 4 ways: (i) Besides U-Net, we incorporated 

a mask R-CNN architecture for more efficient and accurate detection of the normal 

and abnormal compartments. (ii) As inflammation is another major contributor to graft 

failure, we added a mask R-CNN–based MNL detection model in post-transplant biopsy 

evaluations, improving graft loss predictive ability. (iii) The slide-wide pathologic lesions 

were quantified through definition of individual features in interstitium, tubules, and 

MNL infiltration, respectively, or composite features reflecting overall kidney damage. 

(iv) We explored a novel clinical application of developed digital features for graft 

survival prediction in 2 well-designed cohorts. Both GoCAR and AUSCAD are large 

prospective cohorts that collected protocol biopsies pre-implantation and at time points 

post-transplantation and followed up for medians of 4.5 to 5 years. GoCAR is a multicenter 

prospective (non-interventional) cohort involving 4 regions in the United States (New 

York, Michigan, Wisconsin, Illinois) and 1 region in Australia (Sydney). The patients 

who received kidney transplants are truly heterogeneous, coming from various race or 

ethnicity backgrounds and using different standard-of-care protocols at different sites. 

Therefore, the demographic, clinical, and pathologic data in GoCAR were reflective of 

heterogeneous patients who received transplants and “real-world” clinical management. The 

models developed from the GoCAR cohort have been validated in external AUSCAD cohort 

and are very likely to be applicable to other cohorts.

Although many attempts have been made, no consistent association has been established 

between baseline histologic findings and post-transplant outcomes among publications.26,32 

Comparing our GoCAR cohort with previous studies, we obtained superior performance in 

predicting graft loss with baseline digital features as well as Banff scores, we consider 

the following reasons: (i) Our GoCAR biopsies were collected from multiple centers 

but were scored centrally by the pathology experts at Massachusetts General Hospital, 

which minimized the variation from pathology expertise from different centers. (ii) Our 

pre-implanted baseline biopsies were preserved through paraffin embedding rather than 

freezing procedure. It has been reported that frozen tissue stained with hematoxylin and 

eosin contain less contrast thus subtle lesions can easily be missed, and the artifacts in 

frozen sections often cause misdiagnoses,26 leading to poor association with post-transplant 

outcomes. (iii) Although controversial, a few studies have reported significant associations 

between interstitial fibrosis– and tubular atrophy–related pathologic features and graft 

function or survival.33–41 Taken together, the studies from our group and others proved the 

association of baseline pathologic features with transplant outcomes including graft survival. 

We particularly demonstrated a strong prediction power of short-term survival using baseline 

digital features. The major limitations of current approaches in pathologic evaluation for 

baseline biopsies are the variations from slide processing procedure and the expertise in 

transplant pathologic assessment.32,42 The Banff system itself has limitations by using 

categories rather than continuous variables.43 Our machine-based process overcomes these 

drawbacks by producing consistent and automated results within 30 minutes from scanned 

images. The ITAS at baseline was superior to Banff ci + ct and KDPI and demonstrated the 

ability of stratifying risk of early graft damage, thus providing early information with utility 

for post-transplant monitoring, risk stratification, or potential interventional trials.

Yi et al. Page 9

Kidney Int. Author manuscript; available in PMC 2023 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We identified that the CDS from 12-month protocol biopsies predicted long-term graft 

survival, outperforming histology and clinical factors. Reporting longer-term hard outcomes 

from prospective trials has been an issue in kidney transplantation research.44 The 

identification of surrogate end points is a major unmet need that often prevents the design 

of adequately powered trials. Recent studies proposed using eGFR decline within 24 to 36 

months as a long-term graft loss surrogate.4,5 However, such a surrogate has the following 

limitations: (i) Creatinine measurement is impacted by a number of factors including timing 

of collection in the day, diet, and interlaboratory variation.45,46 (ii) eGFR decline has low 

detection sensitivity because it requires multiple measurements during long-term follow-up, 

and the ≥ 40% decline from 6 to 24 months, as suggested by a prior study for graft loss 

prediction,5 only occurred in 4% of patients in the GoCAR cohort although rates of graft 

loss were 12% for DCGL. In contrast, 12-month CDS was able to detect 29% of GoCAR 

and 21% of AUSCAD populations as high risk as early as 12 months while still exhibiting 

optimal AUCs in long-term graft loss prediction.

This work focused on investigation of the digital features from protocol biopsies at baseline 

and 12-month post-transplantation with transplant graft outcomes (particularly graft loss) 

for prognosis purpose. However, we expect our tissue recognition model, which was 

built from protocol biopsies, works on for-cause biopsies as well, because the severity of 

histologic lesions (such as Banff ct, ti score) relies largely on the amount or density of 

individual abnormal objects and similarly our slide-wide digital features are summarized 

from detection of corresponding abnormal objects. Thus, with an accurate detection of 

individual abnormal objects, our slide-wide digital features would be expected to accurately 

reflect the pathologic lesions regarding interstitium, tubules, and MNL infiltration and 

correlate with Banff scores in both protocol and for-cause biopsies. As an ongoing project, 

we are collecting additional clinical outcomes such as treatment information for patients 

who had indication biopsy taken to extensively investigate the utility of the digital features 

from for-cause biopsies in clinical diagnosis or prognosis.

Our study has several limitations. First, the identification of microvascular inflammation (g 

and ptc) and arteritis (v) requires further refinement. Additionally, due to the challenges 

of distinguishing MNLs from epithelial cells in tubules, current MNL detection appears 

less accurate within tubules than in interstitium therefore current slide-wide inflammation 

feature focused on overall inflammation estimation (similar to Banff ti score). Second, its 

ability to diagnose and grade acute cellular rejection has not been demonstrated and it is 

unable to differentiate between antibody- and cell-mediated rejection. We aim to improve 

the MNL detection model in various compartments on PAS-stained slides in conjunction 

with CD3 staining to extend the capability of inflammation capture. In addition, further 

refinements are required to diagnose transplant glomerulopathy or de novo or recurrent 

glomerular diseases. Lastly, the thresholds of composite scores for risk stratification were 

determined based on the percentile of CADI and ci+ct in the GoCAR cohort. Nevertheless, 

these unsupervised risk stratifications clearly outperformed conventional multivariate risk 

calculators using clinical factors47–49 for predicting graft failure. However, expanded cohorts 

with sufficient graft loss cases are necessary to determine precise thresholds based on a 

supervised model by incorporating both digital features and clinical factors.
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In summary, our deep-learning approach provided a reliable risk stratification of post-

transplant graft survival using transplant biopsies at baseline and 12 months post-

transplantation. This represents a novel and reproducible approach to facilitate early 

prevention, risk stratification, or post-transplant monitoring in clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Statement

This is the first study applying artificial intelligence techniques to both baseline (pre-

implantation) and post-transplantation biopsies to identify quantitative digital features 

using 2 large prospective transplant cohorts. Our automated deep-learning approach 

showed accuracy in predicting early and long-term graft survival using baseline and 

12-month transplantation biopsies, respectively. This approach represents a novel tool for 

risk stratification of allografts and post-transplantation monitoring in clinical practice.
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Figure 1 |. Study design.
This study consists of 2 major stages. Stage I is tissue compartment recognition. Ninety-

three slides that represented the spectrum of histologic lesions were selected from the 

Genomics of Chronic Allograft Rejection (GoCAR) periodic acid–Schiff (PAS) slides 

and then randomly divided into the discovery set (n = 60) and the testing set (n = 33). 

The annotated sections of these slides were used for deep-learning model construction 

and evaluation. During the training process, we built the models based on 2 types of 

deep-learning structures for compartment or mononuclear leukocyte (MNL) detection (by 

mask region-base convolution neural network [MRCNN]) and tissue segmentation (by U-

Net). Models were determined through evaluation with 10-fold cross-validation and finally 

applied to the testing set. Stage II is the whole-slide image (WSI) clinical investigation. 

Using the established deep-learning model, we processed 789 baseline and 12-month 

post-transplantation (post-tx) WSIs from 2 independent cohorts (GoCAR and Australian 

Chronic Allograft Dysfunction [AUSCAD]) and extracted a series of slide-wide digital 

features capturing the abnormalities in the interstitium and tubules, and MNL infiltration. 

These features were further examined through association with Banff scores and post-

transplantation graft survival. bx, biopsies; FC, fully connected; RPN, region proposal 

network.
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Figure 2 |. Demonstration of slide-wide digital features and correlation with corresponding Banff 
scores.
(a) Demonstration of slidewide digital features from the whole-slide image (WSI) 

investigation by an example WSI: (i) original WSI; (ii) whole-slide prediction; (iii) predicted 

abnormal interstitium or tubules regions of interest (ROIs); (iv) predicted mononuclear 

leukocytes (MNLs) infiltrated ROIs. Left panel shows zoom-in inspections of 1 particular 

abnormal region within the yellow box on the WSI. (b) Correlation of digital features with 

Banff scores. Correlation of abnormal interstitial area percentage and Banff ci score (top), 

abnormal tubules density and Banff ct score (middle), MNL-enriched area percentage and 

Banff ti score (bottom) in the Genomics of Chronic Allograft Rejection (GoCAR) 12-month 
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post-transplantation biopsy slides (n = 200). P values were calculated from Spearman’s 

correlation test. To optimize viewing of this image, please see the online version of this 

article at www.kidney-international.org.
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Figure 3 |. Association of baseline digital features with post-transplant graft outcomes in the 
Genomics of Chronic Allograft Rejection (GoCAR) cohort.
(a) Heat map of time-dependent area under the curve (AUC) values in predicting death-

censored graft loss (DCGL) by Banff scores and digital features at different time intervals 

in baseline biopsy slides (n = 317). Numbers and yellow-red color range of boxes represent 

AUC values at given time points. (b) Kaplan-Meier curves of DCGL in high, intermediate, 

and low risk groups stratified by the Interstitial and Tubular Abnormality Score (ITAS) 

from baseline biopsies (n = 317). Baseline ITAS groups are defined as high, ITAS > 0.6; 

intermediate, 0.1 ≤ ITAS ≤ 0.6; and low, ITAS < 0.1. P values are calculated by log-rank test. 

(c) Average estimated glomerular filtration rate (eGFR) values over time within 12-months 

post-transplantation per baseline ITAS risk group. Error bars represent ×0.1 SD from mean 

values. (d) Bar charts demonstrating proportions of delayed graft function (DGF) and no 
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DGF (upper) and 3-month post-transplant Chronic Allograft Damage Index (CADI) >2 or 

≤2 (lower) among 3 baseline ITAS risk groups. P values are calculated by Fisher’s exact test.

Yi et al. Page 19

Kidney Int. Author manuscript; available in PMC 2023 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4 |. Association of 12-month post-transplant digital features with post-transplant graft 
outcomes in the Genomics of Chronic Allograft Rejection (GoCAR) cohort.
(a) Heat map of time-dependent area under the curve (AUC) values in predicting death-

censored graft loss (DCGL) by Banff scores and digital features at different time intervals 

in 12-month post-transplant biopsy slides (n = 200). Numbers and yellow-red color range 

of boxes represent AUC values at given time points. (b) Heat map of time-dependent AUCs 

in predicting DCGL by the 12-month Composite Damage Score ([CDS], capturing the 

interstitial and tubular abnormality and mononuclear leukocyte [MNL] infiltration) high or 

low group and other pathologic or clinical (or both) factors that were obtained prior to or at 

12 months. The 12-month CDS groups are defined as high, CDS > 1.5, and low, CDS ≤ 1.5. 

(c) Kaplan-Meier curves of the DCGL in high and low risk groups stratified by the 12-month 

CDS. P value is calculated by log-rank test. (d) Bar charts demonstrating proportions of 
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6-month to 24-month estimated glomerular filtration rate (eGFR) decline ≥30% or <30% 

(upper) and the 24-month post-transplant Chronic Allograft Damage Index (CADI) >2 or ≤2 

(lower) between 12-month CDS risk groups. P values are calculated by Fisher’s exact test.
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