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Abstract

Substance P (SP) is a tachykinin expressed by various cells in the nervous and immune systems. 

SP is predominantly released by neurons and exerts its biological and immunological effects 

through the neurokinin receptors, primarily the neurokinin-1 receptor (NK1R). SP is essential 

for maintaining ocular surface homeostasis, and its reduced levels in disorders like diabetic 

neuropathy disrupt the corneal tissue. It also plays an essential role in promoting corneal wound 

healing by promoting the migration of keratocytes. In this review, we briefly discuss the structure, 

expression, and function of SP and its principal receptor NK1R. In addition, SP induces pro-

inflammatory effects through autocrine or paracrine action on the immune cells in various ocular 

surface pathologies, including dry eye disease, herpes simplex virus keratitis, and Pseudomonas 

keratitis. We provide an in-depth review of the pathogenic role of SP in various ocular surface 

diseases and several new approaches developed to counter the immune-mediated effects of SP 

either through modulating its production or blocking its target receptor.
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1. Introduction

Substance P (SP) is an undecapeptide member of the tachykinin family, discovered by Von 

Euler and Gaddum in 1931 from the equine brain and intestinal tissue extracts [1–3]. It 

is produced by an array of cells, including neurons, astrocytes, microglia, epithelial and 

endothelial cells, and immune cells, such as T-cells, dendritic cells (DCs), and eosinophils 

[4–10]. SP exerts its biological effects through the class I (rhodopsin-like) family of G-

protein coupled neurokinin receptors known as neurokinin 1 receptor (NK1R), neurokinin 2 

receptor (NK2R), and neurokinin 3 receptor (NK3R) [11]. It exhibits the highest affinity for 

NK1R, which occurs in two isoforms and is expressed by neurons, immune cells, corneal 

epithelium, and keratocytes [12].

On the ocular surface, SP is predominantly produced by the innervating ophthalmic branch 

fibers of the trigeminal ganglion (TG) [13,14]. SP and its metabolites have been documented 

in the tears of healthy individuals [15]. In patients suffering from corneal hypoesthesia 

and diabetic keratopathy, SP levels in tears are significantly reduced, thereby disrupting 

the ocular surface homeostasis [16–18]. The topical application of SP–derived peptide 

(FGLM peptide) promotes healing in cases of neurotrophic keratopathy [2,19,20]. The 

current evidence also propounds SP’s role in corneal healing by promoting migration and 

proliferation of epithelial cells [21–23]. Moreover, SP induces proinflammatory effects 

causing miosis, intraocular inflammation, and conjunctival hyperemia on ocular application 

[24,25].

In this comprehensive review article, we outline the structure of SP and its functions at 

the ocular surface in inflammation and tissue homeostasis. Furthermore, we provide an 

overview of the structure and expression of the neurokinin receptors through which SP 

exerts its biological effects and the development of novel therapeutics by modulating its 

expression.

2. Structure, expression, and function of Substance P

SP is encoded by the Tac1 (pre-protachkinin-A) gene, which also encodes neuropeptide 

K, neurokinin A, and neuropeptide-gamma [26,27]. Located on chromosome 7 in humans, 

TAC1 consists of seven exons and six introns that can be alternatively spliced into four 

different mRNA variants, including the coding sequence for SP [28–30]. The eleven amino 

acid sequence forming the building blocks of SP are – “H-Arg1--Pro2-Lys3-Pro4-Gln5-

Gln6-Phe7-Phe8-Gly9-Leu10-Met11-NH2” - consisting of two positively charged and six 

non-polar amino acid residues [31]. The amphiphilic properties of SP are attributed to polar, 

positively charged N-terminal and non-polar, uncharged C-terminus, thus allowing it to 

interact with the phospholipid bilayer of the plasma membrane [31,32].

SP has been isolated from the central and peripheral nervous system as it is expressed 

by neurons, astrocytes, and microglia [8,9,33]. Although categorized as a neuropeptide, 

SP is abundantly produced in various non-neuronal tissues, including the bone and 

lymphoid organs [34,35]. Moreover, its expression in various immune cells such as T 

cells, macrophages, DCs, and mast cells is well characterized, suggesting its critical role 
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in mediating the crosstalk between the nervous and immune system [5,36–40]. SP is also 

expressed by epithelial cells, endothelial cells, and immunomodulatory mesenchymal stem 

cells [4,10,41]. Due to its ubiquitous expression by numerous cell types throughout the body, 

SP mediates diverse cell-specific physiological and pathological functions [42].

The earliest and most widely documented function of SP is its role in pain perception 

and neurogenic inflammation (Fig. 1). The pain sensation promotes its release from the 

peripheral nociceptive nerve fibers into the synaptic cleft of the dorsal horn, triggering 

an excitatory postsynaptic potential to induce central sensitization [43,44]. Furthermore, 

elevated SP levels have been reported in an array of painful corneal pathology models 

such as DED, infectious keratitis, and intrastromal suture placement, suggesting its role 

in corneal nociception [45–49]. It has been demonstrated that mice lacking SP exhibited 

significantly less corneal nociception. Additionally, NK1R antagonism also leads to reduced 

nocifensive behavior in healthy mice [50]. Despite the consensus regarding SP’s role as 

a pain signaling molecule, several recent studies have indicated that it also exhibits anti-

nociceptive properties in the peripheral nervous system [51,52]. Lin and colleagues reported 

the anti-nociceptive effect of SP against chronic mechanical hyperalgesia in muscles by 

attenuating acid-sensing ion channel 3-induced inward current [53].

Apart from relaying pain signals, SP also induces an immune response and acts as a critical 

mediator in neuro-immune communication [31,54,55]. It enhances lymphocytic proliferation 

by upregulating IL-2 expression and directly stimulates immunoglobulin production [56–

58]. It enhances the proliferation of bone marrow stromal cells through upregulation of 

the Wnt signaling pathway [59]. Furthermore, it promotes hematopoiesis via induction of 

IL-1 and stem cell factors in the bone marrow stroma and the peripheral blood [56,60]. 

SP-induced production of chemokines and adhesion molecules stimulates immune cell 

recruitment, further amplifying the inflammatory responses. Several studies have shown that 

SP upregulates the chemotactic cytokines such as CCL4, CXCL2, MCP-1, CCL5, and IL-8, 

which recruit monocytes, and lymphocytes to the site of inflammation [61–65]. Moreover, 

NK1R-deficient mice showed aberrant neutrophil chemotactic response to exogenous IL-1β 
[66]. The upregulation of adhesion molecules, MAC-1, and its ligand ICAM-1 on NK1R+ 

DCs induced by SP further facilitates the directional infiltration of macrophages into lymph 

nodes [67–69].

SP activates eosinophils and cause their degranulation and superoxide release [70]. In 

a model of atopic dermatitis, Raap and colleagues observed a biphasic response to SP 

due to expression of both NK1R (few) and NK2R (abundant) in eosinophils [71]. They 

demonstrated the protective role of SP in preventing eosinophil apoptosis by inducing 

Ca2+ influx. SP also induces Ca2+ influx and superoxide production by binding to 

NK1R expressed by neutrophils promoting inflammation [72,73]. It promotes neutrophil 

chemotaxis to the inflamed tissue by increased production of chemotactic cytokines 

mentioned previously and induces phagocytic activity [74]. In addition to enhancing 

proliferation and stimulating the recruitment of immune cells, SP mediates a variety of their 

functions. It induces superoxide production by neutrophils and amplifies their phagocytic 

activity [72,74]. In mice, macrophages following SP stimulation resulted in higher secretion 

of bioactive IL-12, which induces SP expression by macrophages, further underlining the 
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role of SP in perpetuating immune response [75,76]. Similarly, NK1R agonist treatment 

resulted in IL-12 secretion by bone marrow-derived DCs, which when injected into mice 

induced type I immunity [69].

Beyond its immunological role, SP exerts a pro-angiogenic effect directly by inducing 

nitric oxide production in the endothelial cells and indirectly through induction of mast cell 

degranulation and secretion of various pro-angiogenic factors such as vascular endothelial 

growth factors (VEGF) and TNF-α [40,77–80]. SP-induced angiogenesis facilitates the 

trafficking of immune cells to the inflamed tissues. SP plays a role in vasodilation in part by 

inducing histamine release from the mast cells through NK1R dependent and independent 

pathways (via direct G protein–mediated activation) [39,40,81,82]. Activated mast cells also 

secrete tryptase, which activates protease-activated receptors-2 on neurons to release SP, 

further perpetuating neurogenic inflammation [83].

3. Structure, expression, and signaling of NK1R

Substance P exerts various biological functions by binding to the tachykinin receptors, 

namely NK1R, NK2R, and NK3R, belonging to the class I (rhodopsin-like) G-protein 

coupled receptor family [84]. SP interacts with all three receptor types but preferentially 

binds to NK1R [85,86]. Encoded by TAC1R, NK1R is found on chromosome 2 in humans 

and consists of seven hydrophobic transmembrane domains, three extracellular and three 

intracellular loops. Two isoforms of NK1R are found in neuronal and immune cells – 

full-length and truncated NK1R (NK1R-T) [87]. The full-length NK1R consists of 407 

amino acid residues and one C-terminal intracellular domain, whereas NK1R-T is composed 

of 311 amino acids and lacks the C-terminal intracellular domain [88–90].

Full-length NK1R is expressed primarily in the central nervous system except the 

cerebellum [91]. In contrast, NK1R-T is predominantly found in peripheral tissues, 

including the heart, lung, prostate and spleen, and immune cells such as human monocytes, 

macrophages and colonic epithelial cells [90,92,93]. The truncated isoform does not interact 

with β-arrestin, an essential adapter protein in SP signaling desensitization, resulting in 

impaired desensitization and endocytosis of the SP-NK1R complex [94]. Moreover, NK1R-

T has a ten-fold lower affinity and elicits a weaker electrophysiologic response to SP than 

the full-length isoform [88]. The two isoforms also exhibit contrasting signaling properties; 

SP stimulation triggers phosphorylation of PKCδ in cells expressing NK1R but inhibits 

phosphorylation of PKCδ in cells expressing NK1R-T [86]. The speed of ERK activation 

(peak within 1–2 min) is significantly faster upon binding to full-length NK1R compared 

to truncated NK1R binding (peak within 20–30 min). These findings suggest that carboxyl 

terminus in full form of NK1R plays a crucial role in activating downstream signaling 

pathways.

SP exerts varied functions upon binding to the two isoforms expressed by the immune 

cells. SP induced NK1R-T stimulation does not activate NF-κB, resulting in decreased 

mRNA expression of IL-8 [89,94]. On the contrary, stimulation of NK1R-T expressed on 

human peripheral blood monocytes enhances CCL5-induced calcium mobilization but does 

not mobilize intracellular calcium [65]. Moreover, a recent study reported that monocytes 
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that exclusively express NK1R-T and are incapable of triggering calcium mobilization start 

expressing the full form of NK1R after differentiating into macrophages and exhibiting 

SP-induced calcium response [90].

Upon activation of NK1R, G-protein coupled receptor kinases (GRKs) translocate from the 

cytosol to the plasma membrane and phosphorylate the carboxyl-terminal domain of NK1R 

bound to SP [95]. β-arrestins concurrently translocate to the plasma membrane to interact 

with the phosphorylated NK1R [96]. The SP/NK1R-β-arrestin complex is internalized by an 

endosome which subsequently undergoes acidification [97]. Once dissociated from NK1R, 

SP is degraded by endothelin-converting enzyme-1 (ECE-1), freeing the receptor to be 

recycled back to the cell surface [98]. This process of de- and re-sensitization is tightly 

regulated primarily by the concentration of SP. At low SP concentrations (<1 nM), NK1R 

is minimally phosphorylated and internalized but rapidly dissociates from β-arrestin to 

be recycled back to the cell surface, whereas high SP concentrations (>10 nM) result in 

extensive phosphorylation and internalization of NK1R with prolonged association with 

β-arrestin [66]. Moreover, following prolonged stimulation with SP, NK1R is ubiquitinated 

and ultimately degraded by lysosomes [99].

Depending on the G protein subtype associated with the NK receptors, SP can induce 

different signaling pathways and result in diverse physiological and pathological changes. 

The stimulation of the Gq subunit activates phospholipase Cβ (PLCβ), which causes 

the formation of inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 increases the 

cytosolic calcium levels regulating the phosphoinositol 3-kinase-mediated activation of the 

anti-apoptotic molecule Akt [100]. Moreover, the calcium mobilization and DAG trigger 

protein kinase C (PKC) to initiate the NF-κB-mediated production of pro-inflammatory 

cytokines (IL-1, IL-6, IL-8, and TNF-α) [101,102]. Signaling through the Gs subunit of the 

NK receptor activates adenylate cyclase, which increases the intracellular concentration of 

cyclic adenosine monophosphate (cAMP) and stimulates protein kinase A (PKA) [103–105]. 

PKA, like PKC, signals mitogen-activated protein kinase (MAPK) to activate extracellular 

signal-regulated kinases (ERK) 1 and 2, which translocate into the nucleus and mediate 

the expression of various cytokines [106]. NK1R signaling also transactivates the epidermal 

growth factor receptor (EGFR), which activates the p38/MAPK pathway and extracellular 

ERK 1 and 2 to promote cell proliferation [64,107,108].

4. Role of Substance P and NK1R in ocular surface physiology

The cornea is one of the most densely innervated tissues in the human body, with a surfeit 

of SP producing sensory nerves [10,109]. In addition to sensory function, corneal nerves 

play an important role in the blink reflex, wound healing, tear production and secretion, 

and trophic factors such as SP [15]. Aside from the trigeminal sensory neurons, corneal 

epithelial cells, stromal keratocytes, and immune cells secrete SP at the ocular surface 

[5,10]. Due to the constitutive SP expression at the ocular surface and its presence in 

normal human tears, several studies have explored its role in preserving tissue homeostasis 

[45,110]. SP release from the corneal nerve endings has been shown to mediate tear 

reflex [15]. Furthermore, the evidence in the literature highlights the critical role played 

by SP in maintaining the corneal epithelial integrity through the upregulation of tight 
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junction proteins, zonula occludens-1 and E-cadherin [111,112]. SP also contributes to 

the maintenance of corneal epithelial architecture through regulating regeneration of the 

corneal epithelium. SP enhances insulin-like growth factor-1 (IGF-1), fibronectin, and IL-6 

to promote corneal epithelial migration [113,114]. Additionally, SP modulates epithelial 

cell attachment to the extracellular matrix to promote wound healing. Specifically, SP 

and IGF-1 upregulate α5β1 integrin (a fibronectin receptor/integrin), inducing tyrosine 

phosphorylation of focal adhesion kinase and paxillin in corneal epithelial cells, thereby 

promoting their attachment to extracellular matrix proteins [115,116]. In fact, several 

studies have demonstrated the therapeutic efficacy of SP and IGF-1 in promoting corneal 

wound healing in patients with neurotrophic and anhidrotic keratopathy, herpetic keratitis, 

and Riley-Day syndrome [19,20,117]. In another study, SP prevents hyperosmotic stress-

induced apoptosis of corneal epithelial cells through Akt activation [118]. Moreover, naïve 

NK1R−/− mice show excessive exfoliation of the apical corneal epithelial cells, suggesting 

SP expression is critical to maintaining the corneal epithelial integrity [119].

Beyond modulating neurogenic inflammation, SP plays a critical role in maintaining 

immune homeostasis at the ocular surface by regulating both pro-and anti-inflammatory 

cytokines and maintaining the epithelial barrier against infections. It upregulates the 

production of IFN-γ from natural killer cells to exert a protective effect against invading 

bacteria. Concomitantly, SP also downregulates the mTOR pathway, resulting in increased 

expression of proinflammatory cytokines IL-12p40 and IL-23 and decreased expression 

of IL-10 [120,121]. Contrary to its pro-inflammatory function in innate immunity, SP is 

reported to induce the loss of immune balance by affecting the adaptive immune response 

at the ocular surface. Paunicka and colleagues demonstrated that severing corneal nerves in 

one eye induced SP secretion in both eyes, resulting in the loss of corneal immune privilege. 

Consequently, regulatory T cells were suppressed, and the mice showed higher allograft 

rejection in both eyes [122]. Literature suggests that SP plays multi-faceted roles on the 

ocular surface by either promoting or disrupting the ocular surface physiology; therefore, 

future studies are warranted to better understand the mechanisms responsible for the evident 

dichotomy in SP functions at the ocular surface.

5. Role of substance P and Neurokinin 1 receptor in ocular surface 

disease pathogenesis

a. Herpes Simplex Keratitis

In the preclinical stages of Herpes Simplex Keratitis (HSK), the neuronal damage leads to 

a progressive reduction in SP levels [123]. SP levels increase in the clinical stages of the 

disease, typically peaking at 14 days post-infection [124,125]. (Fig. 2) Moreover, higher 

levels of SP are observed in severe HSK cases due to the excessive release of SP by 

extensively damaged nerves. There is a concurrent pro-inflammatory effect is driven by 

SP binding to NK1R, primarily due to activation of NF-κB signaling pathway, causing 

increased expression of inflammatory cytokines (IL-6 and IFN-γ) and chemokines [such 

as CCL3, CXCL2, macrophage inflammatory protein-2 (MIP-2) MIP-1α, and monocyte 

chemoattractant protein-1 (MCP-1)] generating an influx of immune cells into the inflamed 

tissue [119,124,126–128].
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The non-immune cells (CD45−) exhibit reduced cell surface and increased intracellular 

expression of NK1R at 15 days post-infection. In contrast, immune cells (CD45+) isolated 

from the cornea increase the NK1R expression, underlining the possible immune crosstalk 

between corneal nerves and immune cells in viral keratitis. As such, subconjunctival 

treatment of clinical HSK with Spantide I, an NK1 antagonist, substantially attenuated 

corneal opacity and angiogenesis. Specifically, the study reports a significant reduction in 

the percentage of helper T-cells (CD45+CD4+) and neutrophils (CD45+Ly6G+CD11b+) on 

day 16-day post-infection, indicating the pro-inflammatory role of corneal SP in severe HSK 

development.

Interestingly, corneal opacity and angiogenesis are aggravated in NK1R−/− mice in early 

stages of HSK, contradicting the previous hypothesis that the absence of NK1R reduces 

disease severity [128]. Gaddipati and colleagues reported early development of severe HSK 

in infected NK1R−/− mice compared to infected C57BL/6J (B6) mice controls [119]. A 

significantly higher viral load and elevated levels of chemoattractant chemokines such as 

CXCL1, CXCL2, and CCL2 were observed in NK1R−/− mice. The rapid post-infection 

pathological changes in NK1R−/− mice, such as epithelial sloughing, reduced central 

antigen-presenting cells, higher viral load, cytokines, and chemokines levels, and increased 

mature neutrophils and Th1 cells, underline the critical role of NK1R in maintaining ocular 

surface homeostasis and reduces the susceptibility to develop severe HSK upon ocular 

HSV-1 infection. The use of Spantide I (an antagonist of NK1) is effective in significantly 

reducing the percentage of T-cells (CD45+CD4+) and neutrophils (CD45+Ly6G+CD11b+) at 

16 days post-infection, indicating that the absence of SP-NK1 signaling is more detrimental 

than the antagonism of NK1R [124].

b. Pseudomonas Keratitis

Pseudomonas aeruginosa is Gram-negative bacteria and is one of the most common causes 

of keratitis, particularly in cases associated with contact lens use [129]. Recent studies have 

outlined the role of SP in Pseudomonas keratitis in murine models. Lighvani and colleagues 

outlined the role of SP in the induction of immune response resulting in increased IFN-γ 
production by NK cells via NK1R interactions [130]. The role of SP in Pseudomonas 

keratitis were confirmed by blocking the effects through Spantide I application, which 

resulted in significantly reduced corneal IFN-γ and IL-18 levels and corneal perforation. 

Moreover, Spantide I application significantly reduced type I cytokines and enhanced IL-10 

production in mice with Pseudomonas keratitis, thereby improving the disease outcomes 

[46]. SP promoted mRNA expression of growth factors - hepatocyte growth factor and 

fibroblast growth factor-7 [131]. Zhou and colleagues reported better disease outcomes by 

delaying the apoptosis of polymorphonuclear cells (PMN) by blocking SP interaction with 

NK1R and improved outcomes in susceptible C57BL/6 mice [48].

c. Dry Eye Disease

DED is a multifactorial ocular surface disorder with an estimated prevalence of 6.8% 

among the US adult population [132]. It can present as a stand-alone disease or an 

ocular manifestation of immune-mediated systemic disorders such as graft-versus-host 

disease, Sjögren syndrome, and rheumatoid arthritis [133–136]. Moreover, DED patients 
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have compromised corneal sub-basal nerves, more pronounced in aqueous-deficient DED 

[137]. DED is characterized by an inflammatory process, most notably a Th17 mediated 

inflammation that suggests an autoimmune pathology [122,138]. With its pro-inflammatory 

effects, SP plays a role in the pathogenesis of several autoimmune disorders such as 

rheumatoid arthritis and inflammatory bowel disease [7,120,139,140].

Over the years, several groups including ours have studied the role of SP in the auto-immune 

component of dry eye disease (DED), which is primarily mediated by Th17 cells [2]. 

Significantly higher levels of SP are observed in tears of DED patients and the cornea, 

conjunctiva, and draining lymph nodes (dLNs) of DED murine models in comparison to 

their healthy counterparts. Elevated levels of SP in cornea and trigeminal ganglion have 

also been reported with DED symptoms in a menopause model using ovariectomized rats 

[141]. The high levels of SP trigger a neurogenic inflammatory response, which leads 

to the release of various pro-inflammatory cytokines in the ocular surface milieu [42]. 

The pro-inflammatory cytokines promote the maturation of antigen-presenting cells at the 

ocular surface, which migrate to dLNs and prime naïve T cells to generate CD4+ helper 

T cells, including Th17 cells [142,143]. (Fig. 3) In DED, an increase in the frequency of 

the NK1R-expressing regulatory T-cells (Tregs) is observed; however, these Tregs show 

aberrant expression of immunomodulatory markers such as CTLA-4, PD-1, and cytokines 

TGF-β and IL-10. Moreover, these NK1R+Tregs had a weaker suppressive function against 

T effector cells, indicating a certain degree of dysfunctionality.

Activation of heat receptors transient receptor potential cation channel (subfamily V member 

1/subfamily A member 1) (TRPV1/TRPA1) and cold receptor transient receptor potential 

cation channel subfamily M (melastatin) member 8 (TRPM8) induce SP to be released on 

the ocular surface and cause pain [144,145]. A recent report using an extra orbital lacrimal 

gland excision murine model of DED demonstrated cold nociception is mediated by SP 

release, and both TRPV1 and TRPM8 contribute to this process despite the insensitivity of 

TRPV1 channels to cooling. Furthermore, the cold-induced release of SP via the expression 

of TRPV1 in TRPM8+ neurons. Given the low frequency of TRPM8 terminals, abnormal 

SP expression, and hypersensitive nerves in mice following nerve severing surgery, He and 

colleagues concluded that delayed corneal surgery-induced dry eye-like pain (DELP) mainly 

occurs due to high SP levels, low frequency of TRPM8 terminals, and hypersensitive nerves 

[145,146]. Similarly, complications of DED and DELP following refractive surgery in 

patients have been attributed to surgery-induced corneal denervation and neuroinflammation 

[147–157].

Moreover, refractive surgery decreases tear production, tear film quality, and blinking reflex, 

which are the primary underlying factors in the pathogenesis of DED [158]. It has been 

validated that surgical incisions and laser exposure activate stromal keratocytes (to promote 

wound healing) and trigger neurogenic inflammation [159]. A clinical cross-sectional study 

revealed tear SP levels positively correlate with the severity of dry eye symptoms and 

negatively correlate with corneal sensitivity following laser-assisted in-situ keratomileusis 

(LASIK). Liu and colleagues compared the tear proteomic and neuromediator profiles 

following small incision lenticule extraction (SMILE) versus LASIK. Their results also 
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showed that SP level was significantly increased postoperatively in the LASIK group, with 

only a moderate increase in SMILE patients [147,159].

c. Corneal Wound Healing and neurotrophic keratopathy

Substance P produced in the corneal epithelial cells and stromal keratocytes augments IL-8 

production in the corneal cells expressing NK1R [160]. Sloniecka and colleagues elucidate 

the role of IL-8 in promoting keratocyte migration [12]. (Fig. 4) Thus, SP-NK1R interaction 

appears to promote corneal wound healing. Furthermore, SP reverts the wound healing 

delay in diabetic corneal epitheliopathy [21]. In an alkali-burn model, the accelerated wound 

healing properties of SP have been attributed to the mobilization of bone marrow CD29+ 

stromal cells into circulation and to the site of corneal injury [60].

Recent studies have shown promising outcomes on SP application in combination with 

insulin growth factor-1 (IGF-1) [161,162]. In a study utilizing ex vivo cultures, SP and 

IGF-1 promoted corneal epithelial cell migration [163]. This effect occurred in a dose-

dependent manner which was primarily mediated by NK1R and through protein kinase 

C and p38 MAPK activation pathway [115,164,165]. In murine models of neurotrophic 

keratopathy, the application of SP and IGF-1 recapitulates the corneal barrier function 

[166,167]. The efficacy of this combination has also been used to significantly accelerate 

the epithelial healing rate after photorefractive keratectomy in rabbits [168]. However, a 

recent report revealed the role of SP in promoting fibrotic changes in the cornea through 

NK1R mediated activation of the RhoA/ROCK pathway, thereby increasing the production 

of collagen I, III, and V, lumican, α-Sooth Muscle Actin (SMA), fibronectin, and increases 

corneal fibroblasts contraction, an undesirable function in corneal wound healing [12].

Topical treatment with SP failed to promote corneal epithelial wound healing in an injury-

induced model in rabbits [169]. In contrast, the truncated synthetic form of SP, known 

as FGLM, promotes corneal epithelial cell migration when used in combination with 

IGF-1 in a rabbit corneal injury model [163]. Similarly, four amino-acid long peptides 

(SSSR) combined with IGF-1 and FGLM have shown promising outcomes [170]. Applying 

truncated synthetic forms of SP negates the unwanted adverse effects typically associated 

with SP, such as miosis and angiogenesis [171]. The encouraging outcomes in preclinical 

studies have laid the foundation to study the efficacy of SP (in combination with IGF-1) 

and its synthetic forms for treating diseases with an underlying epithelial defect. In 2007, 

Nishida et al. showed the efficacy of topical treatment with FGLM-amide and IGF-1 to 

resurface persistent epithelial wounds in 11 patients with neurotrophic keratopathy [ 172 ]. 

A year later, Yamada et al. reported similar success with FGLM-amide and SSSR containing 

eye drops in a larger patient set with 25 individuals [173]. In 2009, Chikamoto et al. 

conducted a randomized clinical trial with 29 diabetic patients. The same eye drop was 

shown to be effective in preventing superficial punctate keratopathy after cataract surgery 

[174].

d. Conjunctival hyperemia

The inflammatory response due to dry eye and allergic antigens mediates vasodilation 

through the dense innervation of the ocular surface by the trigeminal sensory system 
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[175–179]. The conjunctival insults detected by afferent sensory neurons and relayed to 

the central nervous system led to an efferent sympathetic/parasympathetic response at 

the ocular surface, causing local release of neuromediators, including SP and calcitonin 

gene-related peptide (CGRP). In allergy, elevated SP levels have been reported in patients 

with allergic conjunctivitis [180]. Further studies in a guinea pig ovalbumin-induced allergy 

model elucidated SP’s role as a mediator of allergic conjunctivitis, causing conjunctival 

vasodilation and hyperpermeability through NK1R receptors on blood vessels [181].

SP is a known vasodilator and has been shown to cause plasma extravasation in the 

conjunctiva [182]. SP can cause further vasodilation of the conjunctival microvasculature 

through enhanced mast cell degranulation and release of TNF-α [183]. Earlier, the mast 

cell degranulation by SP was considered G-protein mediated activation-dependent instead 

of NK1R mediated response [39,40]. However, recent studies have reported high expression 

of NK1R by mast cells. Moreover, studies show a bidirectional signal between mast cells 

and SP-expressing nerves [81,82]. SP released from sensory nerve endings also acts on mast 

cells to synthesize TNF-α, which plays a role in vasodilation [80].

6. Modulating Substance P production

The most commonly performed ophthalmic procedures to correct visual acuity - LASIK 

and PRK- cause severe corneal neuropathic pain [150–153]. In LASIK, epithelial nerve 

bundles and superficial stromal nerves are excised by a microkeratome, while during PRK, 

epithelium removal causes inadvertent damage to interspersed epithelial nerves. These 

procedures injure the corneal nerves and interrupt the transmission of the sensory neurons 

to the TG and central nervous system, ultimately producing pathologic pain sensation [184]. 

SP is present either in dorsal root ganglia (DRG) or TG and then packed into vesicles, 

moved to central and peripheral processes through axonal transport, mediating nociceptive 

transmission [184,185]. This normal process is interrupted after nerve damage and restoring 

the physiological condition and consequent basal nociception is challenging. Thus, SP 

synthesis and transport have been the focus of research in the past two decades.

A deeper understanding of the SP synthesis through the endogenous expression of the Tac1 

gene and the associated regulatory elements is being utilized for finding novel therapeutic 

alternatives for pain-related and behavioral diseases. At the genomic level, the Tac1 gene 

is driven by the Tac1 promoter (Tac1prom) in the sensory neurons, and its activity is 

modulated by numerous different stimuli such as nonspecific noxious stimulation LPS 

(bacterial infection), membrane depolarization potassium-induced, glucocorticoid receptors, 

and capsaicin [50,130,186–193]. Although the regulatory elements that modulate SP 

production in corneal nerves are yet to be fully elucidated, corneal SP secretion is 

augmented on nerve injury, which shows a deleterious effect on Tregs, leading to loss of 

immune privilege after corneal transplantation [122]. A recent study showed that induction 

of ocular inflammation by noxious stimulation with benzalkonium chloride triggered SP 

expression in the TG and persisted even two months post-inflammation resolution [194].
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7. Modulation of NK1R activity: clinical implications

a. Corneal neovascularization

The development of corneal neovascularization is associated with significant visual 

impairment and affects the outcomes of corneal transplantation [195–197]. Although this 

process is mediated by multiple chemical factors, such as reduction in Pigment Epithelium 

Derived Factor (PEDF) expression, reports suggest that SP also plays an essential role 

[198,199].

Detectable amounts of SP are synthesized in the epithelial cells and nerves of the healthy 

cornea, but vesicle sequestration permits the normal tissue to remain avascular [200]. 

However, insults to the cornea trigger the release of SP from the nerves, resulting in 

inflammation and neovascularization [201]. Through its action on NK1R, SP promotes 

endothelial cell proliferation and migration through the nitric oxide activation pathway 

combined with fibroblast growth factor-β [77,202]. Indirectly, SP promotes infiltration of 

leukocytes in the cornea and induces a pro-angiogenic phenotype shift in most leukocyte 

populations. Specifically, SP favors vessel dilation, leukocyte diapedesis, and chemotaxis 

[12,63]. Through NK1R, SP stimulates VEGF synthesis in mast cells, superoxide and 

chemokine production in neutrophils, and IL-12 production in macrophages and DCs 

[191–193]. Additionally, SP binds to NK2R and induces the release of oxygen radicals. 

Interestingly, once the inflammation has ensued, SP is produced by activated leukocytes, 

promoting an autocrine, pro-angiogenic loop [122,130].

The role of SP via NK1R is clinically relevant as lymphangiogenesis plays a critical role 

in corneal graft rejection [203]. In a patient cohort with corneal neovascularization, SP 

concentration was significantly elevated in the tear fluid and clinically correlated with 

the extent of neo-vessel formation [204]. Multiple in vivo preclinical models and clinical 

studies have suggested a central role of SP in promoting both hemangiogenesis and 

lymphangiogenesis [49,205,206]. Expectedly, SP knocked down animals exhibited reduced 

corneal hem-and lymphangiogenesis after inducing inflammatory injuries [204]. This effect 

was attributed to NK1R activation, as the topical application of selective NK1R antagonist 

Lanepitant effectively inhibited corneal neovascularization. Interestingly, the anti-angiogenic 

effect of NK1R blocking was also maintained in pre-established corneal neovascularization, 

which is notoriously more resistant to treatment [49, 207]. Altogether, the therapeutic 

modulation of NK1R can be targeted to prevent or curtail corneal neovascularization, 

prevent consequential corneal opacity, and maintain the corneal immune privilege [208].

b. Dry eye disease

In the desiccating stress murine model of DED, SP promotes the maturation of corneal 

antigen-presenting cells, consequently activating effector Th17 cells and contributing to 

the dysfunction of the immunosuppressive function of Tregs [45,143]. These findings have 

been further confirmed through NK1R antagonism suggesting potential new therapies for 

DED. The role of SP in inducing nociception and neurogenic inflammation has been widely 

studied [209,210]. Neurogenic inflammation has been implicated in the development and 

chronicity of DED [211–213]. Moreover, pain and ocular discomfort are two cardinal 
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symptoms of DED, and evidence suggests stimulation of the lacrimal functional unit in 

the absence of tear film can result in neurogenic inflammation [211,213–215]. Furthermore, 

the inflammatory process associated with the DED can modulate the excitability of the 

small-diameter fibers, leading to the antidromic release of SP and enhancing the immune 

environment [212].

In a recently published study, we observed topical treatment of DED mice with NK1R 

antagonists CP-99,994 and L-733,060 suppress acquisition of major histocompatibility 

complex class II by antigen-presenting cells at the ocular surface and subsequently reduce 

the generation and activity of Th17 cell in dLNs [45]. The significant amelioration of DED 

in mice confirmed these changes at the cellular level. In another study from our group, 

we reported the efficacy of Spantide I (NK1R antagonist) in attenuating the DED immune 

response [143]. Specifically, we observed that the addition of Spantide I to the in vitro 
cultures prevented SP-mediated reduction in Treg cell frequencies and their suppressive 

function. On systemically treating DED mice with Spantide I, we observed that Treg 

function was restored, pathogenic Th17 response was suppressed, and the animals had 

significantly lower corneal fluorescein staining scores than the controls.

8. Conclusions

The ubiquitous expression of SP and its receptors highlights their therapeutic potential for 

various ocular surface diseases ranging from infectious to neurotropic keratitis; however, 

its functional dichotomy poses a major challenge. As outlined in this review, on one hand, 

SP promotes corneal epithelial wound healing by promoting cell migration and at the same 

time causes poor clinical outcome by amplifying the inflammatory response at the ocular 

surface after chemical or mechanical trauma and infections. Additionally, the evidence in 

the literature clearly shows a direct correlation between SP expression and severity of ocular 

surface inflammation. The preliminary evidence suggests that SP promotes epithelial wound 

healing at low concentrations and short time, whereas a prolonged exposure to significantly 

elevated levels induces inflammation and angiogenesis. A deeper understanding of the time 

and concentration dependent impact of SP on the ocular surface is essential for developing 

therapeutics targeting it.

NK1R receptor blockers (Lanepitant and Fosaprepitant) have been shown to be efficacious 

in inhibiting angiogenesis and inflammation in animal models and do not have toxic effects 

to the ocular surface or corneal nerves. However, their therapeutic application remains 

limited, primarily due to the gaps in knowledge about the factors modulating the NK1R 

expression levels in different cell types and diseases despite the scientific insight into the 

structure and functions of SP and neurokinin receptors. Moreover, the current clinical and 

experimental studies on the effects of SP solely rely on its functions via NK1R. Several 

groups, including ours, are working on developing insights into the physiological and 

pathological response generated by SP via the other two receptors - NK2R and NK3R. 

Due to its high neuronal density, the cornea is a simple yet powerful model for developing a 

deeper understanding of the mechanisms and role of SP in pain induction, immunology, and 

angiogenesis. Thus, more studies in the near future utilizing ocular surface disease can shed 

light on therapeutic applications of SP and targeting its receptors.
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Fig. 1. 
Substance P is primarily released by the corneal nerve endings and acts primarily via the 

neurokinin-1 receptor (NK1R). (1) It causes vasodilation and increased permeability of the 

microvasculature directly, and indirectly through degranulation of mast cells. (2) It has 

pro-inflammatory effects through activation of T-lymphocytes and macrophages. (3) SP also 

plays in essential role in pain transmission to the CNS via Aδ and C fibers.
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Fig. 2. 
(1) An increase in SP levels is observed in severe cases of herpes simplex keratitis due 

to excessive release by damaged nerves. (2) In HSV-1 infected corneas, non-immune cells 

(CD45−) exhibit reduced cell surface expression of NK1R post-infection and immune cells 

(CD45+ T-cells and macrophages) show an increase in the NK1R expression. (3) There is 

also a concurrent SP mediated increase in levels of pro-inflammatory cytokines (IL-6 and 

IFN-γ).
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Fig. 3. 
(1) Elevated levels of SP trigger a neurogenic inflammatory response, which leads to the 

release of pro-inflammatory cytokines in the ocular surface microenvironment. (2) The 

pro-inflammatory cytokines promote the maturation of antigen-presenting cells (APCs) at 

the ocular surface. (3) These APCs migrate to dLNs and prime naïve T cells to generate 

CD4+ helper T cells, including Th17 cells.
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Fig. 4. 
(1) SP promotes corneal would healing by inducing IL-8 production in corneal epithelial 

cells and (2) promoting keratocyte migration. (3) SP promotes fibrotic changes in the 

cornea through NK1R mediated activation of the RhoA/ROCK pathway which causes (4) 

myofibroblast differentiation and (5) an increase in the production of collagen I, III, and 

V, lumican, α-Sooth Muscle Actin (SMA), fibronectin, and increases corneal fibroblasts 

contraction.
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