Skip to main content
. 2023 Jun 7;8(24):21391–21409. doi: 10.1021/acsomega.3c02239

Table 1. Recent Technological Advancements for Biofilm Inhibition by Clinically Relevant Pathogenic Organisms.

nanotechnology and polymeric nanocomplexes nanomaterial description test surface target organisms size and shape anti-biofilm efficacy ref
metal and metal oxide NPs AgNPs (using pomegranate extract) AgNP-coated catheters S. epidermidis, S. aureus, P. aeruginosa, E. coli, P. mirabilis, and K. pneumoniae 15–25 nm/spherical, elongated, mixed shapes biofilm inhibitory effect on coated catheters (lasted for 72 h) (100)
chitosan–silver NPs and chitosan–gold NP conjugates polystyrene plates P. aeruginosa, E. coli, B. subtilis, and S. aureus. AgNPs and AuNPs with sizes of : 4.5 ± 20–50.2 ± 74 and 3.47 ± 2–35.50 ± 2 nm, respectively/sphere-like chitosan–silver NP demonstrated anti-biofilm action, chitosan–gold NP conjugates demonstrated mild anti-biofilm activity (101)
AgNPs-EC and AgNPs-PVP urinary catheter clinical isolate of E. coli silver NPs-PVP, silver NPs-EC, and silver NPs-PEG with sizes of 163.0 ± 0.9, 122.23 ± 17.61, and 79.7 ± 8.75 nm, respectively/spherical silver NPs-PVP impeded biofilm formation to 58.2% and 50.8% (103)
zinc oxide NPs (FL-ZnO, OFL-ZnO, and L-ZnO) In vitro and in vivo studies C. albicans 40 nm/hexagonal wurtzite structure biofilm inhibition (more than 90% by FL-ZnO NPs) (107)
gold NPs (AuNS10 and AuNS100) small intestinal sections of VcO395-infected mice V. cholerae biotypes: classical (VcO395) and El Tor (VcN16961) AuNS10 (10 nm) and AuNS100 (100 nm)/spherical and rod shaped AuNS100 demonstrated high anti-biofilm efficacy for both biotypes; no effect was observed by AuNS10 (104)
silver NPs from Solibacillus isronensis sp. polystyrene plates E. coli, S. aureus, P. aeruginosa, and S. epidermidis 80–120 nm/quasi-spherical shape broad-spectrum anti-biofilm activities (99)
self-assembled azithromycin/rhamnolipid NPs polystyrene plates P. aeruginosa 121 nm/negatively charged on the surface ability remove the polysaccharides and proteins with potent biofilm destruction (108)
silver NPs in combination with biofilm-lysing enzyme (α-amylase) and dopamine titanium substrates S. aureus biofilm nanoparticles (20–50 nm) and nanoaggregates (80–100 nm) S. aureus growth was significantly inhibited by Ag/PDA coatings (102)
gold NPs polyethylene surface S. aureus biofilm gold NPs (0.8 and 1.4 nm as core diameters) 4:1 live/dead cells in the biofilm (105)
Zn NPs with floral extract of Clitoria ternatea   Porphyromonsas gingivalis and Alcaligenes faecalis 10 nm/spherical bacterial viability was reduced by 87.89% with NP treatment (109)
functionalized nanoparticles poly-l-lysine (HBPL)-modified manganese dioxide (MnO2) nanozymes/poly(PEGMA-co-GMA-co-AAm) in vitro and in vivo studies P. aeruginosa, methicillin resistant S. aureus (MRSA), and E. coli nanosheet (1–100 nm) broad-spectrum anti-biofilm and antimicrobial activity (122)
quercetin (QUE) as a stable amorphous NP complex (nanoplex) polystyrene plates P. aeruginosa PAO1 roughly 150–400 nm/elongated shape inhibition of motility and biofilm formation at 10 and 50 μg/mL were found to be 77 ± 6% and 65 ± 7%, respectively(comparable to native QUE) (119)
α-mangostin (AMG)-loaded NPs (nanoAMG) polystyrene plates methicillin-resistant S. aureus strain MRSA252 10–50 nm/shape not mentioned biofilm inhibition by free AMG (40–44%), AMG with 24 μmol/L compound inhibits biofilm (53–62%) (120)
amphotericin B-loaded trimethyl chitosan polystyrene plates C. albicans ATCC 10231 TMC-NPs (210 ± 15 nm) and TMC NPs/AmB (365 ± 10 nm)/uniform spherical shapes with smooth surfaces enhanced the antifungal activity of AmB (amphotericin B) against Candida albicans biofilms (121)
cyclodextrin loaded gellan/PVA nanofibers incorporated eucalyptol/β-cyclodextrin inclusion complex   C. glabrata and C. albicans biofilms variable-length fibres/fiber shaped EPNF showed inhibition up to 70% for C. glabrata and C. albicans biofilms (135)
cysteamine-substituted γ-cyclodextrin   S. epidermidis biofilms nanocarriers (∼30–40 nm)/toroidal shapes cyclodextrin nanocarriers efficiently deliver antibiotics in biofilms (133)
resveratrol nano vector of 2-hydroxypropyl-β-cyclodextrins (HPβCD) 64 children between two and five years of age with plaque-induced gingivitis oral biofilm-causing agents (e.g., Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Streptococcus mutans)   significant reduction in dental plaque of patients as compared to control (134)
dendrimer and dendrimer–drug conjugates supramolecular dendrimer nanosystems polystyrene plates P. aeruginosa, E. coli, and S. aureus spherical supramolecular nanomicelles ranging from 10 to 20 nm prevention and eradication of biofilm formation by both bacteria (141)
TDZ-grafted amino-ended poly(amidoamine) dendrimer (TDZ-PAMAM) in vitro and in vivo study methicillin-resistant S. aureus (MRSA) 4 and 5 nm/spherical intensive penetration of the biofilm matrix with potent biofilm eradication activity (142)
dendritic compounds and amphotericin polystyrene plates C. glabrata biofilm   eradication of established biofilms alone and in combination with amphotericin (143)
PEGylated carbosilane dendrimers alone and in combination with phage-derived endolysin polystyrene plates P. aeruginosa   biofilm prevention and eradication activity of dendrimers alone and in combination (144)
polymeric nanoparticles amphotericin B polymer NPs show efficacy against candida species biofilms polystyrene plates C. albicans and C. glabrata 157 ± 3 nm MET-AmB formulations showed activity ∼30× lower than AmB alone (148)
doxycycline-functionalized polymeric NPs inhibit Enterococcus faecalis biofilm formation on dentine dentine blocks E. faecalis ATCC 29212 200 nm NPs displayed potent antimicrobial activity against E. faecalis biofilms (156)
dual-species bacterial biofilms are susceptible to polymeric NPs polystyrene plates E. coli (IDRL-10366, DH5α), P. aeruginosa (IDRL-11442, ATCC-19660), and MRSA (IDRL-6169, IDRL-12570) ∼15 nm PNPs showed good dual-species biofilm penetration profiles (broad-spectrum antimicrobial activity) (157)
antibacterial effect of functionalized polymeric NPs on titanium surfaces using an in vitro subgingival biofilm model sterile titanium discs Streptococcus oralis, Veillonella parvula, Actinomyces naeslundii, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis ∼150 nm NPs induced higher biofilm mortality and reduced the bacterial load (158)
polymer–drug conjugates antimicrobial polymer–peptide conjugates   P. aeruginosa (ATCC 27853) and E. coli (ATCC 25922)   inhibits the biofilm formation and the eradication of biofilms (162)
anti-S. aureus α-toxin-conjugated PEG-NPs and ISMN-loaded polylactide-co-glycolide acid (PLGA) chronic rhinosinusitis inhibit S. aureus biofilms   potent bactericidal activity with low inflammatory marker expression (163)
microbubbles functionalized with AClfA1 microfluidic flow chip (glass coverslip) S. aureus biofilms micrometer-sized ∼8% increase in the dead cell number and 25% increase in biomass loss (164)
Cconjugated polymer nanostructures (CPNs) as photoactivated antimicrobial compounds polythiophene (PEDOT) and polyaniline (PANI) material S. aureus and E. coli average diameter of 40 nm and length in the micrometer range strong antimicrobial activity under UVA irradiation (165)
bchitosan–PEG–peptide conjugate (CS-PEG-LK13) in vitro biofilm model P. aeruginosa biofilms ∼100 nm CS-PEG-LK13 showed high antibacterial efficiency (72.70%) as compared to LK13 peptide (15.24%) and tobramycin alone (33.57%) (166)
chitosan oligosaccharide–streptomycin conjugate (COS-Strep) polystyrene microtiter plates P. aeruginosa biofilms   COS-Strep efficiently eradicated established biofilms (167)
solid lipid nanoparticle SLNs with anacardic acid (Ana-SLNs) polystyrene microtiter plates S. aureus biofilm 50–1000 nm significant reduction in biofilm thickness and biomass (170)
SLNs incorporated with rifampin (rifampin-SLN) polystyrene microtiter plates biofilm-producing S. epidermidis ∼100–300 nm time- and concentration- dependent biofilm biomass reduction with rifampin-SLN (171)
cefuroxime-loaded SLNs CA-SLN polystyrene microtiter plates S. aureus biofilm   twofold higher anti-biofilm inhibition with CA-SLN (172)
white wax (Chinese) SLNs with curcumin catheters (polyvinyl chloride) S. aureus biofilms. ∼401.9 ± 21.3 nm enhanced bioavailability of curcumin and significant inhibition of S. aureus biofilms (176)
nisin-loaded SLNs (SLN-nisin) in vitro assay Treponema denticola biofilms   oral pathogen biofilm disruption (173)
nanoencapsulated tobramycin in vitro assay P. aeruginosa 150 nm high anti-biofilm potential (174)
liposomes liposomes incorporating antibiotics 96-well cell culture plate S. aureus Biofilms ∼ 0.11–0.17 μm potent interactions of liposomes with biofilms (187)
Liposomes-in-chitosan hydrogel polystyrene microtiter plates S. aureus and P. aeruginosa 200–400 nm boosts potential of chlorhexidine in biofilm eradication (188)
DNase I- and proteinase K-incorporated cationic liposomes polystyrene microtiter plates Cutibacterium acnes 95 and 150 nm liposome penetration ∼ 85% of the biofilm thickness. (189)
dual-drug-loaded liposomes culture dish S. aureus biofilms ∼100 nm potent degradation of the biofilm matrix (190)