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Abstract 

Objective  Cystic fibrosis (CF) is a genetic condition that causes abnormal mucus secretions in affected organs. 
MUC5AC and MUC5B are gel-forming mucins and frequent targets for investigations in CF tissues. Our objective was 
to qualify MUC5AC and MUC5B immunohistochemical techniques to provide a useful tool to identify, localize and 
interpret mucin expression in ferret tissues.

Results  MUC5AC and MUC5B mucins were detected most commonly in large airways and least in small airways, 
consistent with reported goblet cell density in airway surface epithelia. We evaluated whether staining method 
affected the detection of goblet cell mucins in serial sections of bronchial surface epithelia. Significant differences 
between stains were not observed suggesting common co-expression MUC5AC and MUC5B proteins in goblet cells 
of airway surface epithelia. Gallbladder and stomach tissues are reported to have differential mucin enrichment, so we 
tested these tissues in wildtype ferrets. Stomach tissues were enriched in MUC5AC and gallbladder tissues enriched 
in MUC5B, mucin enrichment similar to human tissues. Mucin immunostaining techniques were further qualified 
for specificity using lung tissue from recently generated MUC5AC−/− and MUC5B−/− ferrets. Qualified techniques 
for MUC5AC and MUC5B immunohistochemistry will be useful tools for mucin tissue studies in CF and other ferret 
models.
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Introduction
Cystic fibrosis (CF) is a life-limiting condition caused by 
mutations in the CF transmembrane conductance regula-
tor (CFTR) [1, 2]. Clinical disease can begin before birth 
and produces lesions in several organ systems includ-
ing: respiratory tract, gastrointestinal tract, skin, and 
reproductive tract [3–5]. Mouse models were developed 
by 1992, but these lacked significant phenotypes in key 

organs, thus accelerating the search for other novel ani-
mal models. With the advent of somatic cell nuclear 
transfer technology, the CF pig [6]and CF ferret [7] mod-
els were some of the first new animal models developed. 
Phenotypic analysis of the CF ferret model was reported 
in 2010 and has since been useful for study of lung, gas-
trointestinal, and pancreatic disease as well as novel 
treatment strategies [7–11].

Mucins are high molecular weight glycoproteins that 
provide the characteristic viscoelastic features of mucus. 
In the respiratory tract, MUC5AC (goblet cells) and 
MUC5B (goblet in surface epithelia and mucous cells of 
submucosal glands) are the major gel-forming mucins 
[12]. As part of mucociliary clearance, thin strands of 
secreted mucus sweep airways of inhaled debris and 
pathogens [13]. CF mucus is abnormal and described as 
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thick, sticky and tenacious, features that contribute to its 
pathological role in disease development [12, 14]. Quali-
fied immunohistochemical staining for MUC5AC and 
MUC5B can augment tissue studies for CF mucus [15].

The aims of the current study were to qualify the 
MUC5AC and MUC5B immunostaining techniques 
through use of control ferret tissues including the lung.

Main text
Methods
Archival paraffin-embedded tissue blocks from wildtype 
(WT) ferrets or those with ongoing research projects at 
the University of Iowa. All studies were performed under 
the approval and guidance of the University of Iowa Ani-
mal Care and Use Committee and followed all pertinent 
federal/national/international standards of care. Adult 
WT ferrets (1–2 years of age, n = 2–3 per sex) were used 
to evaluate mucin expression in select tissues (lung, 
sinonasal cavity, pancreas, gallbladder, stomach) that 
are relevant to CF research. Additionally, lung tissue of 
recently developed MUC5AC−/− (male, n = 1, > 1  yr age) 
and MUC5B−/− (female, n = 1, > 1  yr age) ferrets were 
obtained from an ongoing separate phenotypic study of 
these novel ferret models. Disruption of the two mucin 
genes was achieved using Cas9/gRNA ribonuclear pro-
tein complexes into ferret zygotes followed by adaptive 
transfer into pseudo-pregnant jills [16]. These exclusive, 
few lung tissues from novel mucin models were used to 
help qualify the specificity of mucin immunohistochem-
istry in the current study and any additional data about 
the generation or characterization of these models will be 
published in a separate study.

In tissue sections (~ 4  µm), diastase-pretreated peri-
odic acid Schiff (dPAS) histochemical stain was applied 
to detect and localize mucus in tissues [17]. Baseline pro-
tocol parameters for evaluation of immunohistochemical 
staining for MUC5AC and MUC5B were guided from 
previous reports in CF models [15, 18–20]. The primary 
antibody concentration was preliminarily tested via a 
panel of concentrations (1:250, 1:500, 1:1000, 1:2000) to 
evaluate for staining of known positive cells (e.g. goblet 
cells) and absence of staining in off target cells to yield 
the initial baseline techniques used in this study. For both 
mucins, tissues were exposed to heat-induced epitope 
retrieval (citrate buffer pH 6.0, 110 °C × 15 min), followed 
by primary antibody for MUC5AC (mouse monoclo-
nal 1:500 × 1 h, clone 45M1, #ab3649, Abcam, Waltham, 
MA, USA) or MUC5B (rabbit polyclonal 1:1000 × 20 min, 
#HPA008246, Sigma Aldrich, St. Louis, Mo, USA). Sec-
ondary kits of Mouse EnVision + and Rabbit Envison 
(Dako North America, Inc., Carpentaria, CA, USA) were 
respectively applied followed by 3,3′-Diaminobenzidine 
as chromogen and Harris hematoxylin as counterstain. 

Qualification of the immunostaining was primarily eval-
uated in gallbladder, stomach and lung tissues of wildtype 
ferrets (see results section). Anatomic definitions for 
airway size in ferret lungs were as follows: large bron-
chi (50–100% circumferential cartilage), small bronchi 
(< 1–50% circumferential cartilage), bronchioles (no car-
tilage in airway wall).

Representative high-resolution digital images were 
collected and analyzed (BX53 microscope, DP73 digital 
camera and CellSens Dimension Software, Olympus). 
Area of immunostaining relative to total area of airway 
surface epithelium produced the area fraction of immu-
nostaining. These results were statistically analyzed with 
either two-way ANOVA or Kruskal–Wallis test as war-
ranted using Prism software (Graphpad, Sand Diego, 
CA, USA). Airway epithelia height (as a metric of airway 
caliber) [21] and mucin expression were analyzed using 
Spearman correlation to define r and P values (signifi-
cance defined as P < 0.05).

Results
Positive and negative cellular or tissue expression of pro-
tein targets are useful to qualify the specificity and utility 
to immunohistochemical techniques [22, 23]. We evalu-
ated mucin detection in bronchi (large and small) and 
bronchioles of WT ferret lungs. Mucins were detected 
more abundantly in large bronchi than small bronchi, but 
detection in bronchioles was rare to absent (Fig. 1a). Dig-
ital image analysis of airway mucins showed that the size 
of ferret bronchi significantly influenced mucin detection 
(P = 0.0072, two-way ANOVA, Fig.  1b), indicating that 
MUC5AC and MUC5B were more prevalent in larger 
than smaller bronchi. Correlation analysis of the airway 
mucin expression and airway epithelia height (a surrogate 
marker of airway caliber) demonstrated a significant rela-
tionship for MUC5AC (r = 0.6606, P = 0.044, Spearman 
correlation) and MUC5B (r = 0.6848, P = 0.035, Spearman 
correlation). In serial sections of bronchi surface epithe-
lium, dPAS, MUC5AC and MUC5B techniques were dig-
itally analyzed. We saw no significant differences between 
these mucin stains (Fig.  1c, P =  0.2938, Kruskal–Wallis 
test), suggesting MUC5AC and MUC5B have common 
co-expression in goblet cells.

Healthy gallbladder and stomach tissues have 
been reported to have distinct tissue enrichment of 
MUC5AC in stomach and MUC5B in gallbladder [24, 
25]. We evaluated stomach and gallbladder tissues from 
WT ferrets to see if similar mucin-specific enrichment 
was observed. MUC5AC immunostaining was detected 
in ferret stomach but was absent in ferret gallbladder. 
In contrast, MUC5B immunostaining was detected in 
ferret gallbladder, but absent in ferret stomach (Fig. 1d). 
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These data parallel mucin enrichment observed in 
humans and several animal models (Table 1) [24–36].

Immunohistochemical techniques can also be quali-
fied by testing tissues that lack antigen/epitope expres-
sion due to genomic editing. We acquired access to rare 
bronchial tissues from two novel models (a MUC5AC−/− 
ferret and a MUC5B−/− ferret) that are being pheno-
typically characterized for an ongoing separate study. 
We evaluated serial sections of a bronchus from a 
MUC5AC−/− ferret and both the surface epithelium 
and submucosal glands had MUC5B + immunostaining, 
but MUC5AC immunostaining was negative consistent 
with the tissue genotype (Fig. 1e, see Fig. 1a for refer-
ence of WT staining). We then evaluated a bronchus 
from a MUC5B−/− ferret. The surface epithelium was 
positive for MUC5AC immunostaining but it was nega-
tive for MUC5B consistent with expected expression 
patterns the model (Fig. 1f, see Fig. 1a for reference of 
WT staining).

We then applied the MUC5AC and MUC5B immu-
nostaining on two other WT ferret tissues that might 
be of interest for study in the CF, specifically sinona-
sal cavity and pancreas. In the sinonasal cavity, the 
glands of the respiratory epithelia and Bowman glands 
of olfactory epithelia were dPAS + and MUC5B + while 
MUC5AC immunostaining was lacking (Fig. 2a). These 
findings parallel a report of healthy human nasal glands 
and Bowman glands with MUC5B + expression and 
minimal/lack of MUC5AC immunostaining [37, 38]. 
In the pancreas, large secretory ducts had evidence of 
dPAS + mucins in mucous cells and these sites paral-
leled with MUC5B + immunostaining but was nega-
tive for MUC5AC (Fig.  2b). Healthy human pancreas 
ducts are reported to have MUC5B expression and lack 
MUC5AC expression, but both may be present in dis-
eased pancreas (e.g. cancer) [39].

In all of the studies, we did not see evidence for overt 
sex-specific differences in localization or distribution of 
mucin expression.

Discussion
Immunohistochemical techniques can be qualified by 
multiple approaches through use of appropriate controls 
[23, 40, 41]. In this current study, our control cell/tis-
sue were defined from previous reports of airway mucin 
expression patterns in lungs, known anatomic / tissue 
enrichment differences, and use of gene-edited tissues. 
We were able apply these mucin immunohistochemical 
techniques in ferret tissues to define mucin expression 
for CF-relevant tissues such as lung, gallbladder, stom-
ach, pancreas and sinonasal cavity and show its assess-
ment through digital image analysis [9, 20, 42]. Mucin 
expression patterns in healthy tissues are useful controls 
to clarify expression changes that can appear in diseased 
tissues, such as prospective studies on ferret tissues to 
evaluate CF mucins [7, 28, 39, 43, 44]. Even so, mucins 
may be a pertinent parameter for study in ferret tissues 
modelling other diseases such as transplantation rejec-
tion [45], chronic obstructive pulmonary disease [46], 
COVID19 [21, 47], influenza [48], filoviruses [49] and 
cancer [50] to name a few.

For quality control, immunohistochemical techniques 
should be initially qualified before use in investigative 
studies [22, 51]. Multiple layers of immunohistochemical 
qualification (as seen in this study) provide added confi-
dence in the use of these mucin detection techniques for 
tissue studies of CF and other ferret models. Additionally, 
requalification of any immunohistochemistry protocol is 
also recommended after changes in pre-analytic tissue 
factors or protocol reagents (lots, reagents, etc.) as these 
can affect the qualities of the final immunostaining [52, 
53]. Our qualification of MUC5AC and MUC5B tech-
niques in ferret tissues, use of control tissues and appli-
cation of digital image analysis confirm that these mucin 
detection techniques will be vital tools to identify, local-
ize and interpret mucin expression. Additionally, these 
tools will be useful in future studies to analyze the spa-
tial and cellular expression of mucins in ferret lungs and 
compare to human lungs [54].

Fig. 1  Mucin detection in ferret tissues. a Representative mucin detection (insets) by dPAS, MUC5AC and MUC5B in surface epithelia of large 
bronchi (LB) or small bronchi (SB) and bronchioles (BL) from WT ferrets (bar = 130 µm). b Evaluation of MUC5AC and MUC5B immunostaining 
in surface epithelia of large and small bronchi (N = 5 WT ferrets) using digital image analysis. Airway size was a significant factor for the variance 
in mucin detection (P = 0.0072, Two-way ANOVA). c Comparison of dPAS, MUC5AC and MUC5B in serial sections of WT bronchus (N = 5 WT 
ferrets) showed no significant differences in mucin detection between stain method (P = 0.2938) Kruskal–Wallis test). d Representative images of 
differential mucin expression (arrows and insets) in WT ferret stomach (ST, bar = 170 µm) and gallbladder (GB, bar = 85 µm). dPAS, MUC5AC and 
MUC5B. e Mucin detection (arrow and insets) in a large bronchus (LB) from a MUC5AC−/− ferret (N = 1). Surface epithelia and submucosal glands 
were MUC5B + confirming the tissue was viable for immunostaining. MUC5AC immunostaining was absent from the surface epithelia, and this was 
consistent with the ferret’s genotype, bar = 85 µm. f Mucin detection (inset and arrows) in a large bronchus (LB) from a MUC5B−/− ferret (N = 1). The 
surface epithelia of the bronchus was MUC5AC+ confirming the tissue was viable for immunostaining, but it was MUC5B- consistent with the tissue 
genotype, bar = 85 µm

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Table 1  Species comparison of mucin enrichment in healthy gallbladder and stomach tissues

"High" = Moderate to strong expression, "Low" = Minor to lack of expression

Species Gallbladder Stomach

Human MUC5B high [24, 27]
MUC5AC low [26, 28]

MUC5AC high [25]
MUC5B low (absent except in fetal develop-
ment or disease) [26]

Ferret MUC5B high, MUC5AC low (see results section) MUC5AC high, MUC5B low (see results section)

Pigs MUC5B high [36]
MUC5AC low [36]

MUC5AC high [31, 33]

Sheep NA MUC5AC high [30]

Rabbits NA MUC5AC high [31]

Rat Rats do not have gallbladders MUC5AC high [31, 32]

Mice MUC5B high [34] MUC5AC high [29, 35]

a 

b dPAS MUC5AC MUC5B 

dPAS  B5CUM CA5CUM

PD
 

N
T 

O
T 

Fig. 2  Representative mucin detection in WT tissues. a dPAS + and MUC5B + mucin detection (arrows and insets) in glands of nasal (NT) and 
olfactory (OT) tissues from WT ferret sinonasal cavity, but the glands were MUC5AC−, bar = 85 µm. b dPAS + and MUC5B + (arrows and insets) mucin 
detection in a large pancreas duct (PD) from a WT ferret, but duct epithelia were MUC5AC−, bar = 85 µm
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Limitations
This study is not without potential limitations. First, we 
studied select archival tissues from adult ferrets, but 
we cannot fully assume that our results will be directly 
applicable to other ferret tissues/organs or other fer-
ret breeds/strains. Second, we focused our evaluation 
of healthy tissues, so we cannot rule out that diseased 
tissues with inflammation or remodeling changes might 
display differences in cellular localization or intensity 
of mucins. Lastly, it is well-recognized that pre-ana-
lytic factors (tissue handling, fixation quality, etc.) can 
greatly influence immunostaining and digital image 
analysis [22, 41, 55]. Thus, differences in pre-analytical 
could feasibly produce minor lab-to-lab variations in 
immunostaining results.
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