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Abstract 

The COVID-19 pandemics has made sparkly evident the importance of acute inflammation and its timely 

resolution to protect humans from pathogenic viruses while sparing them from collateral damages due to an 

uncontrolled immune response.  

It is clear now that resolution of inflammation is an active process regulated by endogenous specialized 

proresolving lipid mediators (SPM) biosynthesized from essential polyunsaturated fatty acids. Accruing 

evidence indicates that SPM are produced during viral infections and play key roles in controlling the 

magnitude and duration of the inflammatory response and in regulating adaptive immunity. 

Here, we reviewed biosynthesis and bioactions of SPM in virus-mediated human diseases. Harnessing SPM 

and their proresolutive actions can help in providing new therapeutic approaches to current and future 

human viral diseases by controlling infection, stimulating host immunity, and protecting from organ damage.  
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1. Inflammation and viral infections 

Viral infectious diseases represent a major threat for human health, especially those sustained by emerging 

viruses, such as avian influenza, Ebola, and coronaviruses. In viral infections, the acute inflammatory 

response is meant to be a primordial, necessary protective mechanism to restrain microorganisms, 

adequately initiate the adaptive cellular and humoral immune response, and to allow tissue repair [1,2]. The 

importance of acute inflammation during infections is evident in neutropenic individuals, who typically 

succumb of disseminated infections [3]. 

Acute inflammation can be divided into 2 general phases: initiation and resolution. The classical cardinal 

signs of the initiation phase identified by Celsius, i.e., rubor (redness), tumor (swelling), calor (heat), and 

dolor (pain) are gross manifestations of molecular and cellular responses. Following infections, increased 

blood flow and microvascular permeability result into tissue edema, mediated by lipid mediators (eg., 

cysteinyl leukotrienes and prostaglandins) and other vasoactive mediators. Subsequently, 

polymorphonuclear neutrophils (PMN) are among the first white blood cell that accumulate – sensing 

leukotriene (LT) B4 and other chemo attractants - in inflamed tissues. Monocytes enter as a second wave and 

differentiate into macrophages (MФs). Infiltrated PMN and monocyte-MΦs are crucial for killing microbes, 

infected cells, and contain the spread of infection. Once the inciting cause is removed, leukocytes play also 
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key roles in clearing the site from dead cells through non-phlogistic phagocytosis and repair the damaged 

tissue [2,4]. Countless times every day, viral infections remain unnoticed because acute inflammation 

protects us and these challenges are timely eliminated and inflammation resolves.  

Viruses are obligate intracellular parasites that infect and replicate exclusively within cells of many living 

organisms, including bacteria, fungi, protozoa, plants, and animal. Their identification dates back to late XIX 

century, when Dmitrii Iwanowski (1864-1920) proposed that the disease Adolph Mayer (1843-1942) named 

tobacco mosaic disease was caused by an infectious agent several times smaller than bacteria [5,6]. Almost 

contemporaneously, Martinus Beijerinck (1851-1931) replicated Iwanoski’s findings and called the 

pathogenic agent of the tobacco mosaic disease “contagium vivum fluidum” (contagious living fluid) [7]. It 

was not until the Nobel laureate Wendell M Stanley (1904-1971) obtained the first crystal of the tobacco 

mosaic virus that viruses were proven to be particulate microorganisms [8]. Their discoveries marked the 

beginning of virology and made possible to understand the etiology and pathophysiology of diseases that 

were described much earlier [9]. Viruses are divided according to the Baltimore classification based on the 

structure of their genome, strandedness, sense, and method of replication into 7 classes encompassing > 

30,000 isolates (Figure 1), most of which do not cause serious illness to the human population. However, 

many viruses can cause common, severe, or even life-threatening diseases involving brain, hearth, blood, 

liver, pancreas, gut, lungs, skin and mucous membranes.  

As an arm of innate immunity, acute inflammation represents a formidable barrier mechanism to suppress 

viral replication and spread. It is also important for activating adaptive immunity and, hence, coordinating 

the overall host immune system. Acute inflammation is activated upon recognition of viral pathogen 

associated molecular patterns (PAMPs) by the host pattern recognition receptors (PRRs), which encompass 

toll-like receptors (TLRs), Nod-like receptors (NLRs), and RIG-I-like receptors (RLRs). These PRRs sense 

specific viral molecules and signal downstream pathways that culminate with recruitment and activation of 

leukocytes, enhancement of cytokines and chemokines, and induction of antiviral genes like type I and III 

interferons [10]. Innate immune responses mediated by acute inflammation normally can clear virally 

infected cells and resolve virosis. On the contrary, inability to mount a timely and effective pro-resolution 

and antiviral responses can lead to virus persistence, pathogenic excessive inflammation, and fatal outcomes. 

Influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) offer clear examples 

of this [11,12], emphasizing the crucial role and intriguing therapeutic functions of pro-resolving 

mechanisms during viral infections. 
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2. Resolution of inflammation and SPM 

One of the major strides in our understanding of inflammation was the discovery that resolution is an active 

process introduced by the biochemical synthesis of specific proresolving molecules [13], among which are 

lipid mediators derived from ω-6 and ω-6 fatty acids that were dubbed “Specialized Pro-resolving lipid 

Mediators (SPM) by its discoverer CN Serhan.  

Using a system lipidomics-informatics approach to self-resolving inflammation, pioneering research from 

the laboratory of Dr. Serhan led to the discovery of SPM in inflammatory exudates during resolution [14,24]. 

SPM act through specific receptors to halt excessive PMN infiltration and activation, counter pro-

inflammatory signals, enhance the active clearance of pathogens and death cells by MΦ, protect organ from 

loss of function, and stimulate tissue regeneration.  

Notably, SPM biosynthesis is impinged by pro-inflammatory mediators, for instance prostaglandin E2, 

generated during the onset of the inflammatory response [15], indicating that “the beginning of inflammation 

programs its end”. The main biosynthetic pathways and members of SPM families are shown in Figure 2. 

The eicosanoid lipoxins (LX) A4 and B4 are the SPM derived from arachidonic acid (AA) metabolism [16–

18]. The regio- and stereoselective oxidation catalized by 5- and 15-lipoxygenase (LO) constitutes the first 

pathway for the formation of LX [16–18]. This pathway occurs in 15-LO expressing epithelial cells or MФ 

and leukocyte 5-LO. A second pathway relies on the LX synthase activity of 12-LO in platelets during cell-

cell interactions with PMN [19,20]. A the third pathway produces LX epimers, i.e., 15-epi-LXA4 and 15-epi-

LXB4, which are formed in the presence of acetylated cyclooxygenase (COX)-2. Since this pathways was 

originally described with aspirin-treated endothelial cells expressing COX-2, 15-epi-LX are also called 

“aspirin-triggered lipoxins” (ATL) [21,22].  

RvE1 was the first SPM isolated from eicosapentaenoic acid (EPA)[23]. The current members of the E-

series resolvins include RvE1, RvE2, and RvE3, with the recent addition and elucidation of RvE4. They are 

produced through transcellular biosynthesis with human neutrophils by acetylated cyclooxygenase-2 (COX-

2) or microbial cytochrome P450 [24]. 

Docosahexaenoic acid (DHA)-SPM include D-series resolvins, protectins, and maresins.  

The D-series resolvins (RvD1-6) are biosynthesized from the sequential oxygenation of precursor ω-3 fatty 

acid docosahexaenoic acid (DHA) [25], either via aspirin-triggered cyclooxygenase catalysis (17(R) AT-

RvDs) or via the lipoxygenase pathway (15-LOX-1 and 15-LOX-2) forming the epimeric 17(S)-RvD1-6 

resolvins [26]. 

Protectin D1 (PD1) is biosynthesized by DHA via 15-LOX and is produced enzymatically by human 

leucocytes from 16,17-epoxide-intermediates, PMN, macrophages, and eosinophils [27]. 
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The third group produced by DHA biosynthesis is the Maresins (MaR-1 and MaR-2). Maresin biosynthesis 

occurs from carbon-14 via human 12-LOX, producing a 13(14)epoxide-intermediate (eMaR) that stimulates 

the conversion of M1 to M2 macrophages and blocks LTA4 hydrolase [28,29]. 

Another precursor substrate for SPM formation is n-3 docosapentaenoic acid (n-3 DPA). n-3 DPA is 

converted into new SPM, including RvDn-3 DPA, MaRn-3 DPA, and PDn-3 DPA, as well as into series 13 

resolvins (RvTs). SPM from n-3 DPA are characterized by the presence of an -OH group at position C13 in 

the PUFA chain [30,31]. 

Three novel series of SPM conjugated with peptide-lipids have been recently introduced.  

They include maresin conjugates for tissue regeneration (MCTR), protectin conjugates for tissue 

regeneration (PCTR) and resolvin conjugates for tissue regeneration (RCTR), collectively referred to as 

cysteinyl-SPM (cys-SPM)[30,31]. Recent studies confirm their pro-resolution action and organ protection in 

many organs, including lungs [32,32–35] (and reviewed in [23]). 

Several SPM G-protein coupled receptors (GPCRs) have been identified to date, using robust 

pharmacological approaches including library screening, specific binding with labeled ligands, engineered 

GPCR-β-arrestin cell for monitoring receptor engagement, and gain and loss of function strategies(recent 

reviewed in [36,37]) (Figure 3). These GPCRs convey SPM actions transmitting signals to activate 

intracellular pathways and cell responses  

Readers interested in cell- and tissue/organ-specific SPM bioactions are directed to excellent recent papers 

[36,38]. 

Substantial evidence has accumulated that pro-resolving endogenous mediators also encompass proteins and 

peptides. One of the first polypeptide identified playing crucial biological roles in regulating acute 

inflammation is the glucocorticoid-regulated protein annexin (Anx) A1. AnxA1 is a 37 kDa protein initially 

recognized as an inhibitor of phospholipase A2 and, therefore, as a cellular mediator of glucocorticoid 

pharmacological anti-inflammatory actions, including the inhibition of prostaglandin and leukotriene 

biosynthesis [39–42]. However, it is now clear that the biology of AnxA1 and N-teminal peptides with 

glucocorticoids is much more complex than initially thought. Readers interested can refer to [43] for 

excellent coverage of this topic. The development of recombinant human AnxA1 (hr-AnxA1) has helped to 

understand its biological activities, including the control of leukocyte migration, the promotion of neutrophil 

apoptosis, and induction efferocytosis, which underlie the therapeutic potential of the AnxA1-centered 

proresolving pathway that has been demonstrated in various experimental models [43]. The discovery of the 

lipoxin A4 receptor (ALX/FPR2) as a receptor for AnxA1 actions was also crucial in decoding mechanisms 

underlying resolution of inflammation, since ALX was the first GPCR identified that binds proresolving 

ligands of lipid and peptide structure[44]. The AnxA1- ALX/FPR2 axis is associated with key events in the 

resolution of inflammation, such as decreased neutrophil recruitment, induction of noninflammatory 
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monocyte recruitment, promotion of neutrophil apoptosis and efferocytosis, contribution to tissue repair and 

resolution program amplification [43].  
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3. SPM and viral infection 

In addition to their well-characterized roles in tissue homeostasis described above, several studies 

highlighted beneficial functions of SPM in the modulation of host responses to various infectious diseases 

triggered by viruses (Table 1). Indeed, a large body of evidence shows that SPM decrease the inflammatory 

response by 1) promoting resolution and clearance of infection through modulation of host cell activities and 

2) directly affecting the life cycle of viruses. These combined actions reduce viral replication in target cells 

thus providing greater ability of the host to deal with harmful infection. Along these lines, defective SPM 

production is suppressed during viral challenges and inversely correlated with virus pathogenicity [45,46]. 

Therefore, SPM may represent a viable strategy for controlling the viral load and the excessive inflammation 

during viral infections.  

Influenza A virus 

Respiratory viruses are among the most frequent causative agents of disease in humans, causing illness in 

nose, throat and breathing passages including lungs, with significant impact on morbidity and mortality. 

Respiratory viruses include rhinoviruses and enteroviruses (Picornaviridae), influenza viruses 

(Orthomyxoviridae), parainfluenza, metapneumoviruses and respiratory syncytial viruses 

(Paramyxoviridae), coronaviruses (Coronaviridae), and several adenoviruses.  

A number of studies evaluated the relevance of SPM in the context of viral infections of the lung, especially 

influenza A (IAV), a negative-sense RNA viruses that causes seasonal epidemics of disease in people, 

particularly harmful in fragile individuals [47]. 

Using lung tissues lipidomics in mice subjected to intratracheal inoculation of the H1N1 PR8 strain, the lipid 

protectin D1 (PD1) isomer PDX was identified as one of the most reduced lipid mediators in the lungs of 

PR8-infected mice. Mechanistically, this reduction could be ascribed to a viral-induced defect of the 12/15-

LOX enzyme, a key component of PD biosynthesis. Importantly, treatment of mice with exogenous PD 

increased survival and improved pulmonary injury trough reduction of viral titers in lungs of PR8 challenged 

mice. In vitro and in vivo experiments demonstrated that, rather than altering the host inflammatory 

response, PDX dampened IAV life cycle via attenuation of viral RNA nuclear export, a key step for virus 

replication [45,48]. Similarly, the highly pathogenic H5N1 IAV altered the gene expression levels of the 

lipoxin pathway machinery in lungs to disseminate in multiple organs after infection in mice lungs [46]. 

Among the most affected genes, these included the suppressor of cytokine signaling (SOCS) 2 gene, an 

intracellular lipoxin mediator regulating cytokine and immune cells dynamics [49], thus indicating that this 

reduction could crucially impair pro-resolutive actions against viral infection. 

Therefore, IAV hijack key pathways of SPM biosynthesis to reduce the production of crucial anti-viral and 

pro-resolutive SPM that would impair viral proliferation and dissemination. 
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Opposite to these beneficial effects of SPM supplementation, the pro-resolving AnxA1 enhanced IAV 

infectivity. Indeed, AnxA1 deficient (-/-) mice are protected against IAV infection due to an enhanced 

leukocyte infiltration, thus suggesting a sustained inflammatory response against viral infection. In addition, 

AnxA1 silencing and overexpression experiments in vitro suggested that, in addition to regulate host 

immunity, the presence of AnxA1 promoted viral replication, binding at the host cell membrane, viral uptake 

by host cells, viral transport to the nucleus and viral-induced apoptosis of target A549 lung cells, all key 

steps leading to greater virus production. Mechanistically, AnxA1 was incorporated within IAV and co-

localized with the IAV protein NS1 in endosomes, indicating that AnxA1 facilitated endosomal trafficking 

and IAV infection life cycle [50]. These effects could be also due, at least in part, to ALX. As discussed, 

ALX is a plastic receptor able to sense and to activate a variety of pro-inflammatory and pro-resolving 

stimulus, such as AnxA1, LXA4 and RvD1 among the latter. IAV infection up-regulated ALX in murine 

lungs and lungs human cell lines [51], thus suggesting the needed of the virus to exploit the receptor to 

support the viral cycle. Indeed, activation of ALX with the agonists WKYMVm-NH2 and IAV harboring 

AnxA1 increased viral replication in vitro and in vivo and altered cytokine release in lungs of infected mice 

[51]. These effects of AnxA1 on IAV are in sharp contrast with those demonstrated in viral dengue fever, a 

potentially lethal hemorrhagic disease caused by one of the 4 serotypes of dengue virus (DENV1-4) 

transmitted through mosquitos that can result in fatal exacerbation of innate and adaptive immune responses. 

Indeed, Costa and Sugimoto recently demonstrated that therapeutic administration of an AnxA1 derived 

peptide to DENV-infected mice improves clinical signs of the disease (e.g., reduction in blood platelets and 

hematocrit), liver damage, and inflammatory markers. Strickingly, the absence of AnxA1 or its receptor 

ALX in knockout mice resulted in more severe illness of DENV-infected animals, signifying the important 

protective roles of AnxA1 and ALX in dengue fever [52]. 

Therapeutic treatment with AT-RvD1, another agonist of ALX, during an acute co-infection pneumonia in 

mice co-infected with Streptococcus pneumoniae and IAV, markedly reduced PMN infiltration and 

pneumonia severity promoting pro-resolution pathways [53]. Therefore, even in in a co-infection model, 

these results signified that diverse stimuli (peptide vs lipid) may differentially fuel ALX to translate pro-

inflammatory and pro-viral or pro-resolutive signals that could be explored for therapeutic purposes.  

SPM also hold the potential to activate adaptive immunity as well. In particular, the DHA-derived SPM 17-

hydroxydocosahexaenoic acid (17-HDHA) enhanced plasma cell differentiation and production of specific 

antibodies (Abs) directed against the recombinant H1N1 hemagglutinin (HA) used to immunize mice. 

Importantly, 17-HDHA–mediated HA-specific Abs protected mice live influenza infection, indicating that 

17-HDHA increase a defensive humoral response sustaining a specific B-cell differentiation and Ab-

secreting phenotype [54]. Similarly, studies showing that LXB4 enhances the production of IgG in B 

lymphocytes derived from donors vaccinated against influenza [55] and others demonstrating that MCTR 
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protect from bacterial pneumonia post-IAV acting on MΦ [56] confirm that SPM could be used to stimulate 

host immunity against IAV and collateral bacterial infections. 

Respiratory syncytial virus 

Respiratory syncytial virus (RSV) is a common respiratory virus infects the lungs and respiratory tract 

causing mild, cold-like symptoms except in infants, older adults, and fragile people where severe infections 

lead to pneumonia and bronchiolitis [57]. After epithelia infection, RSV elicits a potent inflammatory 

response mainly sustained by pro-inflammatory (M1) lung M  that, as expected, is dampened after M 

skew to M2 polarization [58]. Along these lines, in vitro treatment with LXA4 or RvE1 induced gene 

expression of arginase-1 and mannose receptor in mouse M from 5LO
-/-

 transgenic mice, suggestive of M2 

alternative activation that stimulate RSV resolution [59]. 

Similarly to IAV, SPM modulate the adaptive harm of immunity during RSV infection. In particular, 

exposure of RSV infected mice with RvD1 increased the frequency of specific memory precursors CD8 T 

cells against virus in the lung, and modulate memory CD8 T cells gene expression by increasing transcript of 

anti-inflammatory genes II-4, II-10, and Ifng [60]. 

Recent work shows that intranasal administration of PCTR1 and PD1 in RVS-infected mice decrease viral 

load and leukocyte infiltration while raising IFN-responses [61].  

Collectively, these results highlight the critical role of SPM in the immune and inflammatory host response 

to RSV. 

SARS-CoV-2 

The coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome Coronavirus 2 

(SARS-CoV-2) has been an unprecedented global threat for human health. SARS-CoV-2 is a RNA virus that 

infects the lungs, that encompass a wide range of symptoms and variable clinical outcomes, with many 

people developing severe, often lethal, pneumonia, sepsis, and respiratory failure, and others showing only a 

mild illness that resolves in few days [62]. SARS-CoV-2 can also determine blood disturbancies, including 

clotting and formation of NETs (neutrophil extracellular traps) [12]. Evidence indicates that viral load is not 

correlated with the worsening of the symptoms, while cytokine storm, increase in inflammatory mediators, 

and an imbalance in immunity are associated with poor prognosis [12,63–65].  

Indeed, it is now clear that failure in resolution of inflammation is a key determinant of SARS-CoV-2 

infection. Serum and bronchoalveolar lavage fluids of symptomatic SARS-CoV-2 infected patients ad 

significantly higher concentrations of both omega-6–derived proinflammatory lipids and omega-6– and 

omega-3–derived SPM age- and sex-matched SARS-CoV-2–negative group, suggestive of an unrelenting 

inflammation that failed to resolve [66–68]. 

Importantly, failure in resolution also characterized worsen outcomes in COVID-19 disease. Patients who 

recovered from disease showed upregulation of the pro-resolution peptide AnxA1 in peripheral blood 
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monocytes, indicating increased resolution in people that mount an active response against SARS-CoV-2 

[69]. Consistent with this, lipid mediator profiling demonstrated that plasma SPM concentrations were 

downregulated in people with severe COVID-19 disease [67,70–72]. More in details, an overall 

downregulation in PCTR3, MCTR3 [67] and RvD3 [70] were observed in patients with severe disease, with 

an upregulation of arachidonic acid-derived LM, including LTB4 and LTE4, LTC4 and LTD4. Importantly, in 

addition to reduced SPM levels, patients with severe disease demonstrated lowered expression of SPM 

biosynthetic enzymes (ALOX15B in neutrophils, COX-2 and ALOX5 in classical monocytes, and ALOX5 

in nonclassical monocytes) [67,70] and receptors (GPR18 on neutrophils, classical monocytes, and 

nonclassical monocytes, ChemR23, on classical and intermediate monocytes, GPR32 on intermediate and 

nonclassical monocytes, GPR101 on classical monocytes) on circulating leukocytes [67]. Collectively, these 

results pointed to defects in SPM biosynthesis and production as critical determinant for disease severity and 

suggested that restoration of adequate pro-resolution programs may be beneficial. Indeed, patients treated 

with dexamethasone, a corticosteroid proved to upregulate SPM formation [73,74], reduced plasma pro-

inflammatory eicosanoids while increasing SPM concentration, along with upregulation of ALOX15, 

ALOX15B, ALOX12, GPR18 and GPR37 in circulating leukocyte subsets [67]. Exposure of PMN, 

monocytes and monocyte-derived M to MCTR3, PCTR3, 17R-RvD3, RvD1 and RvD2 restored 

phagocytic ability of these cells and reprogrammed M toward a pro-resolutive phenotype characterized by 

lowered production of pro-inflammatory cytokines [67,75]. Along these lines, we recently reported that 

RvD1 and RvD2 treatment abated the inflammatory responses induced by SARS-CoV-2 virion spike 1 

glycoprotein (S1) by dampening the release of IL-8 and TNF-α and modulating the expression of the 

inflammatory microRNAs (miRNA) miR-16, miR-29a, miR-223 and miR-125a [75]. These effects are of 

paramount importance, since the imbalanced pro-inflammatory M-derived cytokine storm may cause 

severe pulmonary edema, acute respiratory distress, and multi-organ failure [76]. Thus, by broadly inhibiting 

proinflammatory cytokine production by M and other cells, SPM proved valuable as potential therapeutics 

to limit SARS-CoV-2-induced inflammation [77]. Finally, since SPM reduce NETosis (e.g., RvD4, RvD1, 

RvT1, RvT2, RvT3, RvT4) [78–80], they can also have roles in reducing the severity of COVID-19. 

Herpes viruses 

Severe infections with ocular Herpes simplex virus (HSV) can lead to scarring of the cornea or blindness 

mainly due to a chronic inflammatory reaction within cornea [81]. Thus, stimulation of pro-resolution 

pathways could be an attractive strategy to reduce the incidence of eye defects. Topical treatment with RvE1 

of HSV-induced ocular disease reduced PMN and pathological CD4 T cells infiltration, levels of pro-

inflammatory cytokines such as IFN-g, IL-6, KC while increasing anti-inflammatory IL-10 in corneas of 

infected mice [82]. Similar findings were also reported in eyes of HSV-infected mice treated neuro PD1 [83] 
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and AT-RvD1 [84]. These results highlight that SPM could be harnessed as novel approach to control 

virally-induced immunopathological disease in the eye. 

Kaposi’s Sarcoma-Associated Herpesvirus 

The Kaposi sarcoma herpesvirus (KSHV) is the causative agents of Kaposi sarcoma, a form of multicentric 

Castleman disease, and primary effusion lymphoma [85]. In vitro experiments showed that exposure to 

LXA4 of KSHV positive cell lines or de novo KSHV infected cells not only reduced levels of key pro-

inflammatory mediators (PGE2, LTB4, IL-6, IL-8) [86] but also critically impact on reactivation from latency 

of dormant KSHV. Indeed, LXA4 physically interact with chromatin-remodeling proteins finally leading to 

viral gene lytic replication and viral progression. These events, together with the decreased expression of the 

immunomodulatory PD-L1 protein triggered by LXA4 in infected cells, should unleash cellular immunity 

against active KSHV [87]. 

4. Summary and Future Directions 

Considerable research effort has been made to decipher the underlying mechanisms of active resolution of 

inflammation. It is becoming clear that failure in specific resolution pathways can contribute to a worse 

clinical outcome of viral infectious diseases. Therefore, harnessing endogenous proresolution mechanisms is 

gaining traction as a new therapeutic approach to treating viral diseases given their proresolving actions 

(Figure 4). Conventional anti-inflammatory strategies stop the inception phase of inflammation by 

inhibiting prostaglandin and/or leukotrienes biosynthesis. However, in viral diseases, this approach may 

undermine the beneficial effects of inflammation to restrain viral diffusion, lead to immune suppression, or 

delay resolution. SPM proved to enhance host defenses and lower threshold for antibiotic therapies in 

bacterial infections [88,89]. Their roles in virus-mediated infections are of timely paramount importance in 

view of possible future outbreaks caused by highly pathogenic viruses (e.g., new SARS variants, Ebola and 

Crimean-Congo hemorragic fever viruses, and zoonotic Nipah viruses) that under surveillance by the WHO 

[90]. The latest COVID-19 pandemics has shown our unpreparedness to face viruses that had no vaccines or 

therapeutics available to regulate host immunity. As a result COVID-19 has claimed ~ 7,000,000 human 

lives worldwide [91]. Further studies on how viruses hijack SPM production, as well as on SPM functions 

will contribute towards understanding the pathogenesis of viral diseases and finding new ways to encompass 

resolution of inflammation to protect human health. 
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Table 1 Main bioactions of SPM in virus-mediated diseases 

Virus SPM Function References 

Influenza AnxA1 

PD-1 

and 

PDX 

AT-

RvD1 

MCTR 

 Promotes viral replication. 

 Reduce viral RNA nuclear 

export. 

 Reduces PMN infiltration and 

pneumonia severity promoting 

pro-resolution pathways. 

 Reduce post-IAV S. pneumonia 

infection 

[45,48] 

[50] 

[53] 

[56] 

Respiratory syncytial 

virus 

LXA
4
, 

RvE1 

RvD1 

PCTR1, 

PD1 

 Induce gene expression of 

arginase-1 and mannose receptor 

in mouse Mφ. 

 Increases the frequency and 

modulate memory CD8 T cells 

gene expression by increasing 

transcript of anti-inflammatory 

genes II-4, II-10, and Ifng. 

 Regulate host antiviral immunity 

and inflammation 

[59] 

[60] 

[61] 

SARS-CoV-2 RvD1, 

RvD2 

 Restore phagocytic ability of Mφ 

 Reprogram Mφ toward lower 

production of pro-inflammatory 

cytokines.  

 Abate the inflammatory 

responses induced by SARS-

CoV-2 virion spike 1 

glycoprotein (S1). 

[67,75] 

[75] 

[67,70] 

Herpes viruses RvE1 

PD1 

AT-

RvD1 

 Reduces PMN and pathological 

CD4 T cells infiltration while 

increases anti-inflammatory IL-

10. 

[82] 

[83] 

[84] 

Kaposi’s Sarcoma-

Associated Herpesvirus 

LXA
4
  Reduces levels of key pro-

inflammatory mediators (PGE2, 

LTB4, IL-6, IL-8). 

 Decreases the expression of PD-

L1. 

[86] 

[87] 
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Figure Legends.  

 

 

Figure 1. Baltimore classification of viruses 

The figure represents the Baltimore classification of DNA and RNA viruses. This classification was originally 

proposed by the Nobel laureate David Baltimore as a scheme for organizing known viruses based on the nature 

of their genome and replication strategy [92].  

 

 

Figure 2. Illustration of SPM biosynthesis 

Precursors AA, EPA, DHA and n-3 DPA polyunsaturated fatty acids (PUFA) are converted via biosynthetic 

enzymes to SPM. The pie chart visualizes the members of SPM accordingly to they precursor. The size of each 

slice is proportionate to the number of SPM produced by the specific precursor. See text for details on each SPM 

structure and biosynthetic mechanisms. 
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Figure 3. SPM receptors 

The figure shows molecular graphics and protein structure of identified SPM GPCR. Analyses were carried out 

with UCSF ChimeraX, developed by the Resource for Biocomputing, Visualization, and Informatics at the 

University of California, San Francisco, with support from National Institutes of Health R01-GM129325 and the 

Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases.  

 

 

Figure 4. General bioactions of SPM in virus-driven infectious diseases.  

Shown here are main effects of SPM demonstrated in vitro and in vivo. See text for further description and 

references. 
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Highlights 

 Acute inflammation is a protective response against viral infections that normally resolves naturally 

 Specialized proresolving lipid mediators (SPM) are underlying resolution of inflammation of viral diseases 

 SPM are produced during viral infections 

 SPM exert regulatory functions on immune and resident cells to help defend the host from virus spreading 

and excessive immune responses 
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