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Abstract

The strength of binding between human angiotensin converting enzyme 2 (ACE2) and the receptor bind-
ing domain (RBD) of viral spike protein plays a role in the transmissibility of the SARS-CoV-2 virus. In this
study we focus on a subset of RBD mutations that have been frequently observed in infected individuals
and probe binding affinity changes to ACE2 using surface plasmon resonance (SPR) measurements and
free energy perturbation (FEP) calculations. Our SPR results are largely in accord with previous studies
but discrepancies do arise due to differences in experimental methods and to protocol differences even
when a single method is used. Overall, we find that FEP performance is superior to that of other compu-
tational approaches examined as determined by agreement with experiment and, in particular, by its abil-
ity to identify stabilizing mutations. Moreover, the calculations successfully predict the observed
cooperative stabilization of binding by the Q498R N501Y double mutant present in Omicron variants
and offer a physical explanation for the underlying mechanism. Overall, our results suggest that despite
the significant computational cost, FEP calculations may offer an effective strategy to understand the
effects of interfacial mutations on protein–protein binding affinities and, hence, in a variety of practical
applications such as the optimization of neutralizing antibodies.
� 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecom-

mons.org/licenses/by/4.0/).
Introduction

The ability to accurately predict binding affinity
changes upon mutations of interfacial residues is
a problem of significant importance, ranging from
the general problem of understanding of
interaction specificity and the design of
rs. Published by Elsevier Ltd.This is an open acc
therapeutics such as potent monoclonal
antibodies that target antigens to revealing the
mechanism of action of cancer driver mutations.
Multiple approaches to the problem have been
developed including machine learning,1–5 statistical
potentials6 and various force field related scoring
functions7–11 embedded in programs such as
ess article under the CC BY license (http://creativecommons.org/licenses/
Journal of Molecular Biology 435 (2023) 168187

mailto:lss8@columbia.edu
mailto:raf8@columbia.edu
mailto:bh6@columbia.edu
https://twitter.com/AlinaSergeeva
https://doi.org/10.1016/j.jmb.2023.168187
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jmb.2023.168187


A.P. Sergeeva, P.S. Katsamba, J. Liao, et al. Journal of Molecular Biology 435 (2023) 168187
FoldX11 and Rosetta.7 Each approach is associated
with its own set of issues, such as conformational
changes upon mutation, that are nicely discussed
in reviews of Bonvin and co-workers.12 Moreover,
some methods succeed on some test sets and fail
on others, suggesting either over-training or simply
that some protein–protein interfaces have different
properties than others. Issues of experimental vali-
dation can also arise13; not all experimental meth-
ods are equally accurate and, as discussed below,
the nuances of the experimental system can have
significant effects on the outcome.
Detailed atomic-level simulations have not been

extensively applied to the prediction of mutation
effects, in part due to the computational
requirements involved. Free-energy perturbation
(FEP) methods have the potential to impact the
field as physics-based force fields are, in principle,
agnostic to the system being studied. Most current
applications have involved the optimization of
ligand–protein interaction in the context of small
molecule drug design (reviewed in 14) but recent
publications have begun to explore the use of FEP
methods to the study of protein–protein interactions
(PPIs); specifically, to the effects of interfacial muta-
tions on protein–protein binding free energies.8,9,15–
19 This is an inherently complex problem since, as
opposed to relatively rigid ligand binding pockets,
protein–protein interfaces are often quite large and
less constrained so that they can more easily
undergo conformational changes as a result of a
mutation. Moreover, FEP calculations involve a
complex computational infrastructure and are extre-
mely time consuming. However, fast graphical pro-
cessing units (GPUs) make such calculations
feasible and a number of recent publications, involv-
ing different software packages, suggest that the
methodology has reached the point that good corre-
lation with experiment is to be expected.8,9,15–19

Clearly, if FEP methods are capable of providing
meaningful results, then in many applications, the
computational cost will be worthwhile.
Here we explore the ability of FEP calculations to

reproduce the effects of mutations on the binding of
Figure 1. The ACE2/RBD system. (A) Ribbon represen
interfacial RBD residues in contact with ACE2 probed in this
shown as spheres.
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the receptor binding domain (RBD) of the SARS-
CoV-2 spike protein with the human angiotensin
converting enzyme 2 (ACE2) using the FEP+
implementation (see Methods). Given that the
pathogen entry into the host cell is mediated by
RBD::ACE2 binding, the problem has attracted
considerable interest and multiple experimental20–
46 and computations studies33,47–63 have been
reported. We chose to study a set of 23 frequently
observed RBD mutations (Table S1) located in the
RBD::ACE2 interface (Figure 1) of Alpha, Beta,
Gamma, Delta, or Omicron SARS-CoV-2 variants
(Table S2). Surface Plasmon Resonance (SPR)
experiments were carried out for each and com-
pared to previous experimental work.20–46 A num-
ber of computational methods were applied to
predict binding free energy changes upon muta-
tions, DDG. We found FEP to be the best performer
and, moreover, FEP trajectory analysis facilitates
the characterization of the biophysical effects that
underlie mutational effects. We show that FEP suc-
cessfully recapitulates the stabilizing epistatic effect
of the Q498R N501Y mutant present in every Omi-
cron variant. The ability to anticipate non-additive
effects of multiple mutations is likely to be an impor-
tant element of future efforts in protein interface
design.
Results

SPRmeasurements of binding affinity changes

The second column in Table 1 lists experimental
changes in binding affinity (DDG) of the ACE2::
RBD complex when RBD is mutated. Of 23 single
point RBD mutations probed, only four (N501Y,
Y453F, S477N and N501T, Table 1, see
Figure S1 for corresponding fitted SPR data) were
identified as stabilizing with DDG values � �0.4
kcal/mol which is our measure of experimental
accuracy (see Methods). The third column lists
DDG values from the deep mutational scanning
study of Starr et al.20 Although the methods are
quite different and our SPR results are obtained
tation of the ACE2/RBD complex. (B) Side chains of
study are shown in stick representation with C⍺ atoms



Table 1 Experimental ACE2/RBD binding affinity changes for RBD mutants.

Mutation DDG (SPR, this study) DDG (Yeast Display, Starr et al.)20 DDG (other studies)

SPR21–33

BLI34–46

Yeast Display64

(range)

N501Y �0.8 �0.3 (�1.7 . . . �0.5)

Y453F �0.7 �0.3 (�1.2 . . . �0.8)

S477N �0.5 �0.1 (�0.6 . . . �0.1)

N501T �0.5 �0.1 (�0.9 . . . 0.0)

N439K �0.1 0.0 (�0.4 . . . 0.0)

N440K 0.0 �0.1

F490S 0.0 0.0

L452M 0.0 �0.1

L452R 0.0 0.0 �0.2

E484Q 0.1 0.0

T478K 0.1 0.0 0.2

N481K 0.1 0.0

E484K 0.1 0.1 (�0.6 . . . 0.3)

Q498R 0.2 0.1 (�0.5 . . . 0.5)

S477I 0.2 0.1

G446V 0.2 0.4 0.5

T478R 0.2 0.1

S477R 0.3 0.0 �0.5

A475V 0.3 0.2 0.2

L455F 0.4 0.3

K417T 0.4 0.4 (0.1 . . . 0.7)

F486L 0.6 0.6 0.9

K417N 0.6 0.6 (�0.5 . . . 1.1)

Experimental binding affinity difference values were calculated based on binding affinity (KD) measurements for wild-type (WT) and

single mutant (MT) proteins using the following formula:

DDG = RT ln (KD(MT)/KD(WT)), in units of kcal/mol.
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with monomeric ACE2 while Starr et al. used
dimeric ACE2, the results are in good agreement
(high Pearson correlation coefficient (PCC) = 0.9
and low root mean square error (RMSE) = 0.2 kca
l/mol). Given that our calculations are carried out
on a structure containing monomeric ACE2 and
the likelihood that the SPR results are more accu-
rate than the high-throughput yeast display values,
we use the SPR values to compare to computa-
tional predictions.
Table 1 also lists DDG values obtained previously

with SPR21–33 and other experimental methods:
bio-layer interferometry (BLI)34–46 and yeast dis-
play.64 Direct comparisons are difficult since, for
example, different constructs were used in different
experiments and different proteins were used as
analytes in some SPR experiments (see Methods
for details). The differences in constructs result from
the choice of monomeric vs. multimeric forms of
interacting proteins as well as the selection of pro-
tein domain boundaries. Nevertheless, overall,
there is good agreement among most experimental
results with the outliers attributable to the factors
mentioned here. Moreover, there is good consen-
sus regarding the identity of the most stabilizing
mutations. For example, our results for N501Y
(�0.8 kcal/mol), Y453F (�0.7 kcal/mol), S477N
(�0.5 kcal/mol) and N501T (�0.5 kcal/mol) are in
3

good agreement with previously published val-
ues20–32,34,36–38,40–46,65 regardless of constructs/ex-
perimental setup differences.
Computational prediction of the effect of
mutations on binding affinity

Table 2 presents FEP results for the 23
experimental DDG values obtained from SPR
measurements listed in Table 1. Correlation plots
for the data in Table 2 are given in Figure S2. The
overall performance of FEP is in line with previous
work8,9,14,66–68; a PCC of 0.6 and an RMSE of
0.8 kcal/mol (Table 2). The FEP calculations clearly
predict that all four stabilizing mutations, N501Y,
N501T, S477N, and Y453F have DDG values < 0
although the prediction for S477N is a weak one.
Of note, previous FEP calculations on
N501Y53,55,56 have yielded results very similar to
ours attesting to the robustness of the method.
The most significant failure of FEP is its prediction
that A475V is stabilizing when the SPR results indi-
cate that it is weakly destabilizing. A likely explana-
tion for this result is that A475 is located close to the
N-terminal residue of ACE2 (Q18) for which no
coordinates were assigned in the crystal struc-
ture.69 Another problematic result, a largely overes-
timated DDG for Q498R, will be discussed below.



Table 2 Calculated ACE2/RBD binding affinity changes for RBD mutants. Pearson correlation coefficient (PCC),
and root mean square error (RMSE) are calculated for every method tested based on comparison to SPR results in
Table 1. Stabilizing mutations with DDG � �0.4 kcal/mol in green, destabilizing mutations with DDG � 0.4 kcal/mol in
red. Experimental binding affinity difference values were calculated based on SPR binding affinity (KD) measurements
for wild-type (WT) and single mutant (MT) proteins using the following formula: DDG = RT ln (KD(MT)/KD(WT)), in units of
kcal/mol. Correlation plots for all theoretical methods are provided in Figure S2. Calculations were performed on a crystal
structure of ACE2/RBD (PDBID 6M0J). Protein specific residue numbering of all the mutants as in Uniprot ID P0DTC2.

Mutation ΔΔG ΔΔG     ΔΔG ΔΔG     ΔΔG    ΔΔG    ΔΔG   ΔΔG    ΔΔG    ΔΔG    

experiment   
SPR

FEP 
100ns 

Mutabind2 mCSM-
PPI2

SAAMBE-
3D

BeAtMusic FoldX Rosetta 
flex ddG

MM /
PB-SA

MM /
GB-SA

N501Y -0.8 -1.2 0.7 0.5 0.0 0.1 6.0 0.4 5.8 2.6
Y453F -0.7 -0.6 -0.2 0.1 0.1 0.3 -0.4 -0.2 1.3 2.2
S477N -0.5 -0.1 -0.1 -0.1 0.2 0.1 0.0 0.1 5.4 9.3
N501T -0.5 -1.8 -0.6 -0.9 -0.1 0.4 -0.9 -0.4 3.1 1.8
N439K -0.1 0.6 -0.1 0.5 0.6 0.3 0.0 0.0 -8.8 -0.8
N440K 0.0 -0.4 0.1 -0.1 0.5 0.0 -0.1 0.0 -1.9 -2.9
F490S 0.0 -0.1 0.6 0.2 0.8 0.7 0.0 0.0 -1.0 2.2
L452M 0.0 0.2 0.0 0.5 -0.3 0.2 0.0 0.0 6.3 2.1
L452R 0.0 -0.3 -0.8 0.0 0.1 0.2 -0.3 0.0 -6.8 -3.8
E484Q 0.1 0.3 0.1 0.3 0.5 0.2 -0.1 0.0 7.7 11.3
T478K 0.1 0.0 0.2 0.0 0.1 0.2 0.0 0.1 0.8 4.9
N481K 0.1 -0.1 0.0 0.0 0.6 0.2 0.0 0.0 -13.2 -7.4
E484K 0.1 0.2 0.2 0.3 0.3 0.1 -0.2 -0.1 3.1 7.2
Q498R 0.2 2.7 0.4 1.4 1.1 0.8 -0.5 -0.6 -1.0 -6.4
S477I 0.2 0.0 0.1 0.0 0.0 0.2 0.1 0.0 -1.3 6.1
G446V 0.2 0.4 -0.7 0.1 -0.3 1.3 0.1 0.0 6.0 6.6
T478R 0.2 -0.1 0.1 0.0 0.3 0.2 0.0 0.0 1.6 3.4
S477R 0.3 -0.2 0.2 -0.1 0.0 0.1 0.0 -0.2 0.6 3.1
A475V 0.3 -1.1 0.9 0.0 0.1 0.1 1.0 0.2 10.0 12.2
L455F 0.4 1.7 1.5 -0.7 0.2 -0.1 5.0 -0.6 6.5 5.1
K417T 0.4 0.9 0.2 0.4 0.5 0.5 0.8 0.7 11.4 14.1
F486L 0.6 1.3 0.3 0.9 0.5 0.7 1.1 1.8 5.9 7.8
K417N 0.6 0.9 0.6 0.5 0.4 0.5 0.8 0.9 12.2 13.1

PCC 0.6 0.3 0.2 0.3 0.2 -0.1 0.4 0.2 0.3
RMSE 0.8 0.5 0.5 0.5 0.5 1.7 0.5 6.5 6.9
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The FEP results in Table 2 were obtained from
100 ns simulations. Extensive prior work8,9 has
demonstrated that shorter simulations are often
inadequate for some mutations, typically those
involving residues with a low degree of solvent
exposure (i.e. partially or fully buried at the pro-
tein–protein interface). The results of 10 ns FEP
simulations are shown in the Supplementary Mate-
rial (Table S3) for comparison. Of note, the N501Y
mutation, which is predicted to be destabilizing at
10 ns is correctly predicted to be stabilizing at
100 ns.
Evaluation of theoretical methods on the ACE2::

RBD dataset (Table 2) shows that machine
learning (ML) algorithms (Mutabind2,5 mCSM-
PPI23 and SAAMBE-3D1) uniformly have a weak
correlation with experiment (PCC < 0.4). As we
have pointed out previously60 ML methods tend to
overpredict destabilizing mutations presumably
due to the preponderance of destabilizingmutations
in training sets. A related factor likely accounts for
relatively low RMSEs of ML methods since most
mutations in training sets have only small effects
on binding affinities. BeAtMuSiC evaluates muta-
tion effects using a statistical potential6 while FoldX
uses an empirical physics-based force field10, 11.
Both methods assume a rigid backbone although
FoldX allows for side chain rearrangement upon
mutation. Neither method produces a meaningful
4

correlation with experiment. Of note, poor perfor-
mance of FoldX can be attributed to outliers (Fig-
ure S2) whereby mutations require backbone
rearrangement. BeAtMuSiC identifies no stabilizing
mutations while FoldX correctly identifies N501T
and Y453F. Other than FEP, Rosetta flex ddG7 is
the only method that allows for backbone flexibility
but its PCC is still significantly smaller than that of
FEP and, as can be seen in Table 2, Rosetta flex
ddG predicts two of the four stabilizing mutations
(although the prediction for Y453F is a weak one).
Nevertheless, even its partial success highlights
the need to account for the ability of proteins to relax
in response to interfacial mutations. Finally, we also
tested Molecular Mechanics/Poisson–Boltzmann
Surface Area (MM/PB-SA) and Molecular Mechan-
ics/Generalized Born Surface Area (MM/GB-SA)
methods, which utilize molecular mechanics ener-
gies along with a continuum representation of the
solvent. As can be seen in Table 2, these methods
performed poorly (see Methods for the protocol
details).
The ACE2::RBD dataset has limitations for

statistical analysis given the narrow affinity range
of the experimental values (from �0.8 to
+0.6 kcal/mol, Table 2) and the preponderance of
neutral (15 out of 23) over stabilizing and
destabilizing mutations (4 each). For a more
robust assessment, we have compared
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performance of various theoretical methods on a
larger and more balanced dataset. Specifically, we
have expanded the ACE2::RBD dataset with
mutations from another system (DIP::Dpr). DIPs
and Dprs are families of neuronal adhesion
proteins whose members bind to one another with
distinct subgroup-specific affinities.70 We have pre-
viously studied a number of DIP::Dpr mutants using
SPR71–73 to establish specificity deteminants in this
family. Here, we chose 18 single point mutations in
Dpr6::DIP-a and Dpr10::DIPa complexes to com-
bine with 23 ACE2::RBD mutations for a total of
41 data points. The combined ACE2::RBD DIP::
Dpr dataset has a 2.5 times wider range of DDG val-
ues (�1.3 to +2.2 kcal/mol) than just ACE2::RBD
alone and a more balanced distribution of stabiliz-
ing, neutral, and destabilizing mutations (Table S3).
Table S3 contains the results of different

computational methods applied to the combined
data set. We use multiple statistical tests to
measure performance. Based on the same
measures used in Table 2 (PCC and RMSE), all
methods exhibit similar performance but with
somewhat improved PCCs (except MM/GB-SA).
FEP gives the best results with a PCC of 0.8 and
RMSE of 1.0 kcal/mol. The next best performing
method was Mutabind2 (PCC of 0.6 and RMSE of
0.8). Rosetta flex ddG and FoldX have a PCC of
0.5 and 0.4, respectively, with FoldX having a
large RMSE error (1.8 kcal/mol) mostly due to
high energetic penalties for mutations that
introduce clashes at the interface which are
difficult to correct when the backbone fixed. The
continuum methods displayed poor performance
(PCC < 0.3) and large errors (RMSE � 6–7).
Table S3 also reports PCC values for the 18

observations in the DIP::Dpr data set alone. As is
evident from the Table, FEP is by far the best
performer with a PCC of 0.9, well above that of
other methods. Of note, all methods perform
better on the DIP::Dpr than on the ACE2::RBD
data set. We attribute this observation to the fact
that the DIP:Dpr interface is not prone to
backbone rearrangement upon mutation.
We categorized mutations as stabilizing

(DDG � �0.4 kcal/mol, green), neutral (�0.4 < DD
G < 0.4 kcal/mol), or destabilizing (DDG � 0.4 kcal/
mol, red). The cutoff of ±0.4 kcal/mol was chosen
based on expected reproducibility error in SPR
measurements (see Methods). We evaluated the
ability of various theoretical methods to correctly
classify mutations into each of these three
categories - essentially yes or no regarding
placement in a particular category as well as their
ability to correctly classify the effects of each
mutant into one of three categories (using
Matthews correlation coefficient, MCC). As shown
in Table S3, FoldX is best at classification into
three categories (MCC (triple class) = 0.7; 32 out
of 41 mutations correctly classified) and
destabilizing mutations (MCC (dest) = 0.9). FEP is
5

the best method for prediction of stabilizing
mutations (MCC (stab) = 0.5) and second best for
three category classification (MCC (triple
class) = 0.6; 31 out of 41 mutations correctly
classified). The probability of achieving this result
by random chance is approximately 10�8.
To assess the statistical significance of our FEP

predictions, we calculated a p-value for the
classification of stabilizing mutations, which was
approximately 3.0 � 10�11 (Table S3) under the
assumption that the reproducibility error of the
calculations was close to zero. To test this
assumption, we performed ten independent
repeats of the 100 ns FEP simulations for a select
set of mutants. The standard deviation of DDG
values and the standard error of the mean (SEM)
are reported in Table S4). On average, the DDG
values obtained starting with different random
velocities deviate by approximately 0.2 kcal/mol
(SEM � 0.06). These small fluctuations would
only affect the classification of mutations whose
DDG values are very close to the cutoff. In fact,
categorizing stabilizing mutations is not affected
by using a mean value of multiple independent
runs (Table S4).
Physical insights from trajectory analysis

The N501Y mutation is responsible for a high
infectivity and transmissibility of the Alpha variant
of SARS-CoV-274 and has the largest stabilizing
effect (Table 1). The N501T mutation found in the
SARS-CoV-2 variants transmitted from mink to
humans75,76 occurs at the same position. Analysis
of FEP trajectories reveals that the stabilization
effect associated with N501Y and N501T mutations
is due to substitution of the asparagine with less
polar side chains of tyrosine and threonine. N501
has only one of its polar groups satisfied in the
wild-type (WT) structure while, throughout the
course of the relevant trajectories, the hydroxyl
groups of both tyrosine and threonine participate
in hydrogen bonds (see dashed lines, Figure 2
(A)). In addition to enhanced stability due to the
absence of unsatisfied hydrogen bonds, both
mutants undergo stabilizing interactions with Y41
of ACE2; the aromatic ring of Y501 participates in
p-p stacking interactions (see purple lines in Fig-
ure 2(A)) while the methyl group of T501 forms a
hydrophobic contact with the aromatic ring of Y41
(see gray shading in Figure 2(A)). Of note, previous
studies have identified the role of p-p stacking as a
source of stabilization of the N501Ymutant47,53,56,58

but the role of the unsatisfied hydrogen bond in the
WT protein has not been emphasized.
Analysis of trajectories associated with the Y453F

mutation shows that in the WT protein, a hydrogen
bond between the hydroxyl group of Y453 and the
Ne atom of H34 is present in �25% of the WT
trajectory (Figure 2(B)) while, in most cases, these
two residues form hydrogen bonds with trapped
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solvent molecules. In the Phe mutant, there is no
need to satisfy the buried hydroxyl of the tyrosine
while the Ne of H34 is satisfied by structured
waters or backbone atoms (see dashed lines
showing hydrogen bonds in Figure 2(B)). Thus,
the enhanced stability of the mutant is likely due to
the greater hydrophobicity of a Phe relative to a
Tyr. Of note, our trajectory analysis is in
agreement with a previous study comparing
crystallographic structures of the WT and Y453F
mutant.32

The simulations correctly predict that the S477N
mutation is stabilizing but only weakly so. This
residue faces the N-terminal of ACE2, and,
specifically, the Q18 residue for which coordinates
were missing in the crystal structure and, hence,
modelled as an acetyl group cap in our
simulations (Figure 2(C)). Thus, the calculations
may suffer from conformational uncertainties in
this region. The trajectories reveal that the longer
Asn side chain makes more contacts with the
ACE2 N-terminal than does the WT Ser. We show
only one snapshot from wild-type and mutant
trajectories in Figure 2(C), but in reality, due to the
flexibility of the ACE2 N-terminal, no specific
contact is retained throughout the simulations.
The largest error in the FEP calculations is for the

Q498R mutant whose destabilizing effect is over-
predicted by about 2.5 kcal/mol. Analysis of the
100 ns Q498R trajectory reveals that the Arg side
chain samples different conformations with the
most prevalent state (�53%) involving an
unfavorable polar-hydrophobic contact between
N501 and the aliphatic chain of the Arg, leaving
both polar groups of the Asn unsatisfied (Figure 3
(A)). This is likely a contributor to the destabilizing
DDG value. As we have noted previously,9 a com-
putationally unfavorable outlier of this magnitude
is typically attributable to the failure of the molecular
dynamics trajectories (100 ns in this study) to
achieve a converged reorganization of the protein
structure. To test this possibility, we carried out a
300 ns simulation which appears to reach conver-
gence at �200 ns (Figure S3) where the destabiliz-
ing effect of Q498R is calculated to be 1.9 kcal/mol;
reduced from 3.6 kcal/mol at 10 ns and 2.7 kcal/mol
at 100 ns. It may well be the case that the system
has converged to a metastable state at 300 ns
and that there are lower energy states not sampled
in the course of the simulation.

Epistatic effect of the Q498R N501Y double
mutant in the omicron variant

Zahradnik et al.64 demonstrated that the Q498R
N501Y double mutant is more stabilizing than the
additive effect of two single point mutations as esti-
mated by their yeast display assay (a “cooperativity
energy” of��1.7 kcal/mol). Our SPR results on the
single Q498R and N501Y mutants predict, if their
effects were additive, that the double mutant would
be stabilizing by �0.6 kcal/mol (�0.8 + 0.2 kcal/mol
6

for the single mutations, respectively) while the
experimental value for the double mutant is
�1.2 kcal/mol yielding a cooperativity energy of
�0.6 kcal/mol (see Figure 3(B) for the experimental
DDG values and Figure S1 for corresponding fitted
data and dissociation constants). While the experi-
mental SPR and yeast display DDG values differ,
both methods indicate that a substantial epistatic
effect is playing a role, perhaps contributing to the
greater infectivity of the Omicron variants where
these mutations are present.
FEP calculations on the double mutant predict a

DDG of �1.4 kcal/mol whereas the predicted
additive effect of the two single mutants (Table 2)
is +1.5 kcal/mol – corresponding to a cooperativity
energy of �2.9 kcal/mol (Figure 3(B)). Thus, the
100 ns calculations successfully predict the
existence of cooperativity. A detailed examination
of the structure of the double mutant provides a
compelling physical interpretation as to why it
behaves so differently from the single Q498R
mutation. In the double mutant, Arg 498 forms a
favorable pairing with the side chain of Tyr 501.
The aliphatic portion of the Arg side chain packs
against the Tyr aromatic ring creating an
enhanced hydrophobic contact in the double
mutant compared to the N501Y single mutant
(grey shading, Figure 3(A)), while one hydrogen of
the Arg guanidinium head group forms a hydrogen
bond with the oxygen of the Tyr hydroxyl group
(dashed lines, Figure 3(A)). The geometries of the
two residues are such that this pairing can be
carried out without introducing any conformational
strain, either in the backbone or in the side chains
themselves. Thus, in the presence of N501Y, the
mutation from Gln to Arg actually enhances
binding rather than diminishing it.
As a control, we considered a second double

mutant (L452R T478K) where no cooperativity is
observed experimentally (Figure 3(C)). The FEP
calculations at 100 ns predict values of both single
and double mutant within 0.4 kcal/mol from the
experiment and a cooperativity energy of
�0.1 kcal/mol (same as SPR) (Figure 3(C)). Thus,
FEP accurately predicts the absence of
cooperativity in the double mutant belonging to the
Delta SARS-CoV-2 variant (Table S2).
Discussion

We have carried out experimental and
computational studies of a series of RBD mutants
located in the RBD::ACE2 interface. The choice
was based in part on their frequency in infective
SARS-CoV-2 variants and in part because they
have been extensively studied.20–63 A central goal
has been to assess the ability of the free energy per-
turbation methodology to predict the effect of muta-
tions at the protein–protein interface on binding
affinities but this in turn required an assessment of
experimental accuracy. To this end we carried out



Figure 2. Structural origins of stabilizing ACE2/RBD interactions. Closeups of the ACE2(cyan)/RBD(pink)
showing key interactions in wild-type (WT) and mutant proteins. Hydrophobic contacts are in grey, p-p interactions are
in purple, hydrogen bonds are shown as black dashed lines, unsatisfied polar group of N501 is in cyan, favorable
hydrophobic contact between T501 and Y41 in grey, and all distances are in �A.
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SPR experiments on each mutant and compared
our findings to those previously reported. We also
constructed a balanced dataset of mutations with
sufficient energy spread and compared perfor-
mance of easily accessible computational methods
to those obtained from FEP.
As shown in Table 1 and discussed above, there

is excellent agreement between our SPR results
and previous yeast display results from the Bloom
group.20 Moreover, both sets of results are in the
range reported in other studies. In particular, all
methods agree on the identification of stabilizing
mutations although the experimental values vary
by as much as 1 kcal/mol, likely due to some of
the issues discussed in Methods. As pointed out
above, FEP yields the best correlation with our
SPR results and, crucially, is the most effective in
identifying stabilizing mutations (Table 2, Table S3).
The mutations we used in our study are not a part

of common ML training databases such as
SKEMPI77; hence, our dataset for methods evalua-
tion can be considered as “blind”. A modest level of
performance for ML methods (Table 2, Table S3) is
in line with a study by Bonvin and co-workers where
various ML methods were tested on a blind dataset
7

of 487 mutations in 56 complexes.78 FoldX and
Rosetta flex ddG categorize neutral and destabiliz-
ing mutations well and are at least partially success-
ful in identifying stabilizing mutations (Table S3),
though their overall performance (PCC of 0.4–0.5)
is inferior to FEP (PCC of 0.8).
In addition to the methods we were able to test on

our data set, many other studies on RBD mutants
have been reported. Table S5 lists published
results on RBD::ACE2 on different sets of mutants
than studied here but it is of interest to compare
cases where there is overlap with previous work.
Previous FEP studies53,55,56 also carried out long
simulations and all identify N501Y and N501T as
stabilizing. TopNetTree,49 a topology-based ML
method, does not perform well on our data set.
The MM/GBSA study from the Bahar group58 suc-
cessfully predicts that N501Y is stabilizing but was
not run on other mutants in our data set. We could
not reproduce this result in our MM/GB-SA calcula-
tions likely due to protocol differences and use of
different crystal structures as input. Finally, Mara-
nas and co-workers47 used physical interactions
extracted from MM/GBSA simulations to train a
neural network to predict DDG values (NN_MM-



Figure 3. Epistatic effect of the double Q498R N501Y mutant. (A) A closeup of the complex between ACE2 (in
cyan) and RBD (in pink) showing chemical interactions involving RBD residues 501 and 498. Hydrophobic contacts
are in grey, p-p interactions are in purple, hydrogen bonds are shown as black dashed lines, unsatisfied polar groups
are in cyan, and all distances are measured in �A. (B) Cooperativity of the Q498R N501Y double mutant probed by
FEP and SPR computed as a difference between a hypothetical DDG (if the double mutant had an additive effect of
two single point mutations) and the actual DDG of the double mutant. Yeast display assay values are from Zahradnik
et al.64 (C) Absence of cooperativity probed by FEP and SPR for the L452R T478K double mutant. Experimental
result for the Delta RBD variant is from Liu et al.92 (see Methods for details), DDG of single mutants are from the
current study (Table 2). The FEP+ results are from 100 ns trajectories.
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GBSA method). Since many of the mutants in our
set were used in the NN_MM-GBSA training
(Table S5) it is difficult to make comparisons with
our own results.
Despite the success of the FEP approach

revealed in this work, significant challenges
remain. In previous work on a variety of systems,
we have demonstrated that the FEP results
correlate well with experiment (PCC values on the
order of 0.6–0.8) and display RMS errors in the
range expected for the OPLS479 and related molec-
ular mechanics force fields (0.5–1 kcal/-
8

mol).8,9,14,66–68 Precision beyond the above cited
statistics is very difficult to obtain, indeed, experi-
mental reproducibility errors are typically on the
order of 0.4 kcal/mol, even for the high quality
SPR results that we report here (see Methods).
As highlighted in this work, the major challenge in

using FEP to predict mutation effects on protein–
protein binding affinities, as opposed to small
molecule binding, is the possibility of significant
conformational changes induced by a mutation,
for example if a buried charge is created by
mutating a buried hydrophobic residue at the
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interface to one with a net charge. The key issue is
whether the conformational changes required to
make accurate predictions are accessible on the
timescale of the FEP simulation. When the
conformational changes consist primarily of side
chain rearrangements and relatively minor
backbone motion, FEP will typically deliver reliable
results (as in N501Y). When there are significant
backbone conformational changes, the accuracy
of the FEP results will depend upon whether the
barrier to conformational change can be
surmounted on the time scale of the simulation.
In terms of overall accuracy, the results obtained

here are consistent, in terms of both RMSD errors
and correlation coefficients, with those we have
reported previously in studying HIV derived
gp120-antibody binding and also more diverse
sets of protein–protein complexes via FEP
simulations8,9. The most significant errors may
result from structural uncertainties (as in A475V)
or from the prediction of overly unfavorable free
energy changes (as in Q498R) which often result
from electrostatic or steric clashes or from the
burial of a charge in a hydrophobic pocket.9 How-
ever, mutations that are predicted to be highly
destabilizing would be of little or no consequence
in the context of binding optimization project since
suchmutations would be rejected in an initial screen
even if converged results were obtained.
The accuracy of binding free energy differences

determined by FEP or other structure-based
methods is crucially dependent on the quality and
completeness of the complex structures used in
the simulations. While FEP performs well with
experimentally determined structures (as shown in
Table S3), achieving comparable success with
modeled complexes obtained by docking or
homology models of poor quality is much harder.
Our study reveals that using experimental
structures helps with general convergence, as
multiple independent FEP runs result in SEM < 0.
1 kcal/mol (as shown in Table S4). However,
when FEP simulations were performed on
modeled protein-peptide complexes, a much
larger deviation (SEM � 1.5 kcal/mol) was
observed.79

Although FEP is a successful method for
predicting the effect of point mutations on binding
free energy differences, it is not suitable for direct
evaluation of deletions or insertions effects using
alchemical transformations. A combination of MD
and advanced sampling techniques to guarantee
the adequate exploration of each relevant degree
of freedom can be applied to obtain binding free
energies within experimental accuracy in the
process of progressive separation of proteins via
the potential of mean force (PMF).80,81 The PMF
approaches are not limited to single point muta-
tions, but their success requires sufficiently accu-
rate approximation of the native wild-type and
mutant states.
9

Our results suggest FEP might be used in a
strategy to optimize the binding of two proteins, for
example in the optimization of antibodies. FEP
calculations appear to have sufficient rank
ordering capability to enable prioritization of
specific single residue mutations. The initial step
in a design strategy would be an exhaustive
screening of single mutations at the various
positions across the protein–protein interface
(perhaps a few hundred to a few thousand
calculations, which would require relatively modest
expenditure, given the steadily decreasing cost of
GPU-based computation). A key advantage of
FEP is that analysis of trajectories can reveal
insights as to the response of the interface to
different perturbations, enhanced when needed by
loop modeling procedures that more efficiently
sample conformational space. These insights
could then be translated into the investigation of a
selected subset of double and triple mutations,
with the goal of achieving favorable nonadditive
effects. The understanding we gained about the
Q498R N501Y double mutant could not have
been accomplished by any of the other methods
tested here.
It is important to clarify that, despite identifying

cooperativity of the N501Y Q498R double mutant,
the FEP results have not reached the point where
the calculated values have experimental accuracy.
It is then interesting to consider how a researcher
interested in designing a stabilizing mutation
would respond to calculated single mutant values
of �1.2 kcal/mol for N501Y, +2.7 kcal/mol for
Q498R and �1.4 kcal/mol for the double mutant.
We would argue that the large calculated
cooperativity energy of �2.9 kcal/mol, and the
physical basis of this effect revealed by the
simulations, would provide a strong hint that the
double mutant is worth testing experimentally.
Moreover, the experience we gained in this study
would make that decision more likely. In
conclusion, a careful exploration of a particular
system of biological importance as enabled by
FEP simulations would then appear to offer a way
forward in many practical applications.
Materials and Methods

ACE2::RBD dataset

We focused on missense RBD mutations at the
interface with ACE2 that occurred most frequently
in the US at the beginning of 2021 or were a part
of known variants of concern. Among single point
mutations with a frequency above 100 as of Jan 4,
2021, only seven mutations (S477N, N439K,
N501Y, L452R, Y453F, S477R and S477I) were
both missense and interfacial. To expand the
dataset, we added missense interfacial mutations
with a lower frequency (in the range of 10–100) if
mutations were stabilizing or destabilizing in the
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study of Bloom and co-workers20 while nearly neu-
tral positions were ignored. Stabilizing mutations
were of interest as potentially increasing infectivity
of the virus, while destabilizing mutations were a
necessary addition to create a balanced dataset
for a proper testing of DDG predictors. The K417T
and Q498R mutations were added due to occur-
rence in the SARS-CoV-2 variants of concern and
not based on frequency counts. The K417T muta-
tion was added due to its emergence in Brazil (as
a part of the Gamma variant) at the time. The
Q498R mutant was studied in the context of double
mutant effects alongside N501Y due to the co-
occurrence of these two mutations in Omicron
variant (Table S2) and a recent study on in vitro evo-
lution suggesting cooperativity between the two
mutations.64 Although the cumulative frequency
(i.e. a number of times a given mutation has been
found in the sequenced SARS-CoV-2 genomes)
has changed during 2021, the majority of the most
frequently observed mutations in January 2021
were still among the most recurrent mutations at
the end of the year, with our data set including 16
out of 20 interfacial missense RBD mutations that
had the highest frequency (>1000) on December
31, 2021 (Table S2).
Frequencies of SARS-CoV-2 mutations were

obtained from the Mutation Tracker resource
(https://users.math.msu.edu/users/weig/SARS-
CoV-2_Mutation_Tracker.html)82 that relies on data
from the GISAID database of coronavirus genomes
(https://www.gisaid.org/).

DIP::Dpr dataset

We included single point mutations of DIP-a, Dpr6
or Dpr10 that have been previously tested by
SPR.71–73

DDG calculations

All calculations presented in Table 2 and Table S3
were performed using crystal structures of highest
available resolution: the SARS-CoV-2 RBD
complex with ACE2 (2.45 �A, PDBID: 6M0J),69 the
DIP-a::Dpr6 complex (2.3 �A, PDBID: 5EO9)70 or
the DIP-a::Dpr10 complex (1.8�A, PDBID: 6NRQ).83

Mutabind2 predictions were run on the https://
lilab.jysw.suda.edu.cn/research/mutabind2/
webserver. mCSM-PPI2 predictions were
submitted as a query to the following webserver:
https://biosig.unimelb.edu.au/mcsm_ppi2/.
Standalone version (https://compbio.clemson.

edu/saambe_webserver/standaloneCode.zip) was
used for binding affinity calculations of SAAMBE-
3D. FoldX calculations were performed as
described in Sergeeva et al.72 Rosetta flex ddG cal-
culations were run using a standalone version
(https://github.com/Kortemme-Lab/flex_ddG_tutor-
ial) with the following parameters (considered to
give optimized performance of this method7:
nstruct = 35, max_minimization_iter = 5000, abs_s
10
core_convergence_thresh = 1.0, number_back
rub_trials = 35000, backrub_trajectory_stride =
35000.
The MM/GB-SA and MM/PB-SA methods rely on

the end-point approximation of the wild-type (WT)
and mutant (MT) states to calculate binding free
energies using the following formula: DDG = DGbind-

ing(MT) � DGbinding(WT), where DGbinding(P1::
P2) = G(P1::P2) � G(P1) � G(P2). To generate the
mutated proteins, we used the “Mutate Residue”
function followed by a local minimization of the
mutated residue in Maestro, using the crystal
structure of the WT as input. We employed the
AMBER software package and pmemd.cuda84,85

for minimization. The P1::P2 complex is minimized
in explicit OPC water, followed by removal of water
molecules and energy calculations in implicit sol-
vent. The isolated P1 and P2 proteins are assumed
to have the same conformation as in the complex.
The energy calculations were carried out using
MMPBSA.py.86 The mbondi2 radii set was used in
both GB and PB calculations, and the OBC2 model
was used for GB calculations.
We used Schrödinger software (2021-2 release)

and default FEP+ protocols (implementing
guidelines for protein–protein interactions
published earlier8,9 for our predictions of binding
affinity changes in the ACE2/RBD complex upon
RBDmutations. The release incorporates a recently
developed OPLS4 force field,79 replica exchange
with solute tempering (REST) enhanced sampling
methodology for mutated residues, and an
improved grand canonical Monte Carlo (GCMC)
protocol for sampling solvent molecules around
mutated residues.87 FEP+ is a fully physics-based
model that uses explicitly represented water. During
FEP+ simulations, an alchemical transformation of
a wild type amino acid residue into a mutant residue
is conducted, which is implemented by running a
series of separate molecular dynamics simulations
(“lambda windows”) with varied energy weighting.
The differences between adjacent lambda windows
are first calculated using a perturbative expansion
and then summed up to estimate the total free
energy change between a wild-type and mutant
states. To enhance the convergence of the free
energy calculations, our default protocols use 12
lambda windows for charge conserving mutations
and 24 lambda windows for the charge changing
mutations. All mutations were run for 10 ns and
100 ns (see Table S3). Calculations of double
mutant effects were performed by simultaneous
alchemical transformation of the two mutated resi-
dues. This procedure minimizes errors associated
with amore common FEP protocol wheremutations
are introduced sequentially. For example, the DDG
(Q498R N501Y) is predicted to be �1.4 kcal/mol
using the simultaneous protocol and �0.6 kcal/mol
using the sequential protocol. Of note, the results
from the simultaneous protocol are in better agree-
ment with the experimental value of �1.2 kcal/mol.

https://users.math.msu.edu/users/weig/SARS-CoV-2_Mutation_Tracker.html
https://users.math.msu.edu/users/weig/SARS-CoV-2_Mutation_Tracker.html
https://www.gisaid.org/
https://lilab.jysw.suda.edu.cn/research/mutabind2/
https://lilab.jysw.suda.edu.cn/research/mutabind2/
https://biosig.unimelb.edu.au/mcsm_ppi2/
https://compbio.clemson.edu/saambe_webserver/standaloneCode.zip
https://compbio.clemson.edu/saambe_webserver/standaloneCode.zip
https://github.com/Kortemme-Lab/flex_ddG_tutorial
https://github.com/Kortemme-Lab/flex_ddG_tutorial
http://MMPBSA.py
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The FEP+ methodology automates generation of
the mutated end-point, while the user provides a
prepared wild-type complex as input. This process
involves sampling and ranking the rotamers of the
mutated residue, followed by minimization of the
mutated residue. Additionally, the protein–protein
complex is equilibrated before the FEP/REST2
production run. This protocol is typically effective
in accurately identifying the mutated end-point
throughout the FEP/REST2 trajectory, except in
cases where a significant conformational change
is required upon mutation.
FEP+ requires GPU computing and the time

required per single point mutation depends on the
length of simulation (in nanoseconds), system size
(in atoms), and type of mutation (with charge-
changing mutations taking longer to compute
compared to charge-neutral mutations as the
number of lambda windows is twice as large). In
the ACE2/RBD system (�100,000 atoms including
explicit waters in the solvent box), the shortest
10 ns charge-neutral mutations take less than a
day, while the longest 100 ns charge-changing
simulations take �2 weeks when complex and
solvent legs are run in parallel with each
simulation leg using 4 GPUs.

Protein expression and purification

The SARS-CoV-2 RBD wild-type and its mutants
(residues 331–528), were cloned into the pVRC-
8400 mammalian expression plasmid, with a C-
terminal 6XHis-tag and an intervening HRV-3C
protease cleavage site. Plasmid constructs were
transfected into HEK293 cells using
polyethyleneimine (Polysciences). Cell growths
were harvested four days after transfection, and
the secreted proteins were purified from
supernatant by nickel affinity chromatography
using Ni-NTA IMAC Sepharose 6 Fast Flow resin
(Cytiva) followed by size exclusion
chromatography on a Superdex 200 column
(Cytiva) in 10 mM Tris, 150 mM NaCl, pH 7.4.
A plasmid encoding ACE2 residues 1–615

(pcDNA3-sACE2(WT)-8his) was a gift from Erik
Procko (Addgene plasmid #149,268; https://n2t.
net/addgene:149268; RRID:Addgene_149268).88

This plasmid was then mutated to encode ACE2
residues 1–620, followed by a C terminal HRV-3C
protease cleavage site, and an 8X HIS tag. This
construct was transfected into ExpiHEK293 cells
using Expifectamine according to manufacturer’s
instructions. Supernatants were harvested seven
days after transfection, and ACE2 was purified by
nickel affinity chromatography using His60 Ni
Superflow Resin (Takara) followed by size exclu-
sion chromatography on a Superdex 200 column
(Cytiva) in 10 mM Tris, 150 mM NaCl, pH 8.0. 400
ug of purified ACE2 was then digested overnight
at 4 degrees with 20 units of HRV-3C protease
(Thermo Scientific). Digested ACE2 was then incu-
bated with His60 Ni Superflow Resin, which was
11
then washed with 2 column volumes of 10 mM Tris,
150 mM NaCl, 5 mM imidazole, pH 8.0. The flow
through and wash were determined by SDS-
PAGE to contain cleaved ACE2, which was purified
by size exclusion chromatography on a Superdex
200 column (Cytiva) in 10 mM Tris, 150 mM NaCl,
pH 8.0.

Surface plasmon resonance

SPR binding assays for monomeric ACE2 binding
to RBDs were performed using a Biacore T200
biosensor, equipped with a Series S CM5 chip, at
25 �C, in a running buffer of 10 mM HEPES pH
7.4, 150 mM NaCl, 0.1 mg/mL BSA and 0.01% (v/
v) Tween-20 at 25 �C. Each RBD was captured
through its C-terminal his-tag over an anti-his
antibody surface, generated using the His-capture
kit (Cytiva, MA) according to the instructions of the
manufacturer.
During a binding cycle, each RBD was captured

over individual flow cells at approximately 250 RU.
An anti-his antibody surface was used as a
reference flow cell to remove bulk shift changes
from the binding signals. Monomeric ACE2 was
prepared at six concentrations in running buffer
using a three-fold dilution series, ranging from 1.1
to 270 nM. Samples were tested in order of
increasing protein concentration, with each series
tested in triplicate. Blank buffer cycles were
performed by injecting running buffer instead of
the analyte, after two ACE2 injections to remove
systematic noise from the binding signal. The
association and dissociation rates were each
monitored for 180 s and 300 s respectively, at
50 lL/min. Bound RBD/Fab complexes were
removed using a 10 s pulse of 15 mM H3PO4 at
100 lL/min, thus regenerating the anti-his surface
for a new cycle of recapturing of each RBD,
followed by a 60 s buffer wash at 100 lL/min. The
data was processed and fit to 1:1 interaction
model using the Scrubber 2.0 (BioLogic Software).
The number in brackets for each kinetic parameter
represents the error of the fit.
We have developed an SPR assay to measure

the binding kinetics and affinities of interactions
between ACE2 and wild-type or mutant RBD with
the RBD captured to the chip to avoid
compromised binding activity resulting from
chemical immobilization or repeated surface harsh
regeneration steps during the experiments. The
SARS-CoV-2 RBD is a basic molecule with a
pI � 9, so capture to the chip surface will also
minimize artifacts such as non-specific
interactions between the positively charged RBDs
and the negatively charged dextran layer of the
sensor chips at physiological pH. Monomeric
ACE2 was flowed over as analyte to avoid avidity
effects resulting from using dimeric ACE2. Studies
that have performed such experiments in both
orientations (RBD tethered to the surface vs in
solution as an analyte) showed that using RBD as

https://n2t.net/addgene%3a149268
https://n2t.net/addgene%3a149268
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an analyte yielded affinities that were approximately
three-fold stronger for the wild type RBD/ACE2
interaction, suggesting the presence of such non-
specific interactions.24 In our SPR experiments we
have determined the KD for wild type RBD binding
to monomeric ACE2 is 162.9 nM (Figure S1), con-
sistent with similar KDs reported from other groups
that have used similar methodologies to perform
their biosensor-based measurements.21,89,90 Fig-
ure S1(A) shows the binding kinetics for interactions
of mutant RBD proteins with ACE2 and Figure S1
(B) shows the kinetic parameters along with affini-
ties calculated for each binding interaction, while
Table 1 and Figure 3(B) list experimental changes
in binding affinities (DDG = RTln(KD(MT)/KD(WT)))
when RBD is mutated. Experimental reproducibility
errors in our SPR data (association and dissociation
rate constants) is expected to be�15–20% accord-
ing to previous estimates based on multiple inde-
pendent measurements72; a 15–20% error
corresponds to �0.4 kcal/mol experimental error
in the DDG(SPR) values reported in this study. Of
23 single point RBD mutations probed, four muta-
tions were identified as stabilizing: N501Y, Y453F,
S477N and N501T (Table 1).
Differences in experimental protocol affecting
binding affinity changes

Previously reported experimental binding affinity
changes upon RBD mutation of the ACE2/RBD
complex span different choice of protein
constructs and orientation of molecules used in
the binding assays.
The differences in the constructs lie in the choice

of monomeric vs. multimeric forms of interacting
proteins and selection of protein domain
boundaries. Some studies relied on monomeric
ACE2 and RBD21,22,24,25,27–30, whereas others used
at least one of the molecule in a multimeric form (tri-
meric spike, dimeric ACE2 or monomeric ACE2
fused to a dimeric Fc tag).20,25,26,31,32,64 RBD
domain starts at residue 333 and ends at residue
526. It is common that constructs used in studies
flank the RBD construct with a few residues before
and after the domain boundary (e.g. 331–528 (this
study), 331–531,20 328–53121,22) though some
studies use constructs where such flanking regions
are too long so they could result in non-specific
binding (especially when containing unpaired cys-
teine residues, e.g. RBD 319–591.25 Poor selection
of protein domain boundaries can affect protein
folding/integrity when a construct has incomplete
domain sequence (e.g. RBD 343–532 construct is
missing a b-strand).23

Orientation of molecules in the binding
experiments (which molecule is tethered to the
chip in SPR) can affect both absolute and relative
binding affinities (discussed in SPR methods).
Studies using a highly positively charged RBD
12
molecule as analyte and ACE2 immobilized on a
chip27–32 can be affected by non-specific binding
of RBD to the chip. For example, using RBD as ana-
lyte in experiments measuring binding affinity of
Alpha, Beta, Gamma, and Delta variants91 results
in stronger binding (by 0.4–0.6 kcal/mol) compared
to a setup minimizing non-specific binding by immo-
bilizing RBD on a chip.92We used the latter as a ref-
erence to assess performance ofDDGon predicting
double mutant effects of the Delta variant (Figure 3
(C)).
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