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Abstract
Background: IgE-epitope profiling can accurately diagnose clinical peanut allergy.
Objective: We sought to determine whether sequential (linear) epitope-specific IgE 
(ses-IgE) profiling can provide probabilities of tolerating discrete doses of peanut pro-
tein in allergic subjects undergoing double-blind, placebo-controlled food challenges 
utilizing PRACTALL dosing.
Methods: Sixty four ses-IgE antibodies were quantified in blood samples using a 
bead-based epitope assay. A pair of ses-IgEs that predicts Cumulative Tolerated Dose 
(CTD) was determined using regression in 75 subjects from the discovery cohort. This 
epitope-based predictor was validated on 331 subjects from five independent co-
horts (ages 4–25 years). Subjects were grouped based on their predicted values and 
probabilities of reactions at each CTD threshold were calculated.
Results: In discovery, an algorithm using two ses-IgE antibodies was correlated with 
CTDs (rho = 0.61, p < .05); this correlation was 0.51 (p < .05) in validation. Using the 
ses-IgE-based predictor, subjects were assigned into “high,” “moderate,” or “low” dose-
reactivity groups. On average, subjects in the “high” group were four times more likely 
to tolerate a specific dose, compared with the “low” group. For example, predicted prob-
abilities of tolerating 4, 14, 44, and 144 or 444 mg in the “low” group were 92%, 77%, 
53%, 29%, and 10% compared with 98%, 95%, 94%, 88%, and 73% in the “high” group.
Conclusions: Accurate predictions of food challenge thresholds are complex due to fac-
tors including limited responder sample sizes at each dose and variations in study-specific 
challenge protocols. Despite these limitations, an epitope-based predictor was able to 
accurately identify CTDs and may provide a useful surrogate for peanut challenges.
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1  |  INTRODUC TION

Accurate diagnosis of food allergy is essential for both minimizing 
the risk of allergic reactions and eliminating unnecessary dietary 
restrictions. With a clear-cut history of allergic reactions following 
the ingestion of specific foods, the diagnosis is relatively straightfor-
ward, while the absence of such history could lead to a challenging 
multi-step diagnostic process.

Allergic sensitization can be confirmed by measuring food 
protein-specific IgE by either skin prick test (SPT) wheal diameters 
or serum IgE levels. For peanut, an SPT wheal ≥3 mm or peanut-
specific IgE ≥0.35 kUA/L is considered a positive result.1 These 
cutoffs have high sensitivity but poor specificity for clinical reac-
tivity, which could result in sensitized but clinically non-reactive 
individuals being incorrectly diagnosed with peanut allergy.2–4 
Higher cutoff values have been proposed to improve specificity 
and reduce the false positive rate, but with a trade-off of lower 
sensitivity.4 When SPT and IgE testing are equivocal, further eval-
uation is warranted. For peanut, component-resolved diagnostics 
offers improved diagnostic utility, by measuring IgE levels against 
specific allergen components, for example, Ara h 1 and Ara h 2 pro-
teins. Several studies have shown that Ara h 2-specific IgE is su-
perior to serum IgE to whole peanut in identifying peanut-allergic 
subjects.3,5–8 In addition to correctly diagnosing peanut allergy, an 
evaluation of potential severity of any reaction is also important. 
Unfortunately, existing diagnostics (including component-resolved 
diagnostics) are not predictive of severity or the threshold dose,9,10 
and many patients still require an Oral Food Challenge (OFC).11 
OFCs are instrumental for allergy diagnosis and determining 

clinical reactivity, but they often cause anaphylaxis which can in-
crease patient anxiety and are time and resource intensive.12 There 
is still an unmet need for the development of next-generation diag-
nostics that offer more granular diagnostic information, potentially 
reducing the need for OFCs.

Our group has previously shown that IgE specific to short se-
quential (linear) epitopes from the Ara h 2 allergen can identify 
peanut-allergic subjects with a sensitivity and specificity >90%.13 
Additionally, sequential epitope-specific IgE (ses-IgE) diversity 
showed a correlation with the severity of allergic reactions to pea-
nut.14,15 In this current work, we sought to improve allergy diag-
nostics using ses-IgE profiling to predict cumulative tolerated dose 
(CTD) in peanut-allergic subjects.

2  |  METHODS

2.1  |  Sample splitting and blinding

Upon receiving baseline double-blind, placebo-controlled food 
challenge (DBPCFC) data for peanut allergic subjects in BOPI 
(NCT02149719)16 and OPIA (ACTRN12617000914369) trials, pa-
tients were randomly assigned into Discovery and Validation cohorts 
using a 60:40 split. To ensure that patients were well represented 
across the two cohorts, five randomization experiments were run, 
where the distribution of trials (BOPI/OPIA) were compared using a 
Chi-squared test. The trial that produced the most unbiased separa-
tion, defined as Chi-squared p-value closest to 1, was selected. To 
ensure results' validity, a blinding protocol was generated, so that 

G R A P H I C A L  A B S T R A C T
This study evaluates whether ses-IgE profiling can predict probability of tolerating discrete doses of peanut protein in allergic subjects.
There is a moderate negative correlation between the number of IgE epitopes and CTDs. The pair of ses-IgE (Ara h 2_008 and Ara h 3_100) 
provide the best prediction of CRD. On average, subjects in the high-dose reactivity group are 4 times more likely to tolerate a specific dose, 
compared to the low-dose group.
Abbreviations: CRD, cumulative reactive dose; CTD, cumulative tolerated dose; ses-IgE, sequential (linear) epitope-specific immunoglobulin E
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laboratory and clinical data of the Validation cohort could not be inte-
grated until the prediction algorithm was locked.

During the discovery phase, we were able to obtain additional 
patient samples from baseline/enrollment DBPCFC of CAFETERIA 
(NCT03907397), CoFAR6 (NCT01904604),17 and PEPITES 
(NCT02636699)18 trials. Since, the samples were obtained after the 
blinding protocol and randomization were documented, to adhere 
to the established guidelines for the clinical diagnostic test develop-
ment by the National Academy of Medicine, all samples from these 
studies were used only in the Validation phase. The study was ap-
proved by the local Institutional Review Boards, and all the study 
participants provided informed consent.

2.2  |  Epitope-specific IgE quantification

Serum samples from BOPI, OPIA, and PEPITES, and plasma from 
CAFETERIA and CoFAR6 were randomized across 96-well plates 
using PlateDesigner.19 Each study was run on a different set of plates, 
so that discovery and validation samples were processed separately. 
A Bead-Based Epitope Assay (BBEA) was carried out as described 
previously,20 quantifying IgE antibodies to 64 15-mer sequen-
tial epitopes from three peanut proteins: Ara h 1 (n = 34), Ara h 2 
(n = 16), Ara h 3 (n = 14), with all amino acid sequences published 
elsewhere.21,22 Ara h 2 is the smallest allergen of the three proteins, 
with 16 epitopes providing a 33% coverage of 49 possible 15-mer 
peptides; followed by 17% coverage of the Ara h 1 epitopes (34/205) 
and 8% for Ara h 3 (14/165).

Biotinylated peptides were coupled to LumAvidin microspheres 
(Luminex Corporation) and this master mix was added to 96-well filter 
plates. Every plate also included three peptide-only wells for back-
ground quantification (NEG), and three wells with a positive control 
sample (POS) for the downstream calibration across all plates. The 
POS sample was composed of a pool of multiple peanut allergic sub-
jects that were not part of this study and serves as a standard con-
trol for all BBEA runs; the POS sample is independent of the clinical 
or any other sample run on the plate. After 3 washes, 100 μl/well of 
1:10 diluted plasma or serum samples were added in triplicates and 
incubated with the peptides for 2 h. After two additional washes, 
samples were incubated with 50 μl/well of mouse anti-human phyco-
erythrin (PE) conjugated IgE (Thermo-Pierce Antibodies, Clone BE5, 
1:50 dilution) for 30 min. Plates were read on a Luminex-200 instru-
ment (Luminex Corporation) and IgE for each sample and epitope 
quantified as a Median Fluorescence Intensity (MFI).

The MFI was then converted to a “calibrated” value (calMFI) 
through the following steps: (1) log2-transformation, (2) assignment 
of zero for values below the limit of detection (LOD), and (3) adjust-
ing for inter-plate variability using the “correction factor.” The me-
dian MFI was transformed for each sample (s) and epitope-specific 
IgE (e) as follows: 

where LOD is a limit of detection of 2.4 for all epitopes. The LOD 
value was determined in a separate set of experiments using serial 
dilutions of samples with low peanut sIgE. Next, to ensure values 
were comparable across plates, an epitope-specific “correction fac-
tor” was determined using the POS sample on each plate. This “cor-
rection factor” was calculated for each plate as the positive control 
sample (tMFI_POS) on each plate divided by the median of positive 
controls (tMFI_POS) on plates used in the Discovery phase, specifi-
cally BOPI and OPIA studies (Table S1). A calibrated MFI was then 
computed as follows:

2.3  |  Determination and evaluation of the 
prediction rule

For each pair of ses-IgEs (2016 combinations), a linear regression 
was fitted to predict the natural log of cumulative reactive dose 
(CRD) corresponding to CTDs of the Discovery cohort. Pearson (r) 
and Spearman (rho) correlations were used to measure the linear 
correlation between the score predicted by each ses-IgE pair and 
the actual CRD levels of the patients. The best model was identi-
fied, which included IgE to Ara h 2_008 and Ara h 3_100 epitopes. 
This model was documented and locked; then its performance was 
evaluated on the Validation samples. Additionally, based on the 
model's predictor values, patients were split into 3 groups of dose-
reactivity: “low,” “moderate,” or “high” using the following bound-
aries where a stepwise increase was observed [−∞, 5.34), [5.34, 
6.38], (6.38, ∞]. Within each group, the proportion of subjects that 
reacted at 4, 14, 44, 144, 444, and 1444 mg of peanut protein was 
calculated; 1000 bootstrap simulations were used to estimate 95% 
confidence intervals (CI). Study schematic is outlined in Figure S1.

Amino acid sequences of Ara h 2_008 and Ara h 3_100 epitopes 
were mapped to the conformational structures of Ara h 2 (3OB4) and 
Ara h 3 (3C3V) proteins. However, 6/15 amino acids for Ara h 2_008 
and all 15 for Ara h 3_100 were missing from those structures. They 
were then reconstructed using Swiss-Model (https://swiss​model.
expasy.org/; Q6PSU2 for Ara h 2 and B5TYU1 for Ara h 3) and visu-
alized using the PyMOL software.

2.4  |  Statistical analyses

CTD values were normalized using natural logarithm (ln). CalMFI 
values for all 64 ses-IgEs for patients in the Discovery cohort are 
presented in a heatmap as a z-score for each epitope. Using these 
z-scores, for each patient we computed a number of IgE-binding 
epitopes, that is an epitope is considered “recognized” if z-score >0. (1)tMFIs,e = log2

(
median

(
MFIreplicate1 s,e,MFIreplicate2 s,e,MFIreplicate3 s,e

)
+ 1

)
;

(2)tMFIs,e =

⎧
⎪⎨⎪⎩

tMFIs,e, if tMFIs,e≥LOD

0, if tMFIs,e<LOD
,

(3)calMFIs,e = correction factore ∗ tMFIs,e

https://swissmodel.expasy.org/;
https://swissmodel.expasy.org/;


3064  |    SUPRUN et al.

Spearman correlations among ses-IgEs are presented, with p-values 
<.00078125 considered significant (Bonferroni correction for 64 
tests).

3  |  RESULTS

3.1  |  Study design and cohorts

Four hundred and six peanut-allergic subjects from 5 independent 
cohorts covering multiple countries, who underwent DBPCFC were 
included in this study: BOPI (n  =  68), OPIA (n  =  56), CAFETERIA 
(n  =  104), CoFAR6 (n  =  84), and PEPITES (n  =  94, Figure  1). 
Participants' ages ranged across cohorts from 4 to 25 years of age. 
The DBPCFC protocols varied by study but followed PRACTALL 
guidelines for semi-log incremental dose increase.23

In adherence with the guidelines by the National Academy 
of Medicine, the development of the CTD algorithm was done in 
two phases: Discovery and Validation. Seventy-five subjects from 
BOPI (n  =  41) and OPIA (n  =  34) were randomly assigned to the 
Discovery cohort. The validation cohort included 201 subjects from 
CAFETERIA, CoFAR6, and the remaining BOPI (n = 27), and OPIA 
(n  =  22) participants. Additionally, all the PEPITES' subjects were 
used for a final testing of the algorithm.

3.2  |  Ses-IgEs are associated with CTDs

Sixty-four ses-IgEs were evaluated in 75 subjects in the Discovery 
cohort (Figure 2A), with patients reacting at lower CTDs generally 
having a greater number of epitopes recognized by IgE antibodies 
(Figure  2B). Several studies have demonstrated that IgE diversity 
(recognition of a greater number of epitopes, i.e., “epitope spreading”) 
is associated with adverse outcomes, that is, more severe allergic 
reactions or a persistent disease phenotype.14,15,24 We observed a 

moderate negative correlation between the number of IgE epitopes 
and CTDs (rho  =  −0.57, p  < .001). This means that higher IgE 
diversity is associated with a lower amount of peanut that a patient 
can consume without experiencing allergic symptoms. When we 
binarized a number of IgE-binding epitopes (using the natural split 
observed on a scatterplot as shown in Figures 2B and S2), there was 
a significant association between IgE recognition of more than 20 
(31%) epitopes and having lower CTDs (p < .001).

Individual ses-IgE antibodies had strong pairwise correlation 
between themselves (median rho = 0.85 [0.76, 0.87]), as we have 
observed previously.25 Of all ses-IgEs, 61 (95%) were negatively 
correlated with CTDs (Figure  2C). However, those association 
were variable, ranging from rho = −0.14 to −0.55, indicating that 
IgE-binding epitopes have varying impact on the amount of peanut 
a patient can consume. It is plausible to assume that a combination 
of at least two such epitopes could be a stronger predictor of CTD.

3.3  |  Ses-IgE-based algorithm predicts peanut 
threshold doses

We identified a pair of ses-IgEs that together provided the best 
prediction of CRD (Table S2), and devised a prediction rule for each 
sample (s) using only the Discovery cohort:

The correlation of the predicted score with the actual dose was 
rho = 0.61 (p < .001) in the Discovery cohort, which is higher than 
correlations of individual antibodies (Figure  2C). Importantly, the 
predicted score increased incrementally with the increase in CRD 
(Figure 3A).

This algorithm was then documented, locked, and validated on 
samples and outcome data from 201 subjects which had not been 

Predicted Score(s)=6.83−0.23∗calMFIAra h 2_008(s)

−0.13∗calMFIAra h 3_100(s)

F I G U R E  1  Study samples and DBPCFC dosing (Disc, Discovery; Val, Validation).
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F I G U R E  2  Ses-IgE association with the CTD. (A) Patient-specific heatmap with samples as columns and 64 ses-IgEs as rows; represented 
as row-wise z-score of CalMFI (red – high level, blue – low). (B) Association of CTD (natural log) and a number of IgE-binding epitopes for 
each subject as a scatterplot (left) or boxplot (right, Wilcoxon rank sum test p-value). (C) Correlation of each of the 64 ses-IgE with the CTD 
(color represents rho coefficient's magnitude, star if the p-value is significant after Bonferroni correction).
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used in any aspect of the discovery process. The performance in this 
set of previously “unseen” subjects, as expected, was lower, with 
Spearman correlation of 0.51 (p < .001).

The two IgE-binding epitopes that were included in the algo-
rithm were from Ara h 2 and Ara h 3 proteins: Ara h 2_008 and Ara 
h 3_100. The amino acid sequences and positions on reconstructed 
conformational proteins for both epitopes are shown on Figure 3B.

3.4  |  Patient stratification based on ses-IgE 
predictor provides reaction probabilities

Since CTD values are not truly continuous, generally with threefold 
increases at each of the escalation doses, and the sample size at each 
dose tends to be small (Figures 4A, Table S3), a large number of sub-
jects will need to undergo DBPCFCs to devise a predictive rule with 
high correlation with CTDs. To address this limitation and to allow 

flexibility for our predictive algorithm as more data become avail-
able, subjects were separated into three groups of dose reactivity: 
“low” (n = 79), “moderate” (n = 92), and “high” (n = 66).

For each group, we calculated the proportion of subjects that 
would tolerate different doses of peanut protein (Figures  4B and 
S3). On average, subjects in the “high” dose-reactivity group were 
4 times more likely to tolerate a specific dose, compared with the 
“low” dose group. For example, predicted probabilities of tolerating 
4, 14, 44, 144, and 444 mg in the “low” group were 92%, 77%, 53%, 
29%, 10% compared with 98%, 95%, 94%, 88%, 73% in the “high” 
dose-reactivity group.

As an additional validation step of these results, we applied the 
ses-IgE-based algorithm to the PEPITES subjects to obtain their 
probability distributions. The PEPITES cohort differed from the rest 
in that all 94 patients had CTDs less than 144 mg, as per eligibility 
criteria. Ninety-three percent of the subjects were assigned to either 
“low” or “moderate” ses-IgE groups, suggesting that they would have 

F I G U R E  4  Dose-reactivity groups and probabilities of tolerance. (A) Distribution of CTDs shown as a violin plot, colored by four cohorts 
(blue diamond – mean, red – median). (B) Bar chart of probabilities with 95% CI of tolerance at each peanut dose for “low”, “moderate”, 
and “high” dose-reactivity groups in 237 Validation subjects. (C) Bar chart of probabilities of tolerance at each peanut dose for “low” and 
“moderate” reactivity groups in 87 PEPITES subjects (only seven subjects were assigned to the “high” group, not shown). In PEPITES, the 
maximum dose administered during DBPCFC was 300 mg.
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high probability of reacting at low doses, and the distributions of the 
CTDs in those two groups were similar to that derived from the 237 
validation subjects (Figure 4C).

4  |  DISCUSSION

DBPCFCs are the “gold standard” for diagnosing food allergy, help-
ing establish reactivity thresholds, and determining if this threshold 
changes over time or as a result of an intervention.12 This informa-
tion can be very valuable to allergic patients and their caregivers, 
as it suggests the stringency of avoidance that they might observe, 
based upon an individualized risk assessment. For example, if a pa-
tient reacts to a 1000 mg dose of peanut protein, then it is unlikely 
they would have an objective reaction to 100 mg peanut protein 
(equivalent to around half a peanut kernel); this information can thus 
inform the degree of peanut avoidance required and reduce anxiety. 
DBPCFCs are also key in assessing the impact of potential disease-
modifying interventions such as immunotherapy; as the latter be-
comes more mainstream in clinical practice. However, DBPCFCs are 
less pragmatic and even open-label OFCs with fewer doses might 
be considered impractical. Food challenges in food-allergic individu-
als are not without risk, and therefore, require trained personnel 
and proper equipment, as well as causing inconvenience to patients 
and their families. Our goal was to develop a test that can predict 
peanut threshold amounts, thus providing more information to both 
patients and providers and informing, if not reducing the need for 
food challenges.

Development of any diagnostic test requires a priori random-
ization of subjects into discovery and validation sets.11 Regression 
models, similar to other machine learning algorithms, tailor the pre-
dictions to the data they are derived from, where the “learning” could 
include random noise. This way, it is possible to have almost perfect 
predictions if the model is complex enough (e.g., many predictors 
and polynomial terms). However, when such a model is employed 
on a new set of observations, the performance will dramatically 
decrease, indicating the “overfitting” of the model. Therefore, it is 
important to always have a separate set of subjects, when sample 
size allows, or use appropriate resampling techniques to obtain gen-
eralizable performance metrics. Since a new set of subjects will have 
different variability, it is common to see some drop in performance in 
the validation cohort, which gives an estimate of how the algorithm 
will perform in “real world”. Ideally, a validation set should consist 
of a population that was not part of the discovery set to ensure ac-
curate representation of external validity. In this work, we have ob-
tained samples from five independent cohorts from five countries: 
Australia, UK, US, Ireland, and Germany. All the development work, 
including descriptive statistics, was carried out in the Discovery sub-
jects, and only after the final algorithm was locked and documented 
was it analyzed on the Validation cohort.

We observed that both the levels of individual ses-IgEs, as well as 
IgE epitope diversity were inversely associated with the CTD. Allergic 
effector cells, that is, basophils and mast cells, are saturated with 

high-affinity IgE (FceRI) receptors, which upon allergen exposure, IgE 
molecules on the surface of those cells cross-link, leading to the re-
lease of immune mediators.26 Higher levels of IgE in serum/plasma 
correlate with the number of antibodies on the cell surface,27 and 
higher IgE diversity may result in antigen (peanut protein) being more 
readily detectable, leading to allergic reactions. While we observed 
moderate correlations, we hypothesized that a combination of several 
ses-IgE antibodies could have a stronger association with the CTD.

We set out to develop a predictor using a machine learning ap-
proach to evaluate all pairwise ses-IgE combinations, until the best 
pair was identified. Two antibodies with the combined strongest as-
sociation were specific to the Ara h 2_008 and Ara h 3_100 epitopes. 
Interestingly, the algorithm did not select a pair of IgE epitopes that 
individually had the highest correlation with the CTD, suggesting 
an additive effect of these two markers. These IgE epitopes were 
previously identified as important early predictors of peanut allergy 
development22 and were detected in more allergic compared to sen-
sitized only subjects.28 Ara h 2_008 was identified as a main diag-
nostic IgE epitope for peanut allergy13 and showed greater increases 
over time in children who developed peanut allergy in the avoidance 
arm of the LEAP trial.21

The CTD predictions were limited by the sample size, since dose 
increments, in general, follow semi-log increases and not every dose 
is equally represented. Additionally, while all the studies followed 
PRACTALL guidelines, study-specific dose variations were still pres-
ent. These factors make CTD predictions less reliable; to address 
this limitation and make sure that the algorithm can get more pre-
cise as more data become available, the outcome of the test was 
designed to provide a specific probability of reactions at all CTDs. 
Using the predicted score, patients were assigned to “low,” “moder-
ate,” or “high” dose-reactor groups, and the probability of tolerating 
any given dose was fourfold different between the “high” and “low” 
groups.

This risk group assignment is valuable for many purposes, includ-
ing deciding whether a patient should undergo an OFC to confirm 
a safe tolerated dose or whether they should maintain stringent al-
lergen avoidance and/or pursue oral immunotherapy (OIT), and to 
monitor possible allergy resolution over time. For example, a sub-
ject with “low” dose-reactivity group could benefit from OIT.29 Even 
though OIT requires considerable time, effort, and risk of adverse 
reactions, the benefits for someone with a low tolerance threshold 
would likely outweigh the burden of lifestyle change required to un-
dergo OIT; while someone in “high” dose-reactivity group wishing 
to pursue OIT could initiate OIT at a higher dose, thus shortening 
the time necessary to achieve the maintenance dose. Additionally, 
subjects in the “moderate” or “high” groups may consider undergo-
ing a single-dose (one shot) OFC of peanut protein to confirm their 
tolerance, and thus, allow for a less stringent avoidance regimen, 
that is, consumption of foods with precautionary allergen labeling. 
For example, a patient in the “high” group may wish to undergo a 
one-dose challenge to 100 or 300 mg of peanut protein to confirm 
tolerance at these levels since there would be a 4 out of 5 or 3 out 
of 4 chance of them tolerating these doses, respectively. Similarly, 
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a patient in the “moderate” group may wish to try a one-dose chal-
lenge to 30 or 100 mg since they would have a 4 out of 5 or 2 out of 
3 chance of tolerating these doses. While incorporating low-doses of 
peanut-containing products would not be recommended, an under-
standing that low-dose contamination of food would not likely lead 
to an allergic reaction could reduce anxiety significantly and lead to 
a marked improvement in quality of life.

As all samples and outcomes in this study were from the base-
line visit of clinical trials, and the subjects were avoiding peanut, 
this algorithm would need further evaluation to determine its util-
ity for subjects undergoing OIT, where other immune factors could 
affect the results (e.g., generation of allergen-specific IgG and IgA 
antibodies).30 Thresholds established with the BBEA are based on 
the outcomes of oral food challenges performed under ideal, steady-
state conditions. Therefore, patients should be advised that certain 
co-factors, for example, exercise, NSAIDs, alcohol, high fever, heavy 
pollen season, may influence the predicted reaction threshold. The 
strengths of this algorithm are its development and validation on 
separate cohorts, spanning multiple countries and a wide age range 
(4–25 years); the use of a small amount of serum/plasma sample 
(< 20 ul, can be used from frozen); and the possibility for further re-
finement as more data become available.

In conclusion, this is a first validated algorithm using peanut-
specific epitopes to predict probabilities of reaction to different 
amounts of peanut in allergic subjects and may provide a useful sur-
rogate for peanut food challenges.
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