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Abstract

Developing radiation tumor biomarkers that can guide personalized radiotherapy clinical decision 

making is a critical goal in the effort towards precision cancer medicine. High-throughput 

molecular assays paired with modern computational techniques have the potential to identify 

individual tumor-specific signatures and create tools that can help understand heterogenous patient 

outcomes in response to radiotherapy, allowing clinicians to fully benefit from the technological 

advances in molecular profiling and computational biology including machine learning. However, 

the increasingly complex nature of the data generated from high-throughput and “omics” assays 

require careful selection of analytical strategies. Furthermore, the power of modern machine 

learning techniques to detect subtle data patterns comes with special considerations to ensure that 

the results are generalizable. Herein, we review the computational framework of tumor biomarker 

development and describe commonly used machine learning approaches and how they are applied 

for radiation biomarker development using molecular data, as well as challenges and emerging 

research trends.

INTRODUCTION

Radiation therapy is a core component of the treatment of cancer patients, with over 50% 

of patients receiving radiation therapy at some point during their treatment course, and 

approximately 60% of these patients are treated with curative intent1. Personalization of 
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radiation therapy is a critical goal for radiation oncologists who aim to increase the chance 

of controlling disease while limiting the harmful side-effects and toxicities of treatment. 

Current strategies center around several frameworks – utilizing clinical characteristics to 

stratify patients, image guided radiation therapy that allows for higher doses to the tumor 

with improved sparing of normal tissue2, and biomarkers to guide treatment3–5. The first two 

are widely clinically adopted, but development of radiation tumor biomarkers has proven 

more difficult. Prognostic tests can help guide decisions about treatment intensification in 

high-risk patients or de-intensification in low-risk patients, but they provide limited insight 

into the most appropriate type of intervention. The ideal radiation tumor biomarker for the 

radiation oncologist would be treatment predictive, that is it would provide insight into 

whether a patient’s specific cancer is radiosensitive or radioresistant, or on the benefit of 

radiation. Such predictive biomarkers could then guide the decision on whether to treat with 

radiation and help determine the appropriate dose and fractionation schedule. Predictive 

biomarker discovery can be more difficult than identifying prognostic biomarkers, but 

advances in high-throughput molecular profiling technologies have provided an opportunity 

to create clinically useful radiation-based predictive biomarkers, and many biomarkers of 

radiation sensitivity and resistance have been developed using various machine learning 

techniques6 to harness the power of these assays. However, there are no tumor biomarkers 

specifically designed for radiation therapy that are clinically used today. One of the 

challenges with modern high-throughput assays is the complex nature of the data produced 

and the special analytical considerations required. In this review we set out to provide 

a broad overview of the computational machine learning methodologies used in of the 

development of high-throughput radiation biomarkers as well as review challenges and 

future possibilities.

High-throughput techniques and the “curse of dimensionality”

Modern high-throughput assays, or “omics” technologies, have revolutionized the study 

of biological systems. The assays provide an opportunity to comprehensively characterize 

the tumor DNA alterations (genomics), gene expression profiles (transcriptomics), 

protein abundance and modifications (proteomics), epigenetic modifications (epigenomics), 

metabolic profiles (metabolomics), etc. Herein, we will focus on the special analytical 

considerations needed for these molecular data. The common theme for all “omics” assays 

is that for every tumor sample (observation) there are hundreds to thousands to millions 

of variables measured (features, or dimensions, e.g. genes, proteins, etc.). The number of 

observations is usually lower than the number of features due to sample availability and cost. 

Given that 1) most features are typically not informative for the specific question asked, thus 

contributing only “noise”, and 2) there is a level of background random variability for each 

feature, there are usually features that can distinguish between groups by pure chance. Thus, 

adding hundreds or thousands of variables of which most are contributing noise does not 

necessarily make it easier to find the true biological signal in the data, a phenomenon that is 

sometimes called the “curse of dimensionality”. The key analytical challenge in biomarker 

development is to find the true signal in the noise.

This challenge is compounded by the power of modern machine learning techniques, which 

can be extremely efficient at finding subtle patterns in the data. Given the high-dimensional 
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nature of “omics” data, it is easy for these methods to fit models on the noise in a specific 

dataset and the more flexible a model is, the easier it may be to pick up the noise in the data. 

By picking up noise instead of signal, the model weights are more sensitive to changes in the 

input data, and the model will have a high variance. Conversely, less flexible models usually 

have a bias towards the constraints of that model, making it more robust against noise, but 

also less flexible to the true signal. Ideally, a good model is flexible enough to find a close 

fit to the true signal (low bias) and have low variance. There is usually a trade-off between 

these properties, referred to as the bias-variance trade-off. In summary, these properties of 

high-dimensional data and the flexibility of models available in modern machine learning, 

requires a specific strategy and a set of steps for model development and validation where 

a model is trained, tuned, tested, and finally validated in independent data to ensure that the 

model has indeed found a true signal in the noise.

Sample handling and data pre-processing

Before the machine learning procedures can start, the data needs to be pre-processed for 

further analysis. The full details of these techniques are outside the scope of this review. 

Briefly, pre-processing typically includes normalization, batch-effect correction, and feature 

selection. Normalization is intended to reduce the technical variability between samples and 

can be done for a set of samples together (cohort) or on a single-sample basis. Single-sample 

techniques have the advantage of easier implementation in personalized medicine workflows 

as it can be performed continuously on each new sample that is processed and independently 

of other cohorts. Batch-effects refer to systematic technical variability in the data due 

to groups of samples having similar patterns due to experimental or technical factors, 

in contrast to biological differences. This can be due to different assay platforms being 

used, samples being processed at different centers or at different timepoints, differences in 

sample handling, storage, processing, etc. It is important to reduce these potential sources of 

variability, and to identify and account for batch-effects when present. Feature selection is 

intended to reduce the number of non-informative, or noise, features. It can be done based 

on unbiased data-driven methods (such as removing lowly expressed genes and selecting 

the most variable genes), by prior biological knowledge (e.g. selecting genes in specific 

biological pathways) or at later analytical stages by how the features contribute to model 

performance. The overall goal of the pre-processing is to yield a dataset with as little noise 

and as much true signal as possible.

STRATEGIES FOR MACHINE LEARNING ANALYSIS

Definition Overview

The terms artificial intelligence (AI) and machine learning (ML) are used colloquially and 

often interchangeably, but they do hold separate meanings. AI refers to any technique 

utilized on a computer that seems to replicate a form of intelligence. ML represents a 

subset of AI where computers can learn directly from labeled (i.e. patient outcomes or 

radiosensitivity status of a sample is known) or unlabeled data. The goal of all ML methods 

is to take data as input and create a more structured and simplified output. There are two 

primary methodologies to perform this task – unsupervised learning and supervised learning. 

The primary difference between these two methods is that supervised models train on 
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labeled data for a specific outcome – a continuous variable (regression) such as the survival 

fraction of cells after receiving 2 Gy of radiation (SF2) or a discrete variable (classification) 

such as whether a tumor is known to be radiation sensitive or resistant – while unsupervised 

models are used to identify the intrinsic structure in a dataset without utilizing any labels 

(e.g. clustering).

Data Spending

Since the number of observations usually is limited, how the limited data gets used is one 

of the most important aspects of ML to ensure generalizability to future samples. Data 

spending refers to the task of splitting up data at steps throughout the workflow so that 

the model reproducibly finds signal instead of noise. The data used to build a model is 

called training data, while we refer to the data that the final and locked model is run on 

to validate the performance as independent validation data. The training data can be further 

split for model tuning, which we refer to as a hold-out test set. A true validation data set 

is meant to be entirely separate from the model training workflow and only used as a final 

independent confirmation of model performance. Various strategies have been utilized to 

train radiation signatures, such as Eschrich et al. utilizing the NCI-60 cell lines7, Zhao et 

al. utilizing orthotopic glioblastoma patient-derived xenografts8, and Sjöström et al. utilizing 

breast cancer patient samples9. All three studies had independent clinical validation datasets 

that were used to confirm the clinical validity and generalizability of the models. A critical 

requirement for radiation biomarkers is a validation dataset which is independent from 

training7,8,10–15, such that no validation data is used to adjust the model. If the validation 

data is used for training, or informing the training (i.e. information leakage), the model 

may pick up noise that is present in both the training and validation data, instead of true 

signal, and will not generalize to future datasets. Validation data may come from a different 

source than the training data. In that case, differences in platforms or experimental protocols 

may need to be accounted for via normalization and/or batch correction strategies described 

above. However, this would not generally be considered a major component of information 

leakage, since the validation data is not being directly trained on the outcome of interest.

Hyperparameter Fitting and Model Selection

As discussed above, ML models can be so flexible and effective in finding patterns that 

they find noise that does not represent true biological signal and is only specific to that 

data set, which is referred to as overfitting16. Thus, a model that is over-fit to a particular 

training dataset usually performs poorly on validation. A bias term making the model 

less flexible can be added so that the model’s fit is reduced on training data, increasing 

the generalizability and ideally with improved performance on validation (regularization, 

described in detail later) (Figure 1A). The bias term represents a hyperparameter, which is 

a feature that can only be optimized through evaluation of a model’s performance, unlike 

a traditional parameter in a linear regression model which has a best-fit solution. Both 

the selection of an appropriate model with the optimal level of flexibility and multiple 

hyperparameters need to be tested to identify the optimal model and settings. However, 

selecting the best model and settings in the training data commonly leads to over-fitting, 

while selection based on the validation data would be information leakage. Thus, one 

strategy is to further split the training data into a model building set and a hold-out test set 
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from which optimal model and bias hyperparameters are selected (Figure 1B), so that all of 

this occurs only within the training data, keeping the validation data separate.

Resampling Methods

Selecting a hold-out test dataset within the training data can result in very different results 

depending on how the data are split. Resampling by repeatedly generating the hold-out test 

set multiple times is one way to minimize this variability. The two most common resampling 

techniques are k-fold cross validation (CV) and bootstrapped resampling (Figure 1C). CV 

involves randomly splitting the data into k groups, with a model trained on k-1 groups and 

validated on that final hold out group (repeated k times). Leave-one-out CV is a special 

case where k equals the number of observations. Bootstrapping is where observations are 

randomly sampled from the data (allowing for repeats). The model is then trained on that 

sampled group and tested on the remaining observations. This can be performed n times 

and averaged out. To use this technique for hyperparameter optimization, one approach is 

performing resampling within the training data. Once the best hyperparameters are selected, 

the model can be locked and validated on that hold out test set. This is called double-loop 

resampling, with Sjöström et al.9 using this approach to develop a breast cancer radiation 

sensitivity signature. The training data they collected was split 50/50 into a model building 

and hold-out test set, where both gene selection and model hyperparameter optimization 

were performed using cross validation within the model building set. The model was first 

validated against their own hold-out test set and then on independent, publicly available 

datasets, demonstrating the clinical utility of the signature as prognostic for ipsilateral 

breast tumor recurrence and predictive of radiotherapy benefit in estrogen receptor positive 

patients. In summary, strict data spending schema and proper training using resampling 

minimizes information leakage, while maximizing the performance and generalizability of 

machine learning models.

MACHINE LEARNING APPROACHES

Unsupervised Learning

Unsupervised learning searches for intrinsic structure in a dataset while blinded to any 

labels. Clustering describes an unsupervised learning approach to grouping based on 

similarity. The two most common clustering algorithms used in biomarker development 

are k-means clustering and hierarchical clustering17. K-means clustering algorithm partitions 

data into k clusters with an algorithm that first randomly selects k observations (centroids), 

then calculates the distance from all other observations to the centroids (e.g. Euclidian 

distance), designates observations to a cluster based on the minimum distance to a centroid, 

and finally recalculates new centroids based on the mean values of all the observations 

in a cluster. This process is repeated until observations stop changing clusters, producing 

groups that minimize within-cluster variances. Hierarchical clustering tries to define clusters 

through either a bottom-up approach, where each observation starts in its own cluster, 

and are iteratively paired as the hierarchy ascends, or a top-down approach, where all 

observations start in one cluster and splits are made recursively as the hierarchy descends. 

Hierarchical approaches are advantageous as they produce readily interpretable structure 

among clusters. However, they are limited by the increased computational complexity 
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with larger datasets. Conversely, k-means clustering is more computationally efficient but 

often produces more homogenous clusters with less readily interpretable structure18. Both 

methods have been used in radiation biomarker development, with Piening et al. using 

hierarchical clustering of differentially expressed genes (cell lines compared before and after 

radiation exposure) to identify prognostic breast cancer patient clusters19 and Weichselbaum 

et al. utilizing k-means clustering of interferon-related DNA damage resistance genes 

in breast cancer patients to identify patient clusters, creating clusters that had utility in 

predicting recurrence after radiation therapy20.

Dimensionality reduction aims to reduce the number of features in a dataset (e.g. genes) 

into a lower dimensional space. Each feature in a dataset can be thought of as an additional 

dimension. There are three primary reasons for reducing the dimensions in a feature set – 1) 

too many features can be uninterpretable, 2) many features may represent experimental noise 

unrelated to the structure of the data, and 3) many features may be redundant, such as two 

genes that are correlated in all samples. While low dimensional datasets can be understood 

more intuitively, such as plotting each sample’s expression of three genes in a 3-D scatter 

plot, it’s difficult to visualize data in higher dimensions. Thus, dimensionality reduction is a 

key strategy for visualizing data in a lower dimensional space that can be more interpretable.

Principal Component Analysis (PCA) is the most common and easily interpretable form 

of dimensionality reduction21. PCA takes the original features of a dataset and creates 

new principal components (PC) that are linear combinations of those original features. For 

example, if a dataset had 10 genes, PCA would instead produce 10 PCs that are linear 

combinations of each gene. Importantly, these new PCs are explicitly de-correlated (i.e., no 

variable is redundant) and the PCs are ordered based on how much variability in the data 

each explains (e.g., PC1 will explain the most variance). By plotting PCs in a 2D or 3D 

space, this reduced representation of the data can readily be visualized to help understand 

the structure of the samples. Importantly, because PCA relies on linear combinations, any 

non-linear effects (gene A increases exponentially with respect to gene B) will not be 

accurately captured. PCA is often used for radiation signature development, with Kim et al. 

utilizing PCA for dimensionality reduction to plot the expression of their radiation signature, 

showing that radiosensitive and radioresistant cell lines were well separated in a 3D space22. 

Starmans et al. were able to use PCA to identify a batch effect between cell lines in their 

hypoxic radiosensitivity signature, warranting downstream analysis that accounted for this 

confounding variable23.

A methodology that tries to improve upon some of the limitations with PCA is the 

t-distributed stochastic neighbor embedding (t-SNE) method24, in which distances between 

points are scaled onto a t-distributed curve and those scaled distances are then used to map 

samples to a lower dimensional space, preserving some of the higher dimensional clustering 

structure that can be lost with PCA. Uniform Manifold Approximation and Projection 

(UMAP)25 is a more recent and very similar algorithm that has allows for increased 

computational efficiency. These techniques are still dimensionality reduction techniques and 

do not explicitly map samples to a specified cluster, however, samples can be color coded 

in a 2D t-SNE or UMAP projection based on the groupings from a k-means or hierarchical 

clustering, a technique that is commonly used to identify cell types from single cell RNA 
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(scRNA) expression data26. Gao et al. utilized scRNA data from a breast cancer cell line 

treated with and without radiation and identified clusters on a t-SNE plot that identified 

heterogeneity of response to radiation27.

Supervised Learning

In contrast to unsupervised techniques which are aimed at finding unknown structures 

within the data, supervised learning methods utilize models that are trained using known 

labeling of the data, such as radiosensitive vs. radioresistant tumors. Supervised learning 

can be structured based on the goal of the learning task – either developing inferential 

models or predictive models. An inferential model is used to identify the significance 

of a specific association, where the priority is producing a highly interpretable model. 

Conversely, the goal of a predictive model is to optimize prediction performance, often 

sacrificing interpretability. The most common inferential models are those utilized in clinical 

studies, such as a univariate or multivariate Cox regression or logistic regression. Another 

example commonly used in biomarker discovery is differential gene expression analysis of 

RNA-seq28, where a generalized linear model provides a log-fold change and significance 

test for the comparison between two experimental groups across every gene. Differential 

expression analysis is commonly used for radiosensitivity biomarker identification, such 

as in comparisons of gene expression levels in irradiated and non-irradiated cell lines 

to identify induced and repressed genes19, performing cell line survival experiments and 

utilizing integral survival29 or SF230 to define radioresistant and sensitive cell lines, and 

evaluating varying hypoxic conditions in cell lines23,31 and patients32 to identify hypoxia 

related genes relevant for radiation response. While inference and prediction can be two 

separate goals, the reality is that there is a spectrum – ideally inferential models are 

predictive and vice versa. Below, we review several commonly used supervised learning 

predictive models for radiation biomarkers, again focusing on studies with independent 

clinical validation. Many other ML algorithms exist beyond these (support vector machines, 

Bayesian networks, etc.), but will not be covered below.

Generalized Linear Models—Simple univariate and multivariate generalized linear 

models (GLMs; including linear, logistic, Poisson, negative binomial, Cox regressions, etc.) 

all represent supervised ML methods, as they utilize labeled training data to build models 

that predict a specific outcome. The benefit of GLMs is that they are highly interpretable 

and have a single best-fit solution, allowing a model to be built that utilizes all data without 

necessarily needing resampling-based hyperparameter optimization. Nevertheless, there are 

many other decisions that need to be made – picking a generalized linear model distribution, 

transforming non-linear variables, or adding interaction terms. A major advantage of GLMs 

is their interpretability. The importance of each variable is directly proportional to its weight 

in the model.

A common strategy in radiation biomarker development is to use GLMs for feature 

selection, such as evaluating the correlation between gene expression and SF212,22,33. Yard 

et al. performed the largest such analysis to date, where they radiated 533 cell lines from the 

Cancer Cell Line Encyclopedia (CCLE) and evaluated the correlation coefficients between 

gene expression and cell viability (in addition to evaluating DNA variant and copy number 
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changes)34. Eschrich et al. used an approach whereby many multivariate linear models were 

trained to identify the genes for their radiation sensitivity index (RSI)7, representing one 

model for each expressed gene. Included in each model was the value of the expressed gene, 

p53 and RAS mutation status, and tissue of origin which were trained on cell lines to predict 

SF2. The 500 gene-models with the lowest error in this procedure was used to identify 10 

genes based on gene hub identity, which was then used to train a multivariate linear model 

that predicts radiosensitivity.

Regularized Models—As introduced above, regularization is a procedure where a bias 

term is added to a GLM to prevent over-fitting and reduce the model’s reliance on less 

important variables. Regularization is used in both Ridge and the least absolute shrinkage 

and selection operator (LASSO) regression methods35. In a linear model, each feature is 

multiplied by a weight, which are then added to a y-axis intercept to produce a prediction. 

With regularization, a bias (penalization) term is added to this linear model (weight squared 

for Ridge and the absolute value of the weight for LASSO) to make the model less 

flexible and thus less prone to overfitting. These penalization values are then scaled by 

the regularization hyperparameter λ (ranging from 0 to 1) and added to the linear model. 

The benefit of LASSO is that it can penalize the weights of features to zero, removing less 

important variables from the model, representing a type of within-model feature selection. 

Elastic Net regression36 is a hybrid approach that adds a second hyperparameter scaling the 

amount of each type of regularization bias (Ridge or LASSO).

Zhao et al. utilized the strategy of regularization in the development of the Post-Operative 

Radiation Therapy Outcomes Score (PORTOS)13. PORTOS performed feature selection 

through utilization of previously defined gene sets that were then filtered based on the 

genes that had interaction effects with radiation in Cox models for predicting metastasis in 

post-operative prostate cancer patients. This filtered down gene list was then used to build 

two separate ridge penalized Cox models (radiation and no radiation), trained to predict 

metastasis, with the final PORTOS score representing the difference between the radiation 

and no radiation model predictions.

Decision Based Models—A limitation of the GLM framework is that these models 

do not incorporate non-linear effects or interaction terms, and while such features can be 

directly added to the model, that requires creation of a new variable (feature engineering 

- such as squaring the expression of one gene or multiplying the expression of two genes 

together). Decision-based models are desirable as they can account for these effects and 

thus no added feature engineering steps are required. The most used decision-based models 

in radiation biomarker development are tree-based models and top scoring pair (TSP) 

classifiers.

Central to the idea of tree-based methods is recursive partitioning37, where the best possible 

split of the data is identified. For example, if trying to find how to best separate radiation 

sensitive and resistant cells based on the expression of 5 genes, a recursive partitioning 

strategy would evaluate each gene and find the split that has the best classification 

performance. The same would hold for a regression problem where the split creates groups 

of samples where the mean of those new groups produces the lowest error. The tree-based 
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model can then repeat these splits, creating multiple “branches”, until you have a tree that 

has separated samples at a level sufficient to produce good predictions. Unfortunately, while 

individual tree models are advantageous for their highly interpretable structure, overfitting is 

a perennial problem.

Tree-based methods can have considerable improvement in predictive performance with a 

method called ensemble learning, where the combined predictions of many tree models are 

aggregated into a “forest”. This can be done by producing N trees through the bootstrapped 

resampling technique, and getting the prediction based on the call with the highest 

number of votes (classification) or the average for continuous predictions (regression). 

Unfortunately, another issue can arise, where there may be such a strong signal from one 

gene that almost every tree has the same first split, resulting in correlated trees. The random 

forest algorithm38 solves this problem by allowing for random sampling of the features that 

get used in each tree, thus decorrelating the trees.

Another strategy that has been very successful is to use an ensemble of “weak” models. With 

respect to tree-based methods, such a strategy will create trees with fewer splits, creating 

a weak model that explains just part of the data. That model is used to get a first round 

of predictions and a resulting error for those predictions. Rather than creating a completely 

independent tree for the next step, like was done with the previously described models, the 

next tree is created to reduce that error as much as possible through a gradient descent 

algorithm (a gradient boosted tree). A popular iteration of this is extreme gradient boosting 

(XGBoost)39. A non-tree, decision-based algorithm that also functions by aggregating 

“weak” models is the k-Top Scoring Pairs (TSP) classifier. TSP methods are based on 

pairwise comparisons of feature values40, with a commonly used iteration being k-TSP that 

creates ensembles of top scoring, non-overlapping feature pairs to create model decision 

rules (e.g. expression of gene A is higher than gene B), a method that has shown similar 

efficacy to many other machine learning based methods in evaluating gene expression 

profiles41. The k-TSP method is similar to the ensemble methods used in gradient boosting 

decision trees where each new tree works to reduce the error. The difference is that each 

rule involves a comparison of two features that were not present in any prior model. An 

advantage of TSP methods is that they are based on relative values of features within one 

observation, and not absolute values, making them better suited to generalize across different 

assay platforms. A trade-off of the more complex forest-based approaches is the reduction in 

interpretability of the model.

A range of decision-based methods have been used in the development of radiation 

biomarkers. Speers et al. utilized a random forest model trained on breast cancer cell lines 

to predict SF212. Lewis et al. utilized the XGBoost algorithm to integrate multiple data 

types into a model to predict radiation response, which combined genomic, transcriptomic, 

kinetic, and thermodynamic parameters into a flux balance analysis (FBA) model42. Luxton 

et al. also used XGBoost, trained on telomere length from blood samples, before and after 

receiving 4 Gy, and used that to predict telomere length post radiation43. Weichselbaum et 

al. utilized a k-TSP model trained on cell lines to predict radioresistant and radiosensitive 

clusters20, while Sjöström et al. utilized k-TSP trained on breast cancer samples to predict in 

breast tumor recurrence after lumpectomy with/without radiation therapy9.
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Beyond Classical ML Techniques: Deep Learning—Deep learning (DL) represents 

a subset of ML methodologies that rely on multi-layered neural networks. Neural networks 

have existed for many decades, but recent advances in GPU-based processing have made 

these computationally expensive models feasible. The advantage of DL compared to other 

ML methods is its ability to model non-linear and interaction effects, perform higher order 

feature engineering, and produce excellent performance, especially on image analysis tasks. 

An example of this higher order feature engineering is in convolutional neural networks 

trained on large image databases, where an inner layer of the neural network may represent 

a square or circle feature. Prior to deep learning techniques, feature engineering had 

to be performed to include such features in a model, such as the use of radiomics in 

medical imaging prediction44, where higher-order features are extracted from images with 

mathematical formulae and then used in machine learning models. This type of feature 

engineering is similar to an unsupervised learning approach, as these intermediate radiomic 

features are created with no knowledge of the outcome of interest. DL allows for bypassing 

this step through creation of higher order features within the network that are optimized to 

the outcome of interest.

Deep learning is most advantageous in settings with very large training datasets, and thus 

has not been as popular for radiation signature development. Transfer learning is a strategy 

in deep learning that allows smaller datasets to build a model utilizing features from 

a previously trained model, which has been beneficial in radiology based deep learning 

models45, where models trained on large databases of non-radiologic images can be utilized 

to improve model prediction on radiologic images, and could be one way of overcoming 

limited sample sizes for radiation signatures. Neural networks can also be utilized in 

unsupervised learning tasks, as was used in the radiosensitivity signature developed by Chen 

et al., which utilized a neural network autoencoder for feature selection46. Finally, digital 

pathology-based DL represents an emerging technique for biomarker development47, that 

may be applicable for radiation biomarker development.

SUMMARY, CURRENT CHALLENGES, AND EMERGING TRENDS

The machine learning methodologies described herein provide a broad range of strategies 

for developing radiation tumor biomarkers, but there are some consistently used approaches 

across the literature. Most studies start with feature selection to determine what features 

to use in the biomarker, which can be done by utilizing previously curated lists of 

known biology, e.g. genes involved in pathways that are known to be involved in 

radiation response20,48, differential expression analysis29,30,32, correlative analysis8,22,34,49, 

or through feature selection as part of a modeling approach7,9,42,46,50. Next, a method 

is used to stratify patients, either through an unsupervised clustering approach19,22, a 

supervised model-based approach7–9,12,13,33, or with a combination of both20. Finally, 

independent clinical validation is the most critical step in the development of radiation 

biomarkers. Good validation datasets should include clinical samples with clearly defined 

outcomes, be independent (i.e. not used, and preferably from a different dataset altogether 

to asses generalizability) from the training set, and ideally should include patients that 

did and didn’t receive radiation or patients that had different doses. This last feature is 

critical as it distinguishes a treatment-predictive biomarker, such as identifying a benefit 
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of radiation in those classified as radiosensitive and no benefit in those classified as 

radioresistant, from prognostic biomarkers. In Table 1 we provide examples of tumor 

biomarkers that were developed with an explicit goal of modeling radiation sensitivity or 

benefit (in contrast to many of the currently on the market genomic biomarkers), focusing 

on those that have independent clinical validation. We also identify markers that have 

been statistically assessed as predictive biomarkers, defined via an interaction term between 

radiation treatment/dose and the biomarker, and adjustment for treatment selection bias.

While many radiation tumor biomarkers have been developed, none are currently used 

in the clinic. Surprisingly, there is little overlap in many of the genes used in these 

signatures6, despite many being trained on the same data and/or outcomes. A major 

challenge is the availability of high-quality datasets. A common strategy has been to 

train models on cell lines7,12,19, but these models inherently lack features from the tumor 

microenvironment, host immune system, and vasculature. Patient-derived xenografts may 

provide an opportunity to better replicate the host environment, a strategy used by Zhao 

et al. in development of their glioblastoma radiation and chemo-radiation gene signatures8, 

but xenograft development and radiation experimentation is more resource intensive than 

cell line based experimentation. Collaboration with veterinary colleagues using companion 

species with de novo tumors treated with radiation is another potential model system, though 

these genomes are not identical to humans. Clinical datasets are preferred, but typically have 

other limitations, such as the lack of robust annotation of radiation-related clinical endpoints 

such as locoregional recurrence, or a limited number of patients. Non-randomized data 

should account for clinicopathologic variables potentially leading to treatment selection bias 

(e.g. with matching, propensity adjustment, multi-variate analysis, etc.). Large, randomized 

trials represent the ideal training and validation datasets, but availability of molecular data 

is a challenge. Improvements in data sharing and availability, and integration of biomarker 

development into clinical trials are critical in advancing the development of radiation tumor 

biomarkers that will be able to provide clinical utility in radiation oncology decision making.
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Figure 1 –. Machine Learning Toolkit.
A – A model that tries to overlearn features in the training data is at risk of over-fitting 

that data and performing poorly on the testing (or validation) set. A bias term can be 

added to the model training procedure so that it performs worse on training but better on 

testing (or validation), finding a minimum point in the error difference. B – Depiction of an 

appropriate data spending schema where all modeling is performed on the training data and 

an independent validation dataset is utilized only to confirm the prediction of the model. The 

training data is further split into model building and a hold-out testing set, where resampling 

is performed only on the model building data. C – Depiction of the two most common 

resampling techniques, 10-fold cross validation (CV) and bootstrapped resampling. Note, 

CV will train on all but one partition of the data at a time, cycling through all combinations, 

while bootstrapped resampling will create N resampled groups with repeat samples so that 

every bootstrapped group matches the size of the original dataset.
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Table 1 –

Examples of Radiation Biomarkers with Independent Validation.

Signature Feature 
selection ML method Training Validation Validation 

outcome Prognostic
Predictive 

(pint 
reported)

Treatment 
selection 

bias 
corrected 

(if pint)

Weichselbaum 
2008 - IRDS20 Correlation Clustering, 

k-TSP
Breast Cancer 

Patients Breast Cancer LRC X

Piening 200919 Differential 
Expression

Hierarchical 
Clustering Cell Lines

Breast Cancer 
Patient 

Survival
OS X

Eschrich 2012 - 
RSI10

Linear 
Regression

Linear 
Regression Cell Lines

Breast Cancer 
Recurrence 

Free Survival
RFS X X None

Speers 2015 - 
RSS12 Correlation Random 

Forest Cell Lines
Breast Cancer 
Patient LRR 
and Survival

LRR and 
OS X

Zhao 2016 - 
PORTOS13

Interaction 
Terms

Ridge 
Regression

Post-operative 
Prostate 
Cancer 
Patients

Post-operative 
Prostate 
Cancer 
Patients

DM X X Matching

Sjöström2018 - 
SSP9

Random 
Forest k-TSP Breast Cancer 

Patients Breast Cancer IBTR X X None

Cui 2018 - RSS 
and IMS51

Cox 
Regression

Ridge and 
LASSO 

Regression

Breast Cancer 
Patients Breast Cancer DSS X X Matching

Sjöström2019 - 
ARTIC50

Cox 
Regression

Ridge 
Regression

Breast Cancer 
Patients Breast Cancer LRR X X RCT

Zhao 2019 - 
RT-GS and 

ChemoRT-GS8
Correlation Average Glioblastoma 

PDXs Glioblastoma OS X X MVA

Chen 202046
Neural 

Network 
Autoencoder

LASSO 
Regression

Breast Cancer 
Patients Breast Cancer OS X

Speers 202052 Correlation Elastic Net 
Regression

Breast Cancer 
Patients Breast Cancer

Early vs 
Late 

Recurrence
X

Scott 2021 - 
GARD15 See RSI Scaled RSI Cell Lines Pan-Cancer

Time to 
first 

recurrence 
and OS

X X None

Abbreviations: ML – Machine Learning, IRDS – Interferon-related DNA damage resistance signature, RSI – Radiosensitivity index, RSS – 
Radiation Sensitivity signature, PORTOS – Post-operative radiation therapy outcome score, SSP – Single sample predictor, IMS – Immune 
signature, ARTIC – Adjuvant Radiotherapy Intensification Classifier, RT-GS – Radiotherapy Gene Signature, GARD – Genome-based model for 
adjusting radiotherapy dose, MVA – Multivariate analysis, TSP – Top scoring pairs, LASSO - Least absolute shrinkage and selection operator, PDX 
– Patient-derived xenograft, LRC – Locoregional control, OS – Overall survival, RFS – Recurrence free survival, LRR – Locoregional recurrence, 
DM – Distant metastasis, IBTR – Ipsilateral breast tumor recurrence, DSS – Disease specific survival, pint – interaction p-value between receipt of 

radiotherapy and the signature, RCT – Randomized Control Trial.
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