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Abstract

It is standard practice in speech & language technology to rank systems according to performance 

on a test set held out for evaluation. However, few researchers apply statistical tests to determine 

whether differences in performance are likely to arise by chance, and few examine the stability 

of system ranking across multiple training-testing splits. We conduct replication and reproduction 

experiments with nine part-of-speech taggers published between 2000 and 2018, each of which 

reports state-of-the-art performance on a widely-used “standard split”. We fail to reliably 

reproduce some rankings using randomly generated splits. We suggest that randomly generated 

splits should be used in system comparison.

1 Introduction

Evaluation with a held-out test set is one of the few methodological practices shared across 

nearly all areas of speech and language processing. In this study we argue that one common 

instantiation of this procedure—evaluation with a standard split— is insufficient for system 

comparison, and propose an alternative based on multiple random splits.

Standard split evaluation can be formalized as follows. Let G be a set of ground truth data, 

partitioned into a training set Gtrain, a development set Gdev and a test (evaluation) set Gtest. 

Let S be a system with arbitrary parameters and hyperparameters, and let ℳ be an evaluation 

metric. Without loss of generality, we assume that ℳ is a function with domain G × S and 

that higher values of ℳ indicate better performance. Furthermore, we assume a supervised 

training scenario in which the free parameters of S are set so as to maximize ℳ(Gtrain; S), 

optionally tuning hyperparameters so as to maximize ℳ(Gdev; S). Then, if S1 and S2 are 

competing systems so trained, we prefer S1 to S2 if and only if ℳ(Gtest; S1) >ℳ(Gtest; S2).

1.1 Hypothesis testing for system comparison

One major concern with this procedure is that it treats ℳ (Gtest, S1) and ℳ (Gtest, S2) as 

exact quantities when they are better seen as estimates of random variables corresponding to 

true system performance. In fact many widely used evaluation metrics, including accuracy 

and F-score, have known statistical distributions, allowing hypothesis testing to be used for 

system comparison.
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For instance, consider the comparison of two systems S1 and S2 trained and tuned to 

maximize accuracy. The difference in test accuracy, δ = ℳ Gtest, S1 − ℳ Gtest, S2  can be 

thought of as estimate of some latent variable δ representing the true difference in system 

performance. While the distribution of δ  is not obvious, the probability that there is no 

population-level difference in system performance (i.e., δ = 0) can be computed indirectly 

using McNemar’s test (Gillick and Cox, 1989). Let n1>2 be the number of samples in Gtest 

which S1 correctly classifies but S2 misclassifies, and n2>1 be the number of samples which 

S1 misclassifies but S2 correctly classifies. When δ = 0, roughly half of the disagreements 

should favor S1 and the other half should favor S2. Thus, under the null hypothesis, n1>2 

~ Bin(n,.5) where n = n1>2 + n2>1. And, the (one-sided) probability of the null hypothesis 

is the probability of sampling n1>2 from this distribution. Similar methods can be used 

for other evaluation metrics, or a reference distribution can be estimated with bootstrap 

resampling (Efron, 1981).

Despite this, few recent studies make use of statistical system comparison. Dror et al. 

(2018) survey statistical practices in all long papers presented at the 2017 meeting of the 

Association for Computational Linguistics (ACL), and all articles published in the 2017 

volume of the Transactions of the ACL. They find that the majority of these works do not 

use appropriate statistical tests for system comparison, and many others do not report which 

test(s) were used. We hypothesize that the lack of hypothesis testing for system comparison 

may lead to type I error, the error of rejecting a true null hypothesis. As it is rarely possible 

to perform the necessary hypothesis tests from published results, we evaluate this risk using 

a replication experiment.

1.2 Standard vs. random splits

Furthermore, we hypothesize that standard split methodology may be insufficient for system 

evaluation. While evaluations based on standard splits are an entrenched practice in many 

areas of natural language processing, the static nature of standard splits may lead researchers 

to unconsciously “overfit” to the vagaries of the training and test sets, producing poor 

generalization. This tendency may also be amplified by publication bias in the sense of 

Scargle (2000). The field has chosen to define “state of the art” performance as “the best 

performance on a standard split”, and few experiments which do not report improvements on 

a standard split are ultimately published. This effect is likely to be particularly pronounced 

on highly-saturated tasks for which system performance is near ceiling, as this increases the 

prior probability of the null hypothesis (i.e., of no difference). We evaluate this risk using a 

series of reproductions.

1.3 Replication and reproduction

In this study we perform a replication and a series of reproductions. These techniques were 

until recently quite rare in this field, despite the inherently repeatable nature of most natural 

language processing experiments. Researchers attempting replications or reproductions have 

reported problems with availability of data (Mieskes, 2017; Wieling et al., 2018) and 

software (Pedersen, 2008), and various details of implementation (Fokkens et al., 2013; 

Reimers and Gurevych, 2017; Schluter and Varab, 2018). While we cannot completely avoid 

these pitfalls, we select a task—English part-of-speech tagging—for which both data and 
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software are abundantly available. This task has two other important affordances for our 

purposes. First, it is face-valid, both in the sense that the equivalence classes defined by POS 

tags reflect genuine linguistic insights and that standard evaluation metrics such as token 

and sentence accuracy directly measure the underlying construct. Secondly, POS tagging is 

useful both in zero-shot settings (e.g., Elkahky et al., 2018; Trask et al., 2015) and as a 

source of features for many downstream tasks, and in both settings, tagging errors are likely 

to propagate. We release the underlying software under a permissive license.1

2 Materials & Methods

2.1 Data

The Wall St. Journal (WSJ) portion of Penn Treebank-3 (LDC99T42; Marcus et al., 1993) 

is commonly used to evaluate English part-of-speech taggers. In experiment 1, we also use a 

portion of OntoNotes 5 (LDC2013T19; Weischedel et al., 2011), a substantial subset of the 

Penn Treebank WSJ data re-annotated for quality assurance.

2.2 Models

We attempted to choose a set of taggers claiming state-of-the-art performance at time of 

publication. We first identified candidate taggers using the “State of the Art” page for part-

of-speech tagging on the ACL Wiki.2 We then selected nine taggers for which all needed 

software and external data was available at time of writing. These taggers are described in 

more detail below.

2.3 Metrics

Our primarily evaluation metric is token accuracy, the percentage of tokens which are 

correctly tagged with respect to the gold data. We compute 95% Wilson (1927) score 

confidence intervals for accuracies, and use the two-sided mid-p variant (Fagerland et al., 

2013) of McNemar’s test for system comparison. We also report out-of-vocabulary (OOV) 

accuracy—that is, token accuracy limited to tokens not present in the training data—and 

sentence accuracy, the percentage of sentences for which there are no tagging errors.

3 Results

Table 1 reports statistics for the standard split. The OntoNotes sample is slightly smaller as it 

omits sentences on financial news, most of which is highly redundant and idiosyncratic. 

However, the entire OntoNotes sample was tagged by a single experienced annotator, 

eliminating any annotator-specific biases in the Penn Treebank (e.g., Ratnaparkhi, 1997, 

137f.).

1 http://github.com/kylebgorman/SOTA-taggers 
2 http://aclweb.org/aclwiki/State_of_the_art 
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3.1 Models

Three models—SVMTool (Giménez and Màrquez, 2004), MElt (Denis and Sagot, 2009), 

and Morče/COMPOST (Spoustová et al., 2009)— produced substantial compilation or 

runtime errors. However, we were able to perform replication with the remaining six models:

• TnT (Brants, 2000): a second-order (i.e., trigram) hidden Markov model with a 

suffix-based heuristic for unknown words, decoded with beam search

• Collins (2002) tagger: a linear model, features from Ratnaparkhi (1997), 

perceptron training with weight averaging, decoded with the Viterbi algorithm3

• LAPOS (Tsuruoka et al., 2011): a linear model, features from Tsuruoka et al. 

(2009) plus first-order lookahead, perceptron training with weight averaging, 

decoded locally

• Stanford tagger (Manning, 2011): a log-linear bidirectional cyclic dependency 

network, features from Toutanova et al. (2003) plus distributional similarity 

features, optimized with OWL-QN, decoded with the Viterbi algorithm

• NLP4J (Choi, 2016): a linear model, dynamically induced features, a hinge loss 

objective optimized with AdaGrad, decoded locally

• Flair (Akbik et al., 2018): a bidirectional long short-term memory (LSTM) 

conditional random fields (CRF) model, contextual string embedding features, 

a cross-entropy objective optimized with stochastic gradient descent, decoded 

globally

3.2 Experiment 1: Replication

In experiment 1, we adopt the standard split established by Collins (2002): sections 00–

18 are used for training, sections 19–21 for development, and sections 22–24 for testing, 

roughly a 80%−10%−10% split. We train and evaluate the six remaining taggers using this 

standard split. For each tagger, we train on the training set and evaluate on the test set. 

For taggers which support it, we also perform automated hyperparameter tuning on the 

development set. Results are shown in Table 2. We obtain exact replications for TnT and 

LAPOS, and for the remaining four taggers, our results are quite close to previously reported 

numbers. Token accuracy, OOV accuracy, and sentence accuracy give the same ranking, one 

consistent with published results. For Penn Treebank, McNemar’s test on token accuracy 

is significant for all pairwise comparisons at α = .05; for OntoNotes, one comparison is 

non-significant: LAPOS vs. Stanford (p = .1366).

3.3 Experiment 2: Reproduction

We now repeat these analyses across twenty randomly generated 80%–10%–10% splits. 

After Dror et al. (2017), we use the Bonferroni procedure to control familywise error rate, 

the probability of falsely rejecting at least one true null hypothesis. This is appropriate 

insofar as each individual trial (i.e, evaluation on a random split) has a non-trivial statistical 

dependence on other trials. Table 3 reports the number of random splits, out of twenty, 

3We use an implementation by Yarmohammadi (2014).
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where the McNemar test p-value is significant after the correction for familywise error 

rate. This provides a coarse estimate of how often the second system would be likely to 

significantly outperform the first system given a random partition of similar size. Most of 

these pairwise comparisons are stable across random trials. However, for example, Stanford 

tagger is not a significant improvement over LAPOS for nearly all random trials, and in 

some random trials—two for Penn Treebank, fourteen for OntoNotes—it is in fact worse. 

Recall also that the Stanford tagger was also not significantly better than LAPOS for 

OntoNotes in experiment 1.

Figure 1 shows token accuracies across the two experiments. The last row of the figure gives 

results for an oracle ensemble which correctly predicts the tag just in case any of the six 

taggers predicts the correct tag.

3.4 Error analysis

From experiment 1, we estimate that the last two decades of POS tagging research has 

produced a 1.28% absolute reduction in token errors. At the same time, the best tagger 

is 1.16% below the oracle ensemble. Thus we were interested in disagreements between 

taggers. We investigate this by treating each of the six taggers as separate coders in a 

collaborative annotation task. We compute per-sentence inter-annotator agreement using 

Krippendorff’s α (Artstein and Poesio, 2008), then manually inspect sentences with the 

lowest α values, i.e., with the highest rate of disagreement. By far the most common source 

of disagreement are “headline”-like sentences such as Foreign Bonds. While these sentences 

are usually quite short, high disagreement is also found for some longer headlines, as in the 

example sentence in table 4; the effect seems to be due more to capitalization than sentence 

length. Several taggers lean heavily on capitalization cues to identify proper nouns, and thus 

capitalized tokens in headline sentences are frequently misclassified as proper nouns and 

vice versa, as are sentence-initial capitalized nouns in general. Most other sentences with 

low α have local syntactic ambiguities. For example, the word lining, acting as a common 

noun (NN) in the context …a silver ——for the…, is mislabeled as a gerund (VBG) by two 

of six taggers.

4 Discussion

We draw attention to two distinctions between the replication and reproduction experiments. 

First, we find that a system judged to be significantly better than another on the basis of 

performance on the standard split, does not in outperform that system on re-annotated data 

or randomly generated splits, suggesting that it is “overfit to the standard split” and does 

not represent a genuine improvement in performance. Secondly, as can be seen in figure 1, 

overall performance is slightly higher on the random splits. We posit this to be an effect 

of randomization at the sentence-level. For example, in the standard split the word asbestos 
occurs fifteen times in a single training set document, but just once in the test set. Such 

discrepancies are far less likely to arise in random splits.

Diversity of languages, data, and tasks are all highly desirable goals for natural language 

processing. However, nothing about this demonstration depends on any particularities of the 

English language, the WSJ data, or the POS tagging task. English is a somewhat challenging 
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language for POS tagging because of its relatively impoverished inflectional morphology 

and pervasive noun-verb ambiguity (Elkahky et al., 2018). It would not do to use these 

six taggers for other languages as they are designed for English text and in some cases 

depend on English-only external resources for feature generation. However, random split 

experiments could, for instance, be performed for the subtasks of the CoNLL-2018 shared 

task on multilingual parsing (Zeman et al., 2018).

We finally note that repeatedly training the Flair tagger in experiment 2 required substantial 

grid computing resources and may not be feasible for many researchers at the present time.

5 Conclusions

We demonstrate that standard practices in system comparison, and in particular, the use of a 

single standard split, may result in avoidable Type I error. We suggest that practitioners who 

wish to firmly establish that a new system is truly state-of the-art augment their evaluations 

with Bonferroni-corrected random split hypothesis testing.

It is said that statistical praxis is of greatest import in those areas of science least informed 

by theory. While linguistic theory and statistical learning theory both have much to 

contribute to part-of-speech tagging, we still lack a theory of the tagging task rich enough 

to guide hypothesis formation. In the meantime, we must depend on system comparison, 

backed by statistical best practices and error analysis, to make forward progress on this task.
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Figure 1: 
A visualization of Penn Treebank token accuracies in the two experiments. The whiskers 

shows accuracy and 95% confidence intervals in experiment 1, and shaded region represents 

the range of accuracies in experiment 2.
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Table 1:

Summary statistics for the standard split.

# Sentences # Tokens

Penn Treebank

Train. 38,219 912,344

Dev. 5,527 131,768

Test. 5,462 129,654

OntoNotes

Train. 28,905 703,955

Dev. 4,051 99,441

Test 4,059 98,277
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Table 3:

The number of random trials (out of twenty) for which the second system has significantly higher token 

accuracy than the first after Bonferroni correction. PTB, Penn Treebank; ON, OntoNotes.

PTB ON

TnT vs. Collins 20 20

Collins vs. LAPOS 20 7

LAPOS vs. Stanford 1 0

Stanford vs. NLP4J 19 20

NLP4J vs. Flair 20 20
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