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Abstract
Incidental adrenal masses are seen in 5% of abdominal computed tomography (CT) examinations. Accurate discrimination 
of the possible differential diagnoses has important therapeutic and prognostic significance. A new handcrafted machine 
learning method has been developed for the automated and accurate classification of adrenal gland CT images. A new dataset 
comprising 759 adrenal gland CT image slices from 96 subjects were analyzed. Experts had labeled the collected images 
into four classes: normal, pheochromocytoma, lipid-poor adenoma, and metastasis. The images were preprocessed, resized, 
and the image features were extracted using the center symmetric local binary pattern (CS-LBP) method. CT images were 
next divided into 16 × 16 fixed-size patches, and further feature extraction using CS-LBP was performed on these patches. 
Next, extracted features were selected using neighborhood component analysis (NCA) to obtain the most meaningful ones 
for downstream classification. Finally, the selected features were classified using k-nearest neighbor (kNN), support vec-
tor machine (SVM), and neural network (NN) classifiers to obtain the optimum performing model. Our proposed method 
obtained an accuracy of 99.87%, 99.21%, and 98.81% with kNN, SVM, and NN classifiers, respectively. Hence, the kNN 
classifier yielded the highest classification results with no pathological image misclassified as normal. Our developed fixed 
patch CS-LBP-based automatic classification of adrenal gland pathologies on CT images is highly accurate and has low 
time complexity O(w × h + k) . It has the potential to be used for screening of adrenal gland disease classes with CT images.
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Introduction

Background

Adrenal lesions are not infrequently encountered in prac-
tice due to the ubiquitous use of cross-sectional diagnos-
tic imaging. In addition, some adrenal lesions actively 
secrete hormones and manifest clinical symptoms and 
abnormal results on biochemical and endocrine function 
tests that draw attention to the diagnosis. In contrast, 
non-functioning adrenal masses can remain clinically 
dormant and present only as incidental findings on CT 
(“incidentalomas”). Indeed, adrenal masses are reported 
in approximately 5% of patients undergoing abdomen 
computed tomography (CT) examination [1].

Lipid-poor adenomas, pheochromocytomas, and metas-
tases share similar CT morphological features and defy easy 
differentiation [2, 3]. To improve the diagnostic discrimina-
tion, it may be necessary to administer contrast media or 
use alternative modalities like magnetic resonance imaging 
(MRI), which offers more granular tissue characterization 
[2, 3]. Adrenal adenoma, the commonest adrenal tumor, 
may either be lipid-poor or, more frequently, lipid-rich [4]. 
Detection of intracellular lipids on CT or MRI reliably iden-
tifies the former [5], making it less of a diagnostic challenge. 
Unlike the rapid flushing of contrast media seen with lipid-
poor adenoma, adrenal metastases tend to retain contrast and 
become enhanced. Pheochromocytomas are rare tumors aris-
ing from the adrenal medulla that occur either sporadically 
or as part of hereditary syndromes. While CT can help locate 
the pheochromocytoma and delineate local invasion or 
metastasis, it cannot definitively discriminate between pheo-
chromocytoma and lipid-poor adenoma as both demonstrate 
similar tissue signals and rapid contrast washout behaviors 
[6, 7]. Pheochromocytoma can be catecholamine-secreting 
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or non-secreting. The former is associated with characteristic 
symptomatic paroxysms and even life-threatening hyperten-
sive crises requiring early curative surgery. Both secreting 
and non-secreting pheochromocytomas have the potential for 
malignant transformation [8], underscoring the importance 
of accurate imaging diagnosis and continued surveillance. 
The adrenal glands are common sites for metastasis. Careful 
evaluation of adrenal masses in cancer patients is imperative 
as diagnostic confirmation of adrenal metastases will upend 
prognosis and treatment [9]. Features that distinguish malig-
nant from benign adrenal masses include the presence of 
calcification, necrosis, hemorrhage, intracytoplasmic lipid, 
locoregional and distant disease, and, as mentioned, contrast 
enhancement.

The subtle permutations of tissue signals and morpho-
logical differences seen among the various types of adrenal 
lesions render them eminently amenable to machine learn-
ing (ML)-based classification. In [10], an ML model that 
performed texture analysis of CT images attained an average 
accuracy of 82% for differentiating between adrenal adeno-
mas and carcinomas. In [11], another ML model using an 
ensemble extra tree classifier achieved 91% classification 
accuracy for indeterminate solid adrenal lesions. Moawad 
et al. [12] applied ML-based texture analysis to a dataset 
comprising CT images from 40 indeterminate small adre-
nal tumors. They reported 85% area under the curve, 84.2% 
sensitivity, and 71.4% specificity with their method. Romeo 
et al. [13] developed a model with a J48 classifier for texture 
analysis of MRI images and achieved 80% diagnostic classi-
fication accuracy for lipid-rich, lipid-poor, and non-adenoma 
adrenal lesions. Yi et al. [14] used texture analysis to differ-
entiate between lipid-poor adenoma and pheochromocytoma 
in a dataset of CT images derived from 108 patients with 
adrenal incidentalomas. The model achieved 94.4% accu-
racy, 86.2% sensitivity, and 97.5% specificity. The number 
of ML studies in the literature on adrenal masses is limited; 
most of them are based predominantly on texture analysis. In 
this study, a highly accurate model was developed to classify 
adrenal masses using an innovative patch-based operation to 
generate more image features, and the model was tested on 
a new CT dataset.

Motivation and our Method

Nowadays, deep learning (DL) and ML-based methods are 
approaches used in many classification problems [15, 16]. 
ML-based biomedical image classification has become a 
popular area of research [17–20]. Computer-aided diagno-
sis systems have been increasingly used in diverse health-
care applications [21, 22]. In this study, a new handcrafted 
ML method was developed for the automatic classifica-
tion of adrenal gland images that was inspired by image 
division-based methods like vision transformer (ViT) [23] 

and multilayer perceptron mixer (MLP-Mixer) [24], which 
have yielded excellent performances in the field of com-
puter vision. The model developed in this study has lower 
computational complexity than other models using DL 
[25]. First, regions of interest (ROI) were automatically 
segmented from the acquired raw images to delineate the 
boundaries of the body section showing the adrenal glands. 
The segmented images were then divided into fixed-size 
patches, and feature extraction was performed on each patch 
using the fast and simple center symmetric local binary pat-
tern (CS-LBP) method. The neighborhood component anal-
ysis (NCA) [26], a well-known feature selection function, 
was then applied to the resultant feature vector. The most 
significant and distinctive features were thus selected, and 
the size of the feature vector was reduced. Next, the selected 
features were classified using standard classifier k-nearest 
neighbor (kNN) [27], support vector machine (SVM) [28, 
29], and neural network (NN) [30]. Among these, kNN and 
SVM [31] were optimizable, and Bayesian optimization 
[32] was used to determine their hyperparameters. All three 
classifiers were developed using ten-fold cross-validation 
(CV) with 100 iterations.

Main Contributions

The main contributions of this handcrafted patch-based CS-
LBP model are given below:

•	 Feature extraction was applied to the main image and 
divided fixed-size 16 × 16 patches. The feature extraction 
in this study is different than standard LBP [33]. Instead 
of neighboring pixels, symmetrical pixels were taken into 
account, which might have contributed to the success of 
our method.

•	 All three different classifiers achieved at least 98% accu-
racy, which attests to the fidelity of the upstream feature 
extraction.

•	 A new CT dataset was specially acquired and used in this 
study. This dataset has been published at https://​www.​
kaggle.​com/​turke​rtunc​er/​surre​nal-​image-​datas​et.

•	 The handcrafted ML model has low time complexity, an 
important consideration for remote and real-time clinical 
applications.

Materials and Methods

Material

From CT examinations of 96 unique subjects who attended 
the Firat University Hospital, we collected 759 transverse 
cross-sectional image slices that contained views of the 
adrenal glands. These images were reviewed by medical 

https://www.kaggle.com/turkertuncer/surrenal-image-dataset
https://www.kaggle.com/turkertuncer/surrenal-image-dataset
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specialists and categorized into four classes: normal, pheo-
chromocytoma, lipid-poor adenoma, and metastasis. Lipid-
rich adenomas were not studied as they do not pose a diag-
nostic challenge. The dataset is downloadable from https://​
www.​kaggle.​com/​turke​rtunc​er/​surre​nal-​image-​datas​et. 
Details of the dataset are summarized in Table 1. Typical 
images of all classes are shown in Fig. 1.

CS‑LBP‑Based Automatic Adrenal Gland 
Classification Model

The model consists of five steps: image segmentation; CS-
LBP-based feature extraction; feature concatenation; feature 
selection with NCA; and classification using kNN, SVM, 
and NN. These steps are explained in the subsequent sec-
tions. First, a schematic representation of the model is shown 
in Fig. 2, and the pseudocode is given in Algorithm 1.

Herein, each image in the dataset is resized (224 × 224). 
The resized image is divided into 16 × 16 patches. (In other 
words, the 224 × 224 image was divided into small non-
overlapping 16 × 16 images.) The main image and patches 
(a total of 196 patches) are given as input to the CS-LBP-
based feature extractor. CS-LBP generates 16 features per 
image. A total of 3152 features are generated from the 
main image and patches (16 features from main images and 
3136 features from patches). This process is done for 759 
images in the dataset. A feature vector of size 759 × 3152 
is obtained. The NCA algorithm is applied to this feature 
vector, and the 160 most distinctive features are selected. 
Finally, the selected features are classified.

Segmentation

This model was developed based on ViT and MLP-Mixer, 
and a preprocessing step was applied to crop every raw 
transverse CT image to the limits of the body section that 
contained the adrenal glands. The region of interest (ROI)-
based image segmentation consisted of simple steps (Fig. 3) 
that had been chosen for their low complexity. First, the 
raw CT image was converted to grayscale. Next, a 25 × 25 
median filter was applied. The boundaries were then deter-
mined using the thresholding method, and the image was 

segmented according to the boundaries. Finally, the seg-
mented image was resized to 224 × 224.

The preprocessing steps are given below.

Step 0: Read CT images from the dataset.
Step 1: Apply ROI-based segmentation to the raw image.
Step 2: Resize the CT image to a 224 × 224-sized image.

Feature Extraction with the CS‑LBP Method and Feature 
Concatenation

CS-LBP is an interest region descriptor that has high accu-
racy, especially in flat image areas. Instead of comparing 
each pixel value with the center pixel, it is compared with 
the symmetrically opposite pixel. The signum function is 
used in the comparison process. A block diagram summa-
rizing this method is given in Fig. 4, and the pseudocode in 
Algorithm 2.

Table 1   The details of the 
dataset (759 images) used

Feature Value

Image type Computed tomography
Sex 59 males; 37 females
Age, years (range) 55.85 ± 15.2 (23–85)
Date range 01.12.2020 to 01.12.2021
Class (number of CT images) 0, normal (314); 1, pheochromocytoma (122); 

2, lipid-poor adenomas (174); 3, metastasis 
(149)

(a) Normal (b) Pheochromocytoma

(c) Lipid-poor Adenoma (d) Metastasis

Fig. 1   Sample adrenal gland images from all classes

https://www.kaggle.com/turkertuncer/surrenal-image-dataset
https://www.kaggle.com/turkertuncer/surrenal-image-dataset
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The CS-LBP method extracted 16 features from each 
resized 224 × 224 image. Next, the latter was divided into 
196 fixed-size 16 × 16 patches, and features were extracted 
from each patch using the CS-LBP method. The steps of the 
feature extraction process are given below.

Step 3: Extract 16 features from a resized segmented 
image by using the CS-LBP method.
Step 4: Divide 16 × 16-sized patches into the image.

(1)

Patchk = image(i + t − 1, j + m − 1), i ∈ {1,17,33,… ,w},

j ∈ {1,17,33,… , h}t ∈ {1,2,… , 16},m ∈ {1,2,… , 16},

k ∈

{

1,2,… ,
w × h

162

}

where Patchk is the kth patch, i and j describe the indices 
of the image, and w and h are the number of rows and 
columns of the resized image.
Step 5: Extract 16 features from each patch by using 
CS-LBP (Algorithm 2).where featall is the feature vec-
tor, featmain is the feature of the resized image from the 
first step, and “ + ” symbol denotes the concatenation 
operation. In this step, 16 features were obtained from 
the main image and 3136 (196 patches × 16 features) from 
the patches. Thus, a total of 3152 features were obtained.
Step 6: Concatenate features of each patch to obtain fea-
tures.

where featall is the feature vector, featmain is the feature 
of the resized image from the first step, and “ + ” symbol 
denotes the concatenation operation. In this step, 16 fea-
tures were obtained from the main image and 3136 (196 
patches × 16 features) from the patches. Thus, a total of 
3152 features were obtained.

Neighborhood Component Analysis‑Based Feature 
Selection

Feature selection optimizes classification performance by 
selecting the most distinctive features and reducing model 
computational costs. The NCA [26] is a supervised feature 
selection algorithm that aims to maximize the prediction 
accuracy of classification algorithms. This algorithm is a 
feature selection version of the kNN algorithm and works 

(2)featall = featmain + Patch1 + Patch2 +⋯ + Patchk

Fig. 2   Schematic overview 
of the patch-based CS-LBP 
technique

Algorithm 1   Pseudocode of the proposed CS-LBP-based model
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based on distance. The NCA algorithm takes the feature 
vector (predictors) and responses (labels) as input param-
eters and calculates the weight of each feature column. 
It uses the Stochastic Gradient Descent (SGD) algorithm 
to estimate feature weights and generates only positive 
weight values. This is because higher weights imply more 
meaningful features. In this paper, 160 features with the 
highest weight values were selected from the extracted 
3152 features from each image. The weight of the top 160 
features with the highest rank is shown in Fig. 5. The 160 
features were determined by prior trial and error.

Step 7: Select features with NCA.

(3)
weightsNCA = NCA(featall)

ind = argsort(weightsNCA, descending)

sf (i) = featall(ind(i)), i ∈ {1, 2, 3,… , 160}

where weightsNCA denotes the weights of features, ind 
shows an index of the sorted qualified features, and sf  
means the selected features.

Classification

We tested the model performance using kNN [27], SVM [28, 
29], and NN classifiers [30]. Ten-fold CV was used in all experi-
ments with 100 iterations. The classification step is given below.

Step 8: Classify the selected features using kNN, SVM, 
and NN with a 10-fold CV.

Fig. 3   ROI-based image seg-
mentation steps

(a) Raw CT image (b) RGB2Gray (c) Median filter

(d) Threshold and detect boundaries (e) Segmented image

Fig. 4   CS-LBP features for neighboring 8 pixels Algorithm 2   CS-LBP procedure
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For the NN classifier, we have used rectified linear unit 
(ReLU) activation function with a layer size of 25. For the 
optimizable classifiers kNN and SVM, Bayesian optimiza-
tion [32] was used to select the best hyperparameters. The 
hyperparameters are indicated in Table 2. Bayesian optimi-
zation produces results according to the minimum misclas-
sification rate. The minimum classification error changes of 
kNN and SVM classifiers are given in Fig. 6.

Performance Analysis

Experimental Setup

The model was implemented on the MATLAB 2021a plat-
form, and MATLAB Classification Learner Toolbox was 
used in the classification process. The experiments were run 
on a personal computer with i5 7th-generation 7400 3.00-
GHz CPU, 8-GB RAM, and 120-GB HDD on Windows 10 
Pro operating system.

Fig. 5   The weights of the features selected with the NCA algorithm

Table 2   Hyperparameter search ranges of kNN and SVM classifiers

Feature Value Feature Value

Classifier type kNN Classifier type SVM
Number of neighbors 1–380 Multiclass method One-vs-all, One-vs-one
Distance metric City block, Chebyshev, Correlation, Cosine, Euclidean, 

Hamming, Jaccard, Mahalanobis, Cubic, Spearman
Box constraint level 0.001–1000

Distance weight Equal, Inverse, Squared inverse Kernel scale 0.001–1000
Iteration 30 Kernel function Gaussian, Linear, Quadratic, Cubic

(a) (b)

Fig. 6   Hyperparameter search results of classifiers
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Results

Confusion matrices were generated for all classifiers. Per-
formance metrics, namely, accuracy, sensitivity, specific-
ity, precision, F-measure, and geometric mean values, 
were obtained using true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN) rates. Equa-
tions (4)–(9) [34, 35] were used to compute the perfor-
mance parameters.

The model achieved excellent performance with all clas-
sifiers (Table 3), and kNN classifier outperforming the rest.

Confusion matrices obtained using kNN, SVM, and NN 
are shown in Figs. 7, 8, and 9, respectively. Again, all three 
classifiers demonstrated excellent accuracy with minimal 
misclassifications. However, kNN was the only one that did 
not mislabel any pathological adrenal mass as normal.

We have calculated the training and validation curve of 
the proposed model using the NN classifier. The number of 
iterations is equal to 1000, and this cure is demonstrated in 
Fig. 10.

Figure 10 demonstrates that there is no overfitting and the 
last validation accuracy is 98.81%.

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)Sensitivity = recall =
TP

TP + FN

(6)Specifity =
TN

FP + TN

(7)Precision =
TP

TP + FP

(8)Fmeasure =
2 × precision × recall

precision + recall

(9)Geometricmean =
√

sensitivity × specifity

Discussion

CT provides important diagnostic information to clinicians 
that will help manage patients’ medical problems. However, 
CT’s comprehensive cross-sectional anatomical coverage 
often uncovers incidental findings that may not be related to 
the primary medical complaint. Adrenal incidentalomas are 
not uncommon, and there is a clinical need for its accurate 

Table 3   Performance metric values for all classifiers

Metrics Classifiers

kNN (%) SVM (%) NN (%)

Accuracy 99.87 99.21 98.81
Sensitivity 99.92 99.15 98.80
Specificity 99.96 99.68 99.57
Precision 99.83 99.44 98.91
F-measure 99.88 99.30 98.86
Geometric mean 99.94 99.42 99.18

Fig. 7   Confusion matrix for kNN classifier

Fig. 8   Confusion matrix for SVM classifier
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pathological classification from among possible differen-
tial diagnoses. Prior research based on texture analysis has 
yielded fair to good classification performance for binary 
and multiclass classification combinations of adrenal pathol-
ogies. However, there still exists some risk of missing seri-
ous pathologies.

This study developed a new ML model for the four-class 
classification of adrenal lesions using CT images. The model 
achieved excellent performance when tested on a new data-
set acquired and carefully annotated by medical experts for 

the study. Important steps of the model include (1) image 
preprocessing involving ROI-based image segmentation 
to remove extraneous data outside the body contour in the 
image slices that contain cross-sectional views of the adrenal 
glands; (2) CS-LBP function that extracted features from 
the main image as well as 16 × 16 fixed-size patches derived 
from the main image to construct a concatenated feature 
vector of length 3152; (3) NCA to select the 160 most dis-
tinctive features; and (4) classification. The best result of 
99.87% accuracy was obtained using the kNN algorithm 
with Bayesian optimization of hyperparameters. A 10-fold 
CV with 500 iterations was performed to ensure the model’s 

Fig. 9   Confusion matrix for NN classifier

Fig. 10   Training and validation curve of the NN classifier

Fig. 11   Validation accuracies for each iteration

Fig. 12   Confusion matrix for 80:20 hold-out validation
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classification performance. The validation accuracies of this 
test process are given in Fig. 11.

As given in Fig. 11, the developed model reached the 
highest validation accuracy in the first 100 iterations. 
Therefore, the number of iterations is set to 100. In addi-
tion to the 10-fold CV strategy, the 80:20 hold-out valida-
tion strategy was tested in the study. The developed model 
reached 100% classification accuracy in 80:20 hold-out 
validation. The confusion matrix obtained for this test is 
given in Fig. 12.

In the feature selection phase of the developed model, 
4 different feature selectors (ReliefF, mRMR, NCA, and 
LASSO) were tested, and NCA was chosen as the best fea-
ture selector. A block diagram of this test process is given 
in Fig. 13.

To demonstrate the performance of the patch-based CS-
LBP method proposed in this study, the main image-, patch 
image-, and main image + patch (our proposal)-based test 
were performed. The test results are presented in Fig. 14.

As can be seen from Fig. 13, the main + patch image-
based solution achieved the best classification accuracy. 
In addition, Fig. 13 shows the performance of the CSLBP 
method. The CSLBP method has achieved over 85% accu-
racy, even in the main image scenario. In addition, the devel-
oped model was tested in different patch sizes and the best 
patch size was determined as 16 × 16. The results obtained 
for different patch sizes are given in Fig. 15.

The CSLBP feature extraction method is similar to the 
LBP feature extraction procedure [36, 37]. However, CS-
LBP extracts fewer features (16 features), and these features 
are significant. We have used a patch-based model. Many 
features have been extracted since we used each patch for 
feature extraction. This situation causes high time complex-
ity in the feature selection side. Therefore, we need fewer 
and more significant features. To reach this aim, we have 
used CS-LBP. Comparing CSLBP and LBP feature extrac-
tion for similar test scenarios, the accuracy value obtained 
is 99.87% and 99.34%, respectively, and CSLBP achieved a 
0.5% higher classification result than LBP.

Fig. 13   The performance of feature selectors

Fig. 14   Performance com-
parison of only main image 
(224 × 224), patch images 
(16 × 16), and main + patch 
images (our method). Sixteen 
features are extracted from the 
main image with the CSLBP 
method. For this reason, the 
NCA algorithm was not used in 
the classification scenario for 
the main images. In the patch 
image classification scenario, 
3136 features were extracted 
and 160 features were selected 
with NCA

0
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In our model, there is only one misclassified observation, 
and it is shown in Fig. 16.

Figure 16 demonstrates that the reason for the misclassi-
fication is the color. Generally, metastasis images have light-
colored structure. This image is light-colored. Therefore, the 
proposed model predicted this image as metastasis.

As can be seen from Fig. 16, there is one misclassified 
observation. Therefore, the proposed model attained 99.87% 
classification accuracy with 10-fold cross-validation. Using 

this validation, 100% classification accuracy was attained for 
9-folds. Only fold 3 attained less than 100% accuracy. Fold-
wise classification accuracies are shown in Fig. 17.

In this dataset, there are 759 images. The kNN classifier 
uses 76 observations for 9 folds (except for fold 3), and 75 
observations have been used in fold 3. There is one misclas-
sified observation in fold 3. Therefore, the classification 
accuracy of this fold is equal to 

(

74

75
≅ 98.67%

)

.

Fig. 15   Classification results for 
different patch sizes

Fig. 16   The misclassified image. Real label: normal, predicted label: 
metastasis Fig. 17   Fold-wise classification accuracies of the kNN classifier
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The methods used in this handcrafted ML model are 
simple and effective. We believe that a major contributor to 
the high performance lies in its patch-based operation. By 
dividing the main image into numerous fixed-size patches 
and performing secondary feature extraction on them using 
the same CS-LBP function, we could generate a large 
feature vector for downstream feature selection and clas-
sification. Compared with popular standard deep learning 
approaches, our method has a low computational complexity 
of O(wxh + k) (Table 4) without compromising accuracy, 
which is an important consideration for clinical adoption of 
the model as a high-throughput CT image screening tool.

The time complexity of the proposed model is 
O(w × h + m × n × t + k + d).

We have compared our developed model with other state-
of-the-art techniques for automated adrenal disease classifi-
cation systems using CT images in Table 5.

Table 4   Time complexity of the CS-LBP-based automatic classifica-
tion model

w and h are the width and height of the raw CT image, respectively. 
m and n are the width and height of the patches, respectively. For the 
developed model, m and n are 16 . t  is the number of patches. k is the 
size of the feature vector, and d is the size of the selected features

Step Time cost

ROI-based segmentation O(w × h)

Image resizing O(w × h)

Divide patches into adrenal 
gland image

O(w × h)

Feature extraction with CS-
LBP from each patch

O(m × n × t)

Feature concatenation O(k)

Feature selection O(k)

Classification O(d)

Total O(3 × w × h + m × n × t + 2k + d)

Table 5   Comparison of our developed model with other automated adrenal lesion classification systems using CT images

Study Method Number of classes Purpose Subjects Performance matrices 
(%)

Elmohr et al. 
[10]

Intensity- and geometry-based texture 
feature extraction and random forest 
classifier

2 (tumor and control) Differentiating large 
adrenal cortical 
tumors

54 Accuracy: 82.00
Sensitivity: 81.00
Specificity: 83.00

Stanzione 
et al. [11]

Radiomic feature extraction, recursive 
feature selection, and extra tree 
classification

2 (solid lesion and 
control)

Classifying indeter-
minate solid adrenal 
lesions

55 Precision: 92.00
Recall: 91.00
F1-score: 91.00

Yi et al. [38] Radiomic feature extraction, Lasso 
feature selection

2 (lipid-poor adenoma 
and subclinical pheo-
chromocytoma)

Differentiating pheo-
chromocytoma and 
lipid-poor adenoma 
in adrenal inciden-
talomas

265 AUC: 90.70

Moawad et al. 
[12]

Texture feature extraction, recursive 
feature elimination, and random 
forest classification

2 (lesion and control) Differentiating indeter-
minate small adrenal 
tumors

181 AUC: 85.00
Sensitivity: 84.20
Specificity: 71.40

Yi et al. [14] Texture feature extraction, feature 
selection, and logistic multiple-
regression classification

2 (subclinical pheo-
chromocytoma and 
lipid-poor adenoma)

Differentiating pheo-
chromocytoma and 
lipid-poor adenoma 
in adrenal inciden-
talomas

108 Accuracy: 94.40
Sensitivity: 86.20
Specificity: 97.50

Robinson-
Weiss et al. 
[39]

Deep learning-based segmentation 
and classification

2 (normal and adrenal 
masses)

Adrenal gland segmen-
tation and normal/
adrenal mass clas-
sification

251 and 
991

Development dataset
Dice: 0.80 (normal)
0.84 (masses)
Sensitivity: 83
Specificity: 89
Test dataset
Dice: 0.89 (normal)
0.89 (masses)
Sensitivity: 69
Specificity: 91

Our method Image segmentation, texture feature 
extraction using exemplar CS-
LBP, NCA-based feature selection, 
hyperparameter-tuned kNN clas-
sification

4 (normal, pheochro-
mocytoma, lipid-
poor adenoma, and 
metastasis)

Classifying adrenal 
gland lesions

96 Accuracy: 99.87
Sensitivity: 99.92
Specificity: 99.96
Precision: 99.83
F-measure: 99.88
Geometric mean: 99.94
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It can be noted from Table 5 that the presented exemplar 
CS-LBP-based model attained the highest classification per-
formance of more than 99% with 96 subjects. These results 
(see Table 5) denote that the presented model scored the 
highest in classifying four classes (the rest are two classes). 
Our proposed fixed patch-batched operation captured minute 
features from the CT images and contributed to the highest 
classification results. Also, hyperparameter optimization has 
increased the classification ability of the used kNN and SVM 
classifiers.

The highlights of this study are as follows:

•	 A new four-class dataset has been created to study the 
classification of adrenal gland lesions.

•	 The new patch-based CS-LBP feature extraction 
approach demonstrated uniform success with a classi-
fication accuracy of 99.87%, 99.21%, and 98.81% using 
kNN, SVM, and NN classifiers, respectively.

•	 The patch-based operation with the ML method will 
highlight the subtle features without increasing the time 
complexity. Hence, our proposed method is efficient.

•	 A 10-fold CV with 100 iterations was performed to 
ensure the robustness of the model.

•	 The model’s excellent classification performance and low 
time complexity support its adoption as an efficient triage 
for high-throughput screening of voluminous CT image 
data to improve radiologists’ workflow. In addition, the 
undemanding computational requirements favor its appli-
cation for remote expert consultation.

Conclusions

This study developed a new handcrafted ML model for 
automatically classifying adrenal gland CT images into 
four clinically relevant labels: normal, pheochromocytoma, 
lipid-poor adenoma, and metastasis. The CT images were 
divided into 16 × 16 fixed-size patches, and feature extrac-
tion was performed using the CS-LBP method. Extracted 
features were chosen using NCA and classified using the 
kNN classifier to obtain the optimum-performing model. 
Our proposed method obtained the best classification accu-
racy of 99.87% with low computational complexity. The 
limitation of this study is that we have used only 96 subjects 
(59 males, 37 females). In the future, we plan to validate 
our proposed system with more subjects belonging to four 
classes (normal, pheochromocytoma, lipid-poor adenoma, 
and metastasis).

Data Availability  The public data presented in this study are available 
from https://​www.​kaggle.​com/​turke​rtunc​er/​surre​nal-​image-​datas​et.
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