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Abstract

Using computer vision through artificial intelligence (Al) is one of the main technological advances in dentistry. However, the
existing literature on the practical application of Al for detecting cephalometric landmarks of orthodontic interest in digital
images is heterogeneous, and there is no consensus regarding accuracy and precision. Thus, this review evaluated the use
of artificial intelligence for detecting cephalometric landmarks in digital imaging examinations and compared it to manual
annotation of landmarks. An electronic search was performed in nine databases to find studies that analyzed the detection
of cephalometric landmarks in digital imaging examinations with Al and manual landmarking. Two reviewers selected the
studies, extracted the data, and assessed the risk of bias using QUADAS-2. Random-effects meta-analyses determined the
agreement and precision of Al compared to manual detection at a 95% confidence interval. The electronic search located
7410 studies, of which 40 were included. Only three studies presented a low risk of bias for all domains evaluated. The
meta-analysis showed Al agreement rates of 79% (95% CI: 76-82%, > =99%) and 90% (95% CI: 87-92%, I* =99%) for the
thresholds of 2 and 3 mm, respectively, with a mean divergence of 2.05 (95% CI: 1.41-2.69, I? = 10%) compared to manual
landmarking. The menton cephalometric landmark showed the lowest divergence between both methods (SMD, 1.17; 95%
CI, 0.82; 1.53; *=0%). Based on very low certainty of evidence, the application of AI was promising for automatically
detecting cephalometric landmarks, but further studies should focus on testing its strength and validity in different samples.
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Introduction
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allows digital systems to learn from experience, adapt to
it, and perform tasks often performed by humans [1]. The
advent of Al positively impacted data and medical sciences,
allowing efficient analysis of large data banks [2]. The clini-
cal application of Al has been growing and showing promis-
ing results in diagnosis [3, 4], monitoring [5, 6], and treat-
ment of diseases [6, 7].

The application of Al in dentistry is recent and based
predominantly on computer vision techniques [1], which
use automatic segmentation and analysis to manage large
medical image banks for a precise and efficient diagnosis
[8]. Recent studies have focused on the application of Al for
studying diagnoses of caries [9], oral cancer [10], gingivitis
[11], radiolucent lesions of the mandible [12], root fractures
[13], and orthodontic treatment [14]. The results of these
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studies have suggested that Al has space for growth, with
the potential to improve dental care at lower costs and for
the benefit of patients [1].

Technology has been extensively recommended for
orthodontic clinical practice, with digital imaging exami-
nations, 3D scanners, and intraoral cameras, which facili-
tate the scanning, sharing, and storing of the data collected
[14]. However, analyzing these data is still slow and time-
consuming [15]. For instance, the manual cephalometric
analysis performed by orthodontists requires time and pro-
fessional experience. In this scenario, Al has stood out for
identifying cephalometric landmarks of orthodontic interest,
making this task faster and less susceptible to human error
[16]. Previous studies have shown a high accuracy of Al for
detecting several cephalometric landmarks, with up to 98%
agreement towards manual annotation [17] and at shorter
times [18, 19].

However, the existing literature on the practical applica-
tion of Al for detecting cephalometric landmarks of ortho-
dontic interest in digital images (two- or three-dimensional)
is heterogeneous, with different software and programming
for this purpose, and without consensus regarding accuracy
and precision. A recent systematic review and meta-analysis
[20] found a 79% agreement, considering a margin of error
of up to 2 mm for manual detection. However, this review
included one specific Al system, excluding other critical
automatic detection systems.

Therefore, this systematic review of the literature evalu-
ated studies that assessed the level of agreement between Al,
regardless of system, with the human registration for anno-
tating cephalometric landmarks in digital imaging examina-
tions (two- or three-dimensional).

Materials and Methods
Protocol Registration

The protocol of this systematic review was produced accord-
ing to the PRISMA-P (Preferred Reporting Items for Sys-
tematic Review and Meta-Analysis Protocols) guidelines
[21] and registered in the PROSPERO database (http://www.
crd.york.ac.uk/PROSPERO) (CRD42021246253). The review
was reported according to the PRISMA (Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses) [22]
guidelines and performed according to the JBI Manual for
Evidence Synthesis [23].

Research Question and Eligibility Criteria
The eligibility criteria of this review were based on the fol-

lowing research question, created according to the PIRD
framework (Population, Index test, Reference test, and

Diagnosis): Is artificial intelligence (I) accurate to confirm
cephalometric landmarks (D) manually detected (R) in digi-
tal imaging examinations of the general population (P)?

Inclusion Criteria

e Population: Two- or three-dimensional digital imaging
examinations (teleradiography and computed tomog-
raphy, respectively) applied to the general population,
without restrictions of age and sex

e Index test: Automatic detection with artificial intel-
ligence (different available approaches such as hand-
crafted, deep learning, or hybrid methods) with sufficient
information on software calibration and databases

e Reference test: Manual/conventional detection by expert
professionals

e Diagnosis: Detection of any cephalometric landmark
of orthodontic significance, as long as explained in the
study

e Study design: Diagnostic accuracy studies

There were no restrictions on language or year of
publication.

Exclusion Criteria

e Literature reviews, letters to the editor/editorials, per-
sonal opinions, books/book chapters, case reports/case
series, pilot studies, preprint studies not yet submitted
for peer-reviewing, congress abstracts, and patents

¢ Studies with non-digital imaging examinations (conven-
tional cephalograms)

e Studies that did not compare automatic and manual land-
marking

e Studies with imaging examinations of post-mortem skulls
and individuals with syndromes and cleft lip.

Sources of Information and Search

The electronic searches were performed until November
2021 in the Embase, IEEE Xplore, LILACS, MedLine (via
PubMed), SciELO, Scopus, and Web of Science databases.
OpenGrey and ProQuest were used to partially capture
the “gray literature” to reduce the selection bias. The
MeSH (Medical Subject Headings), DeCS (Health Sci-
ences Descriptors), and Emtree (Embase Subject Head-
ings) resources were used to select the search descriptors.
Moreover, synonyms and free words composed the search.
The Boolean operators “AND” and “OR” were used to
improve the research strategy with several combina-
tions. The search strategies in each database were made
according to their respective syntax rules (Table 1). The
results obtained in the primary databases were initially

@ Springer


http://www.crd.york.ac.uk/PROSPERO
http://www.crd.york.ac.uk/PROSPERO

1160

Journal of Digital Imaging (2023) 36:1158-1179

Table 1 Database search strategies

Databases

Search strategy (November 2021)

Main databases

Embase
http://www.embase.com

LILACS
https://lilacs.bvsalud.org/

PubMed

http://www.ncbi.nlm.nih.gov/pubmed

SciELO
https://scielo.org/

Scopus
http://www.scopus.com/

Web of Science
http://apps.webofknowledge.com/

IEEE Xplore
https://ieeexplore.ieee.org/

Gray literature
OpenGrey
http://www.opengrey.eu/

ProQuest
https://www.proquest.com/

#1 “cephalometry”’/exp OR “cephalometry”

#2 “artificial intelligence”/exp OR “artificial intelligence” OR “image processing”/exp OR “image
processing” OR “machine learning”/exp OR “machine learning” OR “deep learning”/exp OR “deep
learning” OR “artificial neural network”/exp OR “artificial neural network™ OR “knowledge base”/exp
OR “knowledge base”

#1 AND #2

#1 (MH:cephalometry OR “cephalometric landmark*” OR “cephalometric analysis” OR “cephalometric
measurements”)

#2 (MH: “artificial intelligence”” OR MH:”image processing, computer-assisted” OR MH:”machine learning”
OR MH:”deep learning” OR MH: neural networks, computer’” OR “convolutional neural network™ OR “neural
network model” OR “‘connectionist model” OR MH: “knowledge bases” OR “automated localization” OR
“automated detection” OR “‘automatic localization” OR “automatic detection’)

#1 AND #2

#1 Cephalometry[Mesh] OR “Cephalometric Landmark*”[tw] OR “Cephalometric Analysis”[tw] OR
“Cephalometric Measurements”[tw]

#2 “Artificial Intelligence”[Mesh] OR “Image Processing, Computer-Assisted”[Mesh] OR “Machine
Learning”[Mesh] OR “Deep Learning”’[Mesh] OR “Neural Networks, Computer”’[Mesh] OR “Convo-
lutional Neural Network”[tw] OR “Neural Network Model”[tw] OR “Connectionist Model”’[tw] OR
“Knowledge Bases”’[Mesh] OR “Automated Localization”[tw] OR “Automated Detection”[tw] OR
“Automatic Localization”[tw] OR “Automatic Detection”[tw]

#1 AND #2

(“Artificial Intelligence” OR “Image Processing, Computer-Assisted” OR “Machine Learning” OR
“Deep Learning” OR “Neural Networks, Computer” OR “Convolutional Neural Network™ OR “Neural
Network Model” OR “Connectionist Model” OR “Knowledge Bases” OR “Automated Localization”
OR “Automated Detection” OR “Automatic Localization” OR “Automatic Detection’)

#1 TITLE-ABS-KEY cephalometry OR “cephalometric landmark*” OR “cephalometric analysis” OR
“cephalometric measurements”

#2 TITLE-ABS-KEY *“artificial intelligence” OR *“image processing, computer-assisted” OR “machine
learning” OR “deep learning” OR “neural networks, computer” OR “convolutional neural network” OR
“neural network model” OR “connectionist model” OR “knowledge bases” OR “automated localization”
OR “automated detection” OR “automatic localization” OR “automatic detection”

#1 AND #2

#1 TS =(cephalometry OR “cephalometric landmarks” OR “cephalometric landmarking” OR “cephalometric
measurements”)

#2 TS = (“artificial intelligence” OR “image processing, computer-assited” OR “machine learning” OR
“deep learning” OR “neural networks, computer” OR “convolutional neural network” OR “neural
network model” OR “knowledge bases”” OR “automated localization” OR “automated detection” OR
“automatic localization” OR “automatic detection”)

#1 AND #2

#1 “ALL METADATA”: cephalometry OR “cephalometric landmarks” OR “cephalometric landmarking”
OR “cephalometric analysis” OR “cephalometric measurements”

#2 "ALL METADATA": “artificial intelligence” OR “image processing, computer-assisted” OR “machine
learning” OR “deep learning” OR “neural networks, computer”” OR “convolutional neural network” OR
“neural network model” OR “connectionist model” OR “knowledge bases” OR “automated localization”
OR “automated detection” OR “automatic localization” OR “automatic detection”

#1 AND #2

(cephalometry OR “cephalometric landmarks”) AND (“artificial intelligence” OR “machine learning”
OR “deep learning” OR “neural network” OR “automatic localization” OR “automatic detection”)
(cephalometry OR “‘cephalometric landmarks”) AND (“artificial intelligence” OR “machine learning”
OR “deep learning” OR “neural network™ OR “automatic localization” OR “‘automatic detection”)
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exported to the EndNote Web™ software (Thomson
Reuters, Toronto, Canada) for cataloguing and removing
duplicates. The “gray literature” results were exported to
Microsoft Word (Microsoft™, Ltd, Washington, USA) for
manually removing duplicates.

Study Selection

After removing duplicates, the results were exported to
the Rayyan QCRI software (Qatar Computing Research
Institute, Doha, Qatar) to begin selecting the studies. Two
reviewers (GQTB and MTCV) read the titles of the studies
(first phase) and excluded those unrelated to the topic. In
the second phase, the abstracts of the studies were assessed
with the initial application of the eligibility criteria. The
titles that met the objectives of the study but did not have
abstracts available were fully analyzed in the next phase.
In the third phase, the potentially eligible studies were
fully read to apply the eligibility criteria. If the full texts
were not found, a bibliographic request was performed to
the library database (COMUT) and an e-mail was sent to
the corresponding authors to obtain the texts. Full-text
studies published in languages other than English or Por-
tuguese were translated. Two reviewers independently
performed all phases, and in case of doubt or disagree-
ment, a third reviewer (LRP) was consulted to make a
final decision.

Data Collection

The full texts of the eligible studies were analyzed, and the
data were extracted for the following information: study
identification (author, year, country, study location, and
the application of ethical criteria), sample characteristics
(the number of imaging examinations used for training and
testing and type of imaging examination), collection and
processing characteristics (software used for automatic
detection, the number and name of cephalometric land-
marks analyzed, the number of professionals participating in
manual detection, and the number of times manual detection
was performed), and main results (intra- and inter-examiner
results, mean differences in millimeters between manual/
conventional and automatic landmarking, and the level of
agreement of Al with the human registration of landmarks).
In the case of incomplete or insufficient information, the
corresponding author was contacted via e-mail.

An author (GQTB) extracted all the aforementioned data,
and a second reviewer (MTCYV) performed a cross-examination
to confirm the agreement among the data extracted. Any disa-
greement between the reviewers was solved with discussions
with a third reviewer (LRP).

Risk of Bias Assessment

Two authors (GQTB and WAV) independently assessed
the risk of individual bias in the eligible studies with
QUADAS-2 [24]. This tool includes four domains: patient
selection, index test, reference standard, and flow and tim-
ing. Each domain is evaluated for the risk of bias, and
the first three domains are also evaluated for applicability
concerns. Each domain can be classified as a “high risk,”
“uncertain risk,” and “low risk.” The evaluators solved
their divergences with a discussion, and when there was
no consensus, a third author (LRP) was consulted to make
a final decision.

Data Synthesis

The meta-analysis was performed with the R software, ver-
sion 4.2.0, for Windows (R Foundation for Statistical Com-
puting, Vienna, Austria), aided by the meta and metafor
packages. For inclusion in the meta-analysis, the studies
should present one of the following outcomes: (1) the pro-
portion of cephalometric landmarks correctly identified with
Al within the thresholds of 2 or 3 mm (agreement) and (2)
the mean divergence between cephalometric landmarking
with Al and manual landmarking, in millimeters.

For the first outcome, individual studies were combined
in the meta-analysis with the random-effects model by
Dersimonian-Laird, logit transformation, and the inverse
variance method, and the results were described in percent-
age (%) of agreement. For the second outcome, consider-
ing that the studies used different methods and formulas
to determine the mean divergence between Al and manual
landmarking, the present review used the standardized mean
difference (SMD) as an effect measure, with a respective
95% confidence interval, using the inverse variance method.
For this outcome, the closer to 0 the SMD, the more precise
the automatic identification of the cephalometric landmark.
Whenever possible, the individual results of each dataset
were considered for studies using more than one dataset
in their samples. The weights of each study in the meta-
analytical analyses were calculated considering the total
number of imaging examinations and cephalometric land-
marks analyzed in each study. The heterogeneity among
studies was assessed with tau-squared statistic (#*2) and
I and classified as low (7 < 50%), moderate (I*=750% to
75%), and high (I* > 75%).

The mean divergence between Al and manual detection
of cephalometric landmarks was also individually inves-
tigated. For this analysis, the cephalometric landmarks
were selected based on those used in the IEEE 2015 ISBI
Grand Challenge #1: Automated Detection and Analy-
sis for Diagnosis in Cephalometric X-ray Image [25].
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Fig. 1 Schematic representations of 2D and 3D cephalometric analysis. A Examples of landmark placement; B linear and angular measurements
based on the most common landmarks; C representation of 3D landmark placement

Figure 1 shows an example of landmarks placement in 2D
cephalometric schematic representation (Fig. 1A), how it
serves as a reference for many angular and linear analyses
for diagnosis purposes (Fig. 1B), and those landmarks in
a 3D analysis (Fig. 10).

The subgroups were analyzed considering the image
(2D vs. 3D) and Al system (handcrafted vs. deep learn-
ing) used in the assessment. The publication bias was
evaluated with a visual inspection of funnel plot asym-
metry and the Egger test.

@ Springer

Assessment of the Certainty of Evidence

The certainty of evidence was assessed with the Grading of
Recommendations, Assessment, Development, and Evalua-
tion (GRADE) tool. The GRADEpro GDT software (http://
gdt.guidelinedevelopment.org) summarized the results. The
assessment was based on study design, risk of bias, incon-
sistency, indirect evidence, imprecision, and publication
bias. The certainty of evidence can be classified as high,
moderate, low, or very low [26].


http://gdt.guidelinedevelopment.org
http://gdt.guidelinedevelopment.org

Journal of Digital Imaging (2023) 36:1158-1179

1163

Results
Study Selection

In the first phase of study selection, 7410 results were found
distributed in nine electronic databases, including the “gray
literature.” After removing duplicates, 4401 results remained
for analysis. A careful reading of the titles excluded 4129
results. Two hundred seventy-two studies remained for the
reading of abstracts. Of these, 141 studies were excluded after
applying the eligibility criteria. The 131 remaining results
were fully read, of which 91 were excluded (Supplementary
Table 1). Forty studies [17-19, 27-63] were included in the
qualitative analysis. Figure 2 presents the details of the search,
identification, inclusion, and exclusion of studies.

Characteristics of Eligible Studies

The studies were published between 2005 and 2021 and
performed in 12 different countries, with 26 studies in Asia
[17-19, 30-35, 39, 43-49, 51, 52, 54, 55, 57, 59, 60, 62,
63], nine in Europe [27-29, 36, 40, 50, 56, 58, 61], and five
in America [37, 38, 41, 42, 53]. The total sample included
12,601 imaging examinations, with 11,029 digital teleradio-
graphs and 1572 cone beam computed tomographs (CBCTs).

The studies used different methods for automatically
detecting cephalometric landmarks, highlighting those
related to the big groups of Al: handcrafted and deep learn-
ing. The imaging examinations of the included studies
detected several landmarks, ranging from 10 [28, 29] to
93 [59] cephalometric landmarks per study. The following

[ Identification of studies in databases and registers ]
)
Registers identified with: .
. Registers removed before assessment:
Main databases (n=7099): Gray literature (n=311):
=
o Main databases:
=] « Emb. =1325 . =
I mbase (n _ ) OpenGrey (n=0) « Duplicates removed automatically (n=2427)
2 « |EEE Xplore (n=49) « ProQuest (n=311) Dublicat d lly (n=579)
= . LILACS (n=79) p | - Duplicates removed manually (n=
(9] « PubMed (n=3119) X .
o . SGIELO (n=7) Gray literature:
« Scopus (n= 2468) « Duplicates removed manually (n=3)
- Web of Science (n=52)
—
Registers assessed according to titles (n=4401) —» | Registers excluded (n=4129)
l Registers excluded, with reasons (n=141):
- Abstract, editorial, letter to the editor, guideline, and book
X . _ (n=10)
Registers assessed according to abstracts (n=272) Bl Duplicate between the main and gray literature (n=7)
« Unrelated to the topic (n=106)
_g - Literature review (n=6)
§ « Study with dry skull images (n=12)
g
(¥E]
v
Registers excluded, with reasons (n=91):
Full articles assessed for eligibility (n=131) —»
« Supplementary Table 1
—
v
SR
o Studies included in the review (n=40)
w
>
g Qualitative synthesis (n=40)
- Meta-analysis (n=29)
—

Fig.2 Flowchart of the search, identification, and selection of eligible studies
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landmarks were the most used for detection: nasion (90.7%
of studies), gonion (88.4%), pogonion (86.0%), menton
(83.7%), orbitale (81.4%), sella (76.7%), anterior nasal
spine (72.1%), gnathion (72.1%), porion (69.8%), posterior
nasal spine (67.4%), upper incisal incision (53.5%), articu-
lare (48.8%), lower incisal incision (46.5%), supramentale
(46.5%), upper lip (46.5%), lower lip (46.5%), subspinale
(44.2%), soft tissue pogonion (39.5%), and subnasale
(39.5%). Table 2 details the main information of each eli-
gible study.

Risk of Individual Bias in the Studies

Table 3 presents detailed information on the risk of bias
in the eligible studies. Only three studies [31, 32, 40] pre-
sented a low risk of bias for all domains evaluated with
QUADAS-2. Most studies presented a high risk of bias for
the domains of patient selection (80%—32/40) and refer-
ence test (65%—26/40). Regarding the applicability assess-
ment, the results were similar to those of the risk of bias
assessment.

Specific Results of the Eligible Studies

The overall mean distance (mean error) between automatic
detection and manual landmarking ranged between 1.03 +1.29
[62] and 2.59 +3.45 mm [31] in two-dimensional imaging
examinations (teleradiographs) and between 1.88 +1.10 mm
[43] and 7.61 +3.61 mm [47] in three-dimensional imaging
examinations (computed tomographs). The lower the mean
error, the better the precision of the method used for automatic
detection.

The overall agreement rate of the automatic detection for
a margin of error up to 2 mm (clinically acceptable) ranged
between 43.75 [31] and 88.49% [53] for two-dimensional
imaging examinations. For three-dimensional imaging
examinations, the variation was between 64.16% [43] and
87.13% [62]. The higher the agreement rate within the mar-
gin of error up to 2 mm, the better the performance of the
method used for automatic detection. Supplementary Table 2
presents the quantitative results and the main outcomes of
the eligible studies.

Synthesis of Results and Meta-analysis

For assessing the agreement between Al and manual detec-
tion considering a margin of error of 2 mm, the meta-analysis
obtained a summarized effect of 79% (95% CI: 76-82%) with
high heterogeneity (/> =99%). The subgroup analyses showed
similar proportions between the digital images (2D=79%;
95% CI 76-82% vs. 3D=74%; 95% CI 30-95%) (Fig. 3A)
and Al systems (handcrafted =77%; 95% CI 71-83% vs. deep
learning =79%; 95% CI 76-83%) (Fig. 3B). There was no

@ Springer

asymmetry in the funnel plot (Fig. 4), which was confirmed
with the Egger test (p=0.6187).

Considering a margin of error of 3 mm, agreement was
90% (95% CI: 88-92%) with high heterogeneity (I>=99%).
The subgroup analyses for this outcome also showed simi-
lar accuracy between the images (Fig. 5A) and Al systems
(Fig. 5B). The analysis of funnel plot asymmetry (Fig. 6) and
the Egger test (p=0.0718) did not detect a publication bias.

The meta-analysis to verify the divergence of the position
between cephalometric landmarking with Al and manual
landmarking showed an SMD of 2.05 (95% CI: 1.41-2.69)
with low heterogeneity (I*=10%). The subgroup analyses
showed similar divergences between the digital images
2D=1.51; 95% CI 1.37-1.65 vs. 3D=2.89; 95% CI
1.01-4.77) (Fig. 7A) and Al systems (handcrafted =1.83;
95% CI 1.44-2.22 vs. deep learning=2.23; 95% CI
0.18-4.27) (Fig. 7B). The analysis of funnel plot asymme-
try (Fig. 8) and the Egger test (p =0.8883) did not detect a
publication bias.

This study also investigated the divergence between ceph-
alometric landmarking with Al and manual landmarking for
each cephalometric landmark. Hence, the landmarks with
the lowest divergences were menton (SMD, 1.17; 95% CI,
0.82; 1.53), subnasale (SMD, 1.07; 95% CI, 0.69; 1.46), and
gnathion (SMD, 1.27; 95% CI, 0.95; 1.58). The subgroup
analyses showed that 2D images were more precise in iden-
tifying the sella, supramentale, gnathion, lower incisal inci-
sion, and posterior nasal spine landmarks. Considering the
Al systems, deep learning was more precise in identifying
nine of the 19 landmarks analyzed (Table 4).

Certainty of Evidence

The certainty of evidence of the three outcomes (accuracy
for the margin of error of 2 and 3 mm and divergence of the
position between cephalometric landmarking with AI and
manual landmarking) was classified as very low (Table 5).

Discussion

This systematic review with meta-analysis aimed to evaluate
the use of artificial intelligence (Al) for detecting cephalo-
metric landmarks in digital imaging examinations and com-
pare it to manual landmarking. The results showed that the
agreement between Al and manual detection ranged from
79 to 90% according to the margin of error, and the mean
divergence was 2.05 compared to manual landmarking.
Using Al to identify cephalometric landmarks is a great
innovation in clinical practice. The development of reliable
and automated tools to detect and perform cephalometric
analysis have great repercussion for the clinician as it speeds,
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Table 3 Risk of bias assessed
with QUADAS-2

Author, year

Risk of bias Applicability
Patient  Index Reference Flow and Patient  Index Reference
selection test test timing selection test test

Giordano et al., 2005
Leonardi et al., 2009
Vucinic et al., 2010
Tam and Lee, 2012
Shahidi et al., 2013
Shahidi et al., 2014
Gupta et al., 2015
Tam and Lee, 2015
Vasamsetti et al., 2015
Codari et al., 2016
Lindner et al., 2016
Zhang et al., 2016
Arik et al., 2017
Leeetal., 2017

De Jong et al., 2018
Montufar et al., 2018a
Montufar et al., 2018b
Neelapu et al., 2018
Wang et al., 2018
Chen et al., 2019

Dai et al., 2019

Kang et al., 2019
Nishimoto et al., 2019
Payer et al., 2019

Lee et al., 2019

Kim et al., 2020

Lee et al., 2020
Lietal., 2020

Ma et al., 2020

Moon et al., 2020
Noothout et al., 2020
Oh et al., 2020

Qian et al., 2020
Song et al., 2020
Wirtz et al., 2020
Yun et al., 2020

Zeng et al., 2020
Huang et al., 2021
Kim et al., 2021
Kwon et al., 2021

CITOTIOI I ITITIIC IS I IO IO N ICOODI NI D SN D CcCaE
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H high risk, U unclear risk, L low risk

standardizes, and enhance the process. The studies included
in this systematic review showed that Al can perform an
automatic identification in under one minute, which would
make this step more practical for dentists and allow faster
orthodontic planning. Another advantage of Al reported in

@ Springer

the eligible studies is that because it is an automated tool,
the identification of cephalometric landmarks would not be
susceptible to human error. Those findings may influence
the decision to transition from traditional methods to upcom-
ing technologies, such as the ones reported.
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A

Study Proportion 95%-Cl Weight
subgoup=2D

Giordano et al. —a 085 [0.79,090]  29%
Lindner etal. 085 [0.84;085]  34%
Arik etal. (Dataset 1) 076 [074,077]  34%
Arik etal. (Dataset 2) 075 [074,077]  34%
Ariketal. (Dataset 3) 068 [0.66;070]  3.4%
Wang et al. (Dataset 1) 073 [072,075]  34%
Wang et al. (Dataset 2) 072 [071;073]  34%
Chenetal. (Dataset 1) 087 [0850.88  3.3%
Chen et al. (Dataset 2) 075 [0.73;0.77] 34%
Kim et al. 083 [0.82,084]  34%
Leeetal. 082 [081;083]  34%
Lietal. (Dataset 1) 077 [0750.78]  33%
Lietal. (Dataset 2) 088 [087,090] 33%
Quian etal. (Dataset 1) 088 [0.86;0.89] 3.3%
Quian et al. (Dataset 2) 076 [074,078]  34%
Song et al. (Dataset 1) 086 [0.85088]  33%
Song et al. (Dataset 2) ] 062 [0.60;064]  34%
Wirtzetal. 070 [0.69;0.72]  34%
Zengetal. (Dataset 1) 081 [0.80;0.83]  34%
Zeng et al. (Dataset 2) 071 [068;0.73)  34%
Kwon etal. (Dataset 1) 087 [0.86;0.88]  3.3%
Kwon etal. (Dataset 2) 077 [075079]  33%
Vasamsetti et al. = 069 [066,072]  33%
Ohetal. (Dataset 1) 086 [0.85087]  33%
Ohetal. (Dataset 2) 076 [0.74;0.78]  34%
Huang et al. (Dataset 1) 087 [0.85088]  33%
Huang et al. (Dataset 2) 074 [072;0.76]  34%
R n effects mode <> 0.79 6;0.82] 90.2%
Heterogenei 9

subgoup =3D

Guptaetal. E o 065 [061;068]  3.3%
Neelapu et al. - 064 [060;068]  33%
Kim etal. 087 [0.85089  33%
Ranc fects model —_— 074 [030;095 98
Random effects model < 0.79 [0.76;0.82] 100.0%

" T 1 1T T 11
Heterogeneity: 12=99% , *=02184 , p=0
Test for subgroup diférences: Xf:OAS,df:W (p=050) 03 04 05 06 07 08 09

171

B

Study Proportion 95%-Cl Weight

ystem = Handcrafted

Giordano et al. — 085 [079;090]  2.9%
Gupta etal. —E 0.65 [0.61;0.68] 3.3%
Linder etal. 085 [0.84,085]  3.4%
Neelapu et al. — 064 [060;0.68]  3.3%
Wang et al. (Dataset 1) k3 073 [072;0.75] 3.4%
Wang et al. (Dataset 2) B 072 [071;073]  3.4%
Chen etal. (Dataset 1) = 0.87 [0.85;0.88] 3.3%
Chen et al. (Dataset 2) - 075 [073;077]  3.4%
Quian et al. (Dataset 1) = 0.88 [0.86;0.89] 33%
Quian et al. (Dataset 2) k= 0.76 [0.74;0.78] 3.4%
Wirtzetal. - 0.70 [0.69;0.72 3.4%
' cts model g ———— 0.77 [0.71;0.83]  36.3%
sy Deep Learning
Ariketal. (Dataset 1) - 076 [074,077]  3.4%
Arik et al. (Dataset 2) = 0.75 [0.74;0.77] 3.4%
Arik et al. (Dataset 3) . 0.68 [0.66;0.70] 3.4%
Kim et al. 083 [0.82;0.84] 3.4%
Leeetal. = 0.82 [0.81;0.83] 3.4%
Lietal. (Dataset 1) - 0.77 [0.75;0.78] 33%
Lietal. (Dataset 2) L 0.88 [0.87;0.90] 33%
Song et al. (Dataset 1) = 086 [0.85,0.88]  3.3%
Song et al. (Dataset 2) —Ea 0.62 [0.60; 0.64] 3.4%
Zeng et al. (Dataset 1) - 081 [0.80;0.83]  34%
Zeng et al. (Dataset 2) . 0.71 [0.68;0.73] 34%
Kim etal. . 0.87 [0.85;0.89] 33%
Kwon et al. (Dataset 1) = 087 [0.86;0.88]  3.3%
Kwon et al. (Dataset 2) B H 0.77 [0.75;0.79] 3.3%
Vasamsetti et al. —— 069 [066;072]  3.3%
Ohetal. (Dataset 1) - 0.86 [0.85087] 33%
Oh et al. (Dataset 2) - 0.76 [0.74;0.78] 3.4%
Huang et al. (Dataset 1) - 0.87 [0.85;088]  33%
Huang et al. (Dataset 2) . 0.74 [0.72;0.76] 3.4%
Random effects model e 0.79 [0.76;0.83 63

=99 =02 0.0
Random effects model - 0.79 [0.76;0.82] 100.0%

’
Heterogeneity: 12=99% , *=02184 , p=0
Test for subgroup diférences: 7, =048,df=1(p=050) 06 065 0.7 075 0.8 0.85

Fig.3 Agreement of Al and manual landmarking considering a margin of error of 2 mm. A Subgroup analysis according to images. B Subgroup

analysis according to Al

The meta-analysis results showed that the agreement
rates between Al and manual detection in identifying ceph-
alometric landmarks were 79% and 90%, considering the
margins of error of 2 and 3 mm, respectively, with a mean
divergence of 2.05. These data may be promising, as some
studies affirm that even when two experts perform manual
landmarking, there may be divergences over 1 mm [18, 64,
65]. The data of the present review are similar to those of
another previous meta-analysis, which found 80% agreement
and a divergence of 0.05 for a margin of error of 2 mm.

Different from the review by Schwendicke et al., this new
review included all types of Al presented in the literature,
aiming to extend the evidence. Moreover, only studies using
digital imaging examinations were included because these
images have extensive clinical use. Even with the differences
indicated, the application of Al shows good accuracy for
cephalometric landmarking. However, when considering a
margin of error of 2 mm clinically acceptable [52, 58], Al
has space for improvement because the higher the margin of
error, the better the results.

Fig.4 Assessment of the risk S )
of publication bias for the © B
agreement of Al and manual o © S 0% ©
. . . [Te} o :
landmarklng, considering a S o °o o ® o omi ° @ o0 o
margin of error of 2 mm 5 ° ;
i o
T 2
3 o
c
o]
b
wn
Z -
S 4 ‘°
= T T T T T T
0.0 05 1.0 15 20 25

Logit Transformed Propotion
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A B
Study Proportion 95%-Cl Weight Study Propottion 95%-Cl Weight
nage = 2D Handcrafted
Giordano et al. —a 091 [0.87;095]  3.1% Glordano etal. — 091 [087;095]  31%
Ariket al. (Dataset 1) 082 [0.81;084]  35% Shahidi et al. —= 064 [058;0691  34%
Arik et al. (Dataset 2) -] 084 [0.83;086] 3.5% Gupta etal. . 083 [0.79;0.86]  3.4%
Ariket al. (Dataset 3) 3 079 [0.77;081]  35% Linder et al. 093 [092;093]  35%
Wang et al. (Dataset 1) = 084 [0.83;086] 3.5% Neelapu et al. —E 085 [0.82;088]  3.4%
Wang et al. (Dataset 2) 086 [0.86;0.87] 3.5% Wang et al. (Dataset 1) + 0.84 [0.83;0.86] 3.5%
Chen et al. (Dataset 1) 096 [0.95,096  3.4% Wang et al. (Dataset 2) 086 [0.86;0.87]  3.5%
Chen et al. (Dataset 2) = 089 [0.87,090]  3.5% Chen etal. (Dataset 1) 096 [095096]  34%
Kim etal. 093 [092;093] 35% Chen et al. (Dataset 2) - 089 [0.87;090]  3.5%
Leeetal. 096 [0.95096]  3.5% Quian etal. (Dataset 1) 0.96 [0.96;0.97] 3.4%
Lietal. (Dataset 1) - 084 [0.82085  35% Quian et al. (Dataset 2) = 088 [0.86;0.89]  3.5%
Lietal. (Dataset 2) 096 [0.95096]  34% Wirtzetal. 083 [0.82;085] 35%
Quian et al. (Dataset 1) 096 [096,097]  3.4% frects mode - 088 [0.83;0.92 H
Quian etal. (Dataset 2) = 088 [0.86;089]  3.5% Y <0
Song et al. (Dataset 1) 095 [0.94;0.96] 3.5% -
Song et al. (Dataset 2) B 087 [086;089]  35% system = Deep Learning
Wirtzetal. 083 [0.82:085]  35% Arik et al. (Dataset 1) 082 [0.81;084] 3.5%
Zengetal. 09 [08%091] 35% Ariketal. (Dataset 2) = 084 [083;086]  35%
Kwon et al. (Dataset 1) 094 (093,095  35% Ariketal. (Dataset 3) = 079 077,081  35%
Kwon et al. (Dataset 2) B 089 (083091  35% Kim etal 093 [0.92;093]  3.5%
Ohetal. Dataset 1) 094 [093,095] 35% Leeetal. 09 [095096]  3.5%
Ohetal. (Dataset 2) - 089 [088;091] 3.5% L! etal. (Dataset 1) = 0.84 [0.82,0.85] 3.5%
Huang et l. (Dataset 1) 096 [095,097  34% g‘oitgal't fl’a(g:f;:e)t ) ggg Eggi gzg} 3“;2/‘;
I-‘I’ua’n’g tal. ({[?étase‘ti) PN 095 [9 9% 096] ;3'4% Song et al. (Dataset 2) = 087 [0.86;0.89]  3.5%
. P Zengetal. 090 [0.89;0.91] 3.5%
Kim etal. - 093 [0.92;095]  3.4%
hage =30 Kwon et al. (Dataset 1) 094 [0.93;095] 3.5%
Shahidietal. 064 058069  34% Kwon et al. (Dataset 2) | 0.89 [0.88;0.91] 3.5%
Ohetal. (Dataset 1) 094 [0.93;095]  3.5%
Guptaetal. - 083 075,086 34% Oh etal. (Dataset 2) = 089 [088091] 35%
Linder etal. 093 [092;093] 35% H era ’ o, ;
uang et al. (Dataset 1) 0.96 [0.95;0.97] 3.4%
Neelapu et al. = 085 [0.82088] 34% Huang et al. (Dataset 2) 095 [093;096]  34%
Kim etal. = 093 [0.92,095]  34% R ' O
xandom effects model —_— 086 [0.68:0.95 PR r ffe ode < 09 0.89: 0.94 58.9
Random effects model < 0.90 [0.88;0.92] 100.0%
Random effects model < 090 [0.88;0.92] 100.0% Heterogeneity: 1= 99%, 2= 04420, p =0 | e m—

. T 1T 1
Heterogeneity: | 2-99% B 204420 ,p=0

Test for subgroup diférences: xf =161,df=1(p=021) 06 0.7 08 09

Test for subgroup diférences: xf =200,df=1p=0.16) 06 0.7 08 09

Fig.5 Agreement of Al and manual landmarking considering a margin of error of 3 mm. A Subgroup analysis according to images. B Subgroup

analysis according to Al

The individual analysis of cephalometric landmarks
showed a high variety of mean divergences between Al
and manual detection of each landmark. For instance, the
results of the meta-analysis showed that the subnasale land-
mark had a lower divergence, while the gonion landmark
had a divergence higher than 2 mm. This result may be
justified by the inherent challenge of cephalometric land-
marking either with Al or manually [65, 66]. Previous

studies showed potentially significant variations among
experienced examiners when identifying some landmarks
[18, 67]. These results are explained by the difficult visu-
alization of these landmarks due to their anatomical posi-
tion, which may depend on the head position at the time of
examination, changes due to the radiography device, and
quality and overlap of structures in imaging examinations
[52]. Moreover, landmarks located in bone margins may

Fig.6 Assessment of the risk S
of publication bias for the e
agreement of Al and manual 1 ° oo © o ®
. . . 2 o E L
landmarking, considering a S o c0h : o
. o
— R o
margin of error of 3 mm 5 o ° o .
[ ] ° [}
o
& ° °
© wn
c - -
S =]
wv
o
4
o
wn
S o
T T T T T
0 1 2 3 4

@ Springer

Logit Transformed Propotion



Journal of Digital Imaging (2023) 36:1158-1179 1173
A B
Study SMD 95%-Cl Weight Study SMD  95%-Cl Weight
Shahidi et al. 259 3.4500 — = 259 [-417;935] 1.0% Shahidi et al. 259 34500 e 259 [-417;935]  1.0%
Tamand Lee 1.63 1.5500 —1— 163 [-141;467]  43% Gupta etal. 201 12300 & 201 [-040;442]  62%
Vasamsetti et al. 1.66 1.1300 —=— 166 [-055;387]  69% Tam and Lee 163 1.5500 T 163 [-141;467]  43%
Wangetal. (Dataset 1) 1.71 1.3900 = 171 [-1.01;443]  52% Vasamsetti et al. 1.66 1.1300 T 166 [-055387]  6.9%
Wang et al. (Dataset2) 169 1.4300 —— 169 [-1.11;449]  49% Montufar et al. 364 14300 & 364 [084:644]  49%
Chen et al. (Dataset 1) 117 1.1900 —E— 117 [-1.16;350]  6.5% Montufar et al. 251 1.6000 N 251 [-063;565]  41%
Chen et al. (Dataset 2) 148 0.7700 - 148 [-0.03;2.99] 10.9% Neelapu et al. 188 1.1000 —E— 188 [-028;404]  7.2%
Kim et al. 137 1.7900 —r— 137 [-2.14;488]  34% Wangetal. (Dataset1) 171 1.3900 & 171 [-1.01;443]  52%
Leeetal. 153 1.7400 —— 153 [-1.88;4.94]  3.6% Wangetal. (Dataset2) 169 1.4300 —_— 169 [-1.11;449]  4.9%
Noothout et al. 1.35 1.1900 —— 135 [-0.98;3.68] 6.5% Chen et al. (Dataset 1) 1.17 1.1900 e 117 [-1.16;350]  6.5%
Wirtzetal. 233 3.3400 ———————— 233 [-422;888] 1.1% Chenetal. (Dataset2) ~ 1.48 07700 — 148 [-003;299] 10.9%
Zengetal. 1.46 0.9200 E— 146 [-034;326]  9.0% Wirtzetal. 233 33400 ———————— 233 [-422,888] 11%
anc ole ¢ 5 3 6. 4 < 83 2.2
Guptaetal. 201 1.2300 T 201 [-040;442]  62% Kim etal. 137 1.7900 —TE— 137 [-214,488]  34%
Montufar et al. 364 1.4300 — 364 [084;644]  4.9% Leeetal. 1,53 1.7400 1T 153 [-188;494]  3.6%
Montufar et al. 2.51 1.6000 — 251 [-063;565]  4.1% Noothout et al. 135 1.1900 TE— 135 [-098;368]  6.5%
Neelapu et al. 1.88 1.1000 —— 188 [-0.28;404]  7.2% Zengetal. 146 09200 i 146 [-034;326]  9.0%
Kim etal. 1.03 1.2900 —m— 1.03 [-1.50;3.56]  5.8% Kim etal. 1.03 12900 —TE— 103 [-1.50;356]  5.8%
Ma etal. 578 0.9800 —— 578 [3.86;7.70]  8.4% Maetal. 578 0.9800 —#— 578 [386770] 84%

o ec _ 9 0 6.€ C CLs = 2 2 3

Random effects model <> 205 [1.41;269] 100.0% Random effects model <> 205 [1.41;269] 100.0%
Heterogeneity: 12=10% , t*=0.6019 , p = 0.34 Heterogeneity: 12=10% , ©*=0.6019 , p =034
Test for subgroup diferences:  x, =3.53,df=1 (p=0.06) -5 0 5 Testfor subgroup diferences: 1, =023,df=1 (p=063) -5 0 5

Fig. 7 Divergence of the position between cephalometric landmarking with Al and manual landmarking. (A) Subgroup analysis according to

images. (B) Subgroup analysis according to Al

represent a challenge for Al identification [18]. In this con-
text, considering that the evaluation of cephalometric land-
marks does not have a definite gold standard and depends
on manual assessments, these errors and difficulties may
be transferred to the interpretations of results presented
by Al This may be characterized as one of the significant
limitations of the current evidence on the accuracy of Al in
identifying cephalometric landmarks [18].

Cephalometry is the reference examination in orthodon-
tics, mostly used to diagnose facial skeletal morphology,
predict growth, and plan and assess orthodontic treatment
results [68]. However, this assessment uses two-dimensional
images of a three-dimensional structure, causing errors in the
projection and identification of structures [68]. To overcome
these limitations, studies have proposed the transition from
cephalometric analysis in 2D images to 3D images, using
cone-beam computed tomography [53]. The advantages of

using 3D images for this task include the precise identifica-
tion of anatomical structures, prevention of geometric distor-
tion of the image, and the ability to evaluate complex facial
structures [69]. Considering these practical differences, this
meta-analysis performed subgroup analyses to assess the
influence of the type of image on the accuracy of Al. The
results showed that using 2D images resulted in a lower
divergence between Al and manual identifications for spe-
cific landmarks (sella, supramentale, gnathion, lower incisal
incision, and posterior nasal spine). However, the overall
assessment of the results showed similar accuracy levels of
Al landmark placement in 2D or 3D images. However, these
results may be justified by the fact that 3D images were used
in in a reduced number of samples, making the results for
this subgroup imprecise. It is also important to highlight
that these subgroup analyses are only exploratory, and their
results should be interpreted with caution.
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Table 4 Meta-analysis results of the individual precision of cephalometric landmarks, based on the ISBI 2015 challenge

Cephalometric  # of Overall Overall > Subgroup  I?subgroups Subgroup Subgroup I? subgroups Subgroup
landmark studies summary test summary difference summary difference
mean (95% mean (95% test mean (95% test
CI) CI)—type of CI)—type
image of Al
Sella 11 1.55(1.02; 0% 2D, 1.13 0% p<0.01 Handcrafted: 0% p<0.01
2.08) (0.93; 1.92 (1.26;
1.32) 2.57)
3D, 2.69 0% Deep learning: 0%
(1.48; 092 (0.72;
3.90) 1.12)
Nasion 17 144 (1.10; 0% 2D, 1.43 0% p=0.94 Handcrafted: 0% p=0.22
1.79) (1.08; 156 (1.12;
1.78) 1.99)
3D, 1.45 0% Deep learning: 0%
(0.80; 1.14 (0.36;
2.10) 1.91)
Orbitale 14 2.12(1.61; 0% 2D, 1.94 0% p=0.32 Handcrafted: 0% p=0.03
2.62) (1.43; 2.63 (2.04;
2.45) 3.22)
3D, 2.44 0% Deep learning: 0%
(1.37; 1.63 (0.49;
3.51) 2.77)
Porion 13 1.76 (1.01;  20% 2D, 1.22 0% p=0.04 Handcrafted:  33% p=0.99
2.50) (0.64; 1.94 (0.36;
1.80) 3.53)
3D, 2.98 42% Deep learning: 4%
(1.08; 1.95 (0.93;
4.88) 2.97)
Subspinale 12 1.96 (1.55; 0% 2D, 1.66 0% p=0.10 Handcrafted: 0% p<0.01
2.37) (1.31; 2.25 (1.73;
2.00) 2.76)
3D, 2.32 0% Deep learning: 0%
(1.15; 1.45 (1.00;
3.50) 1.89)
Supramentale 14 2.11(1.69; 0% 2D, 1.63 0% p=0.03 Handcrafted: 0% p=0.08
2.53) (1.18; 2.28 (1.79;
2.08) 2.77)
3D, 2.38 97% Deep learning: 0%
(1.66; 1.57 (0.45;
3.10) 2.68)
Pogonion 11 1.47(0.98; 0% 2D, 1.26 0% p=0.21 Handcrafted: 0% p<0.01
1.96) (1.10; 1.93 (1.34;
1.43) 2.53)
3D, 1.87 0% Deep learning: 0%
(0.56; 0.91 (0.34;
3.18) 1.48)
Menton 13 1.17(0.82; 0% 2D, 0.95 0% p=0.17 Handcrafted: 0% p=0.23
1.53) (0.82; 131 (0.88;
1.09) 1.73)
3D, 1.43 23% Deep learning: 0%
(0.59; 0.86 (-0.04;
2.28) 1.76)
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Table 4 (continued)

Cephalometric  # of Overall Overall > Subgroup I? subgroups Subgroup Subgroup I subgroups Subgroup
landmark studies summary test summary difference summary difference
mean (95% mean (95% test mean (95% test
CI) CI)—type of CI)—type
image of Al
Gnathion 11 1.27(0.95; 0% 2D, 0.98 0% p<0.01 Handcrafted: 0% p<0.01
1.58) (0.80; 1.43 (1.03;
1.15) 1.82)
3D, 1.85 0% Deep learning: 0%
(1.32; 0.92 (0.62;
2.39) 1.22)
Gonion 13 242 (2.04; 0% 2D, 2.12 0% p=0.17 Handcrafted: 0% p<0.01
2.79) (1.44; 2.63 (2.20;
2.79) 3.07)
3D, 2.60 0% Deep learning: 0%
(2.11; 1.82(1.43;
3.10) 2.22)
Lower incisal 10 1.92(1.23; 20% 2D, 1.20 0% p<0.01 Handcrafted: 0% p<0.01
incision 2.60) (0.94, 2.50 (1.68;
1.46) 3.32)
3D, 2.66 34% Deep learning: 0%
(1.22; 0.99 (0.62;
4.11) 1.36)
Upper incisal 13 1.32(0.94;, 0% 2D, 1.01 0% p=0.11 Handcrafted: 0% p<0.01
incision 1.71) (0.80; 1.76 (1.26;
1.23) 2.25)
3D, 1.79 0% Deep learning: 0%
(0.84; 0.90 (0.69;
2.74) 1.12)
Upper Lip 6 1.69 (1.00; 0% N/A N/A N/A Handcrafted: 0% p=0.14
2.37) 1.23 (0.62;
1.84)
Deep learning: 10%
1.99 (-0.10;
4.09)
Lower Lip 6 147 (0.95; 0% N/A N/A N/A Handcrafted: 0% p=034
1.99) 1.24 (0.47,
2.00)
Deep learning: 0%
1.66 (0.08;
3.24)
Subnasale 5 1.07 (0.69; 0% N/A N/A N/A Handcrafted: 0% p=0.16
1.46) 1.51 (-0.15;
3.18)
Deep learning: 0%
0.96 (0.71;
1.22)
Soft tissue 5 2.07 (1.05; 100% N/A N/A N/A Handcrafted: 0% p=0.39
pogonion 3.10) 1.81 (1.22;
2.40)
Deep learning: 22%
2.60 (-1.30;
6.51)
Posterior nasal 11 1.44(0.99; 0% 2D, 1.10 0% p<0.01 Handcrafted: 0% p<0.01
spine 1.89) (0.85; 1.91 (1.35;
1.36) 2.47)
3D, 2.32 0% Deep learning: 0%
(1.45; 0.98 (0.58;
3.19) 1.39)
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Table 4 (continued)

Cephalometric  # of Overall Overall > Subgroup I? subgroups Subgroup Subgroup I subgroups Subgroup
landmark studies summary test summary difference summary difference
mean (95% mean (95% test mean (95% test
CI) CI)—type of CI)—type
image of Al
Anterior nasal 11 1.53 (1.01; 0% 2D, 1.62 0% p=0.86 Handcrafted: 0% p=0.10
spine 2.05) (1.05; 1.82 (1.00;
2.20) 2.63)
3D, 1.54 33% Deep learning: 0%
0.27, 1.16 (0.54;
2.81) 2.05)
Articulare 5 1.51(1.11;, 0% N/A N/A N/A Handcrafted: 0% p=0.90
1.90) 1.48 (-0.02;
2.97)
Deep learning: 0%
1.52 (0.92;
2.13)

Another subgroup analysis performed in this meta-analysis
was the comparison between the types of Al used in the stud-
ies. Among the algorithms used in computer vision techniques,
handcrafted systems use specific techniques to extract differ-
ent characteristics from the images, such as texture, color, and
object margins, to later compose the feature vector, which is

used by different machine-learning algorithms. In turn, deep
learning systems are considered the most recent Al technol-
ogy and use an artificial neural network with several layers of
depth that learn characteristics directly from observing input
images, using a pyramid approach [70]. The present study did
not find differences in both subgroups for overall accuracy or

Table 5 Summary of finding (SoF) for the proportion of cephalometric landmarks correctly identified with Al, and the mean divergence from

manual landmarking

Certainty assessment Certainty

No. of Study Risk of Inconsistency Indirect Imprecision Other Relative effect (95% CI)

studies design bias Evidence considerations

Agreement between cephalometric landmarking with AT and manual landmarking (Threshold 2 mm)

19 Diagnostic ~ Very Serious® Not serious  Not serious  Publication Proportion: 0.79 BSO0O0O
accuracy serious® bias not (0.76;0.82) Very Low
studies detected

Agreement between cephalometric landmarking with AI and manual landmarking (Threshold 3 mm)

19 Diagnostic ~ Very Serious® Not serious ~ Not serious ~ Publication Proportion: 0.90 SO0
accuracy serious® bias not (0.88;0.92) Very Low
studies detected

Divergence between cephalometric landmarking with AI and manual landmarking

15 Diagnostic ~ Very Not serious ~ Not serious  Serious® Publication SMD: 2.05 (1.41;2.69) OO0
accuracy serious® bias not Very Low
studies detected

Evidence levels of the GRADE workgroup

High certainty: strongly confident the true effect is close to the effect estimate

Moderate certainty: moderately confident in the effect estimate. The true effect might be close to the effect estimate, but it might be substantially

different

Low certainty: limited confidence in the effect estimate. The true effect might substantially differ from the effect estimate

Very low certainty: little confidence in the effect estimate. The true effect will probably substantially differ from the effect estimate

CI confidence interval, SMD standardized mean difference

#High risk of bias in majority of the included studies—downgraded by two levels

"High and unexplained heterogeneity (1>> 75%)—downgraded by one level

“Large confidence interval—downgraded by one level
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mean divergence between Al and manual detections, but deep
learning provided lower divergences in nine of the 19 land-
marks analyzed. Deep-learning algorithms are more accurate
for specific landmarks, probably because the positions of the
landmarks are easier to identify, facilitating learning by the
artificial neural network, which justifies the previous results.
However, these results must be interpreted very cautiously
because this is only a subgroup analysis.

The results of the meta-analysis in this review should
be interpreted critically and cautiously because only three
[31, 32, 40] of the 40 studies included had a low risk of
bias. This finding shows that, although extensive, the
existing literature is limited by studies that may present
some distortion in their results. According to the risk of
bias analysis, patient selection was the domain in which
most studies showed deficiencies, considering that few
studies described in detail the sample selected and were
not representative of the population. Another important
source of bias was the description of the reference test.
Considering it was a manual and examiner-dependent
analysis, the studies should detail the form of manual
identification of cephalometric landmarks and describe
the type of calibration of evaluators, the number of assess-
ments performed, and intra- and inter-examiner reliability.
In this context, further studies should follow guidelines
such as the CONSORT-AI and SPIRIT-AI [71] to perform
and report Al analyses.

Among the limitations of this review, the low certainty
of evidence stands out because of the high risk of bias in the
eligible studies. Another limitation is the heterogeneity of
analyses, especially for accuracy, probably because of the
different methodologies and programming for Al identifi-
cation and the heterogeneity of the datasets used. However,
this is the most comprehensive systematic review with meta-
analysis on using Al to identify cephalometric landmarks
of orthodontic interest and the first to perform individual
analyses for each cephalometric landmark.

Conclusion

Al shows good agreement for landmark placement on both
2D and 3D images and may assist in the final manual iden-
tification or confirmation of the positions for cephalometric
landmarks, making this task faster and more precise. Further
studies should be performed to expand the datasets used to
include a more representative population, with study models
of lower risks of biases, and aiming to overcome the limita-
tions of the lack of a gold standard to identify cephalometric
landmarks.
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